JPH0657381A - Fe-ni-co low thermal expansion alloy - Google Patents

Fe-ni-co low thermal expansion alloy

Info

Publication number
JPH0657381A
JPH0657381A JP23148092A JP23148092A JPH0657381A JP H0657381 A JPH0657381 A JP H0657381A JP 23148092 A JP23148092 A JP 23148092A JP 23148092 A JP23148092 A JP 23148092A JP H0657381 A JPH0657381 A JP H0657381A
Authority
JP
Japan
Prior art keywords
thermal expansion
alloy
coefficient
low thermal
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23148092A
Other languages
Japanese (ja)
Inventor
Kenji Hirano
健治 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP23148092A priority Critical patent/JPH0657381A/en
Publication of JPH0657381A publication Critical patent/JPH0657381A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To approximate the thermal expansion of an Fe-Ni-Co low thermal expansion alloy to that of a package material such as silicon and to enable its joining use with the package material by specifying the compsn. of Ni, Co and Fe, the average thermal expansion coefficient, the variation point of its thermal expansion or the like. CONSTITUTION:This Fe-Ni-Co low thermal expansion alloy is formed with a compsn. consisting of, by weight, 30.6 to 34.5% Ni and 7.8 to 11.5% Co as well as 40.5 to 43.5% Ni+Co, and the balance Fe. Furthermore, the average thermal expansion coefficient at 30 to 350 deg.C is regulated to 3.5X10<-6>/ deg.C and the variation point of its thermal expansion is regulated to 300 deg.C or above. Moreover, its gamma alpha' transformation temp. is regulated to -70 deg.C or below, and its thermal expansion coefficient is approximated to that of a package material such as silicon, aluminum nitride and glass-ceramic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、IC用リードフレー
ム材、PGA用シールリング材、PGA用リードピン材
等の半導体パッケージに使用されるFe−Ni−Co系
合金材料に係り、NiとCoとの含有量を特定範囲とす
ることにより、その熱膨張係数を窒化アルミやガラス・
セラミックスなどのパッケージ材料の熱膨張係数に近似
させたFe−Ni−Co系低熱膨張合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Fe-Ni-Co based alloy materials used for semiconductor packages such as IC lead frame materials, PGA seal ring materials, PGA lead pin materials, and the like. The thermal expansion coefficient of aluminum nitride and glass
The present invention relates to a Fe-Ni-Co-based low thermal expansion alloy that approximates the thermal expansion coefficient of a package material such as ceramics.

【0002】[0002]

【従来の技術】従来、ICリードフレーム材、PGA用
シールリング材、PGA用リードピン材等に用いられる
金属材料としては、29wt%Ni−17wt%Co−
Fe(ASTM F15)合金や41wt%Ni−Fe
(ASTM F30)合金等が使用されている。29w
t%Ni−17wt%Co−Fe合金の平均熱膨張係数
(30〜300℃)は、4.6〜5.4×10-6/℃、
41wt%Ni−Fe合金の平均熱膨張係数(30〜3
00℃)は、4.0〜4.7×10-6℃である。
2. Description of the Related Art Conventionally, as a metal material used for an IC lead frame material, a PGA seal ring material, a PGA lead pin material, etc., 29 wt% Ni-17 wt% Co-
Fe (ASTM F15) alloy and 41 wt% Ni-Fe
(ASTM F30) alloy or the like is used. 29w
The average thermal expansion coefficient (30 to 300 ° C.) of the t% Ni-17 wt% Co-Fe alloy is 4.6 to 5.4 × 10 −6 / ° C.,
Average thermal expansion coefficient of 41 wt% Ni-Fe alloy (30-3
00 ° C.) is 4.0 to 4.7 × 10 −6 ° C.

【0003】近年、半導体パッケージの大型化に伴い、
シリコンチップの平均熱膨張係数3.0〜3.3×10
-6/℃と前述のFe−Ni−Co系合金、Ni−Fe系
合金の平均熱膨張係数との差が大きいことより、接合が
困難となってきている。
With the recent increase in size of semiconductor packages,
Average thermal expansion coefficient of silicon chips 3.0 to 3.3 × 10
Since the difference between −6 / ° C. and the average coefficient of thermal expansion of the Fe—Ni—Co based alloy and the Ni—Fe based alloy described above is large, joining becomes difficult.

【0004】また、セラミックパッケージのセラミック
材料として高熱伝導性を有する窒化アルミや低誘電率を
特徴とするガラス・セラミックスが使用されはじめてい
るが、それらの平均熱膨張係数(30〜300℃)は、
窒化アルミが2.6〜3.3×10-6/℃、ガラス・セ
ラミックスが2.5〜3.0×10-6/℃と非常に小さ
く、前述のFe−Ni−Co系合金Ni−Fe系合金で
は接合が困難である。
Further, aluminum nitride having high thermal conductivity and glass-ceramics having a low dielectric constant have begun to be used as the ceramic material of the ceramic package, but their average thermal expansion coefficient (30 to 300 ° C.) is
Aluminum nitride is 2.6 to 3.3 × 10 −6 / ° C. and glass / ceramics is 2.5 to 3.0 × 10 −6 / ° C., which are very small, and the Fe—Ni—Co alloy Ni— Joining is difficult with Fe-based alloys.

【0005】[0005]

【発明が解決しようとする課題】そこで、材料の平均熱
膨張係数を小さくしたFe−Ni−Co合金(特開昭5
7−23830号公報、特開昭59−198741号公
報など)が開発されている。しかし、特開昭59−19
8741号公報記載のFe−Ni−Co系合金は、熱膨
張の低下が不十分である。
Therefore, an Fe-Ni-Co alloy in which the average coefficient of thermal expansion of the material has been reduced (Japanese Patent Laid-Open No. Sho 5).
7-23830, JP-A-59-198741 and the like) have been developed. However, JP-A-59-19
The Fe-Ni-Co based alloy described in Japanese Patent No. 8741 has insufficient reduction in thermal expansion.

【0006】また、特開昭57−23830号公報記載
のFe−Ni−Co系合金は、熱膨張を小さくするため
に特定の加工、熱処理を施しているが、工業的に種々の
用途に供するには問題を生じる。すなわち、30〜90
%の冷間加工後、200〜600℃の焼鈍する加工、熱
処理を施すことにより、35×10-7/℃以下の熱膨張
係数が得られるが、需要家がその目的や種々の用途に適
用させるために行う加工や熱処理によって、先に与えた
特性が発揮されなくなる問題がある。
The Fe-Ni-Co alloy described in JP-A-57-23830 is subjected to specific processing and heat treatment in order to reduce thermal expansion, but it is industrially used for various purposes. Cause problems. That is, 30 to 90
% Cold working, then annealing and heat treatment at 200 ~ 600 ℃, a thermal expansion coefficient of 35 × 10 -7 / ℃ or less can be obtained, but customers can apply it for various purposes and various uses. There is a problem that the previously given characteristics cannot be exhibited due to the processing and heat treatment performed for this purpose.

【0007】この発明は、半導体パッケージに使用され
るFe−Ni−Co系合金材料の上述の問題点に鑑み、
窒化アルミやガラス・セラミックスなどのパッケージ材
料の熱膨張係数に近似させ、かつ需要家がその目的や種
々の用途に適用させるために行う加工や熱処理、あるい
はさらに使用環境温度によっても熱膨張係数が変化しな
いFe−Ni−Co系低熱膨張合金の提供を目的として
いる。
The present invention has been made in view of the above problems of the Fe-Ni-Co alloy material used for the semiconductor package.
The thermal expansion coefficient changes depending on the thermal expansion coefficient of the packaging material such as aluminum nitride, glass, ceramics, etc., and the processing and heat treatment performed by the customer to apply it for various purposes, or the ambient temperature. The purpose is to provide an Fe—Ni—Co-based low thermal expansion alloy.

【0008】[0008]

【課題を解決するための手段】発明者は、Fe−Ni−
Co系合金の低熱膨張化と同時に加工や熱処理によって
も熱膨張係数が変化しない組成、特にNi及びCoの含
有量を種々検討の結果、NiとCoの総量を特定範囲内
とすることにより、シリコン、窒化アルミ、ガラスセラ
ミックスと熱膨張が極めて近似しかつ熱処理等により変
化しないこと知見し、この発明を完成した。
The inventor has found that Fe-Ni-
As a result of various studies on the composition in which the coefficient of thermal expansion does not change even by working or heat treatment at the same time as reducing the thermal expansion of the Co-based alloy, in particular, the total content of Ni and Co is set within a specific range, The inventors have completed the present invention by finding that their thermal expansions are very similar to those of aluminum nitride and glass ceramics and do not change due to heat treatment.

【0009】すなわち、この発明は、 Ni 30.6〜34.5wt%、 Co 7.8〜11.5wt%、 かつ40.5≦Ni+Co≦43.5wt%を満足し、
残部Fe及び不可避的不純物元素からなり、30〜35
0℃の平均熱膨張係数が3.5×10-6/℃以下で熱膨
張の変移点が300℃以上であり、かつγ→α′変態温
度が−70℃以下であることを特徴とするFe−Ni−
Co系低熱膨張合金である。
That is, the present invention satisfies Ni 30.6 to 34.5 wt%, Co 7.8 to 11.5 wt%, and 40.5≤Ni + Co≤43.5 wt%,
The balance consists of Fe and unavoidable impurity elements, and is 30 to 35
It is characterized in that the average coefficient of thermal expansion at 0 ° C. is 3.5 × 10 −6 / ° C. or less, the transition point of thermal expansion is 300 ° C. or more, and the γ → α ′ transformation temperature is −70 ° C. or less. Fe-Ni-
It is a Co-based low thermal expansion alloy.

【0010】組成の限定理由 Niは、本系組成基本成分であり、30.6wt%未満
では熱膨張が大きくなると共に、γ→α′変態温度が高
くなり、34.5wt%を超えると熱膨張が大きくなる
ため、30.6〜34.5wt%の範囲とする。
Reason for limiting the composition Ni is a basic component of this system composition, and if it is less than 30.6 wt%, the thermal expansion becomes large, and the γ → α 'transformation temperature becomes high, and if it exceeds 34.5 wt%, the thermal expansion becomes large. Therefore, the range is set to 30.6 to 34.5 wt%.

【0011】Coは、本系組成基本成分であり、7.8
wt%未満では熱膨張の変移点が300℃未満となると
同時に変移点を超える温度での熱膨張が大きくなり、ま
た、11.5wt%を超えると熱膨張が大きくなるた
め、7.8〜11.5wt%の範囲とする。
Co is a basic component of this system composition, and is 7.8.
If it is less than wt%, the transition point of thermal expansion becomes less than 300 ° C., and at the same time, the thermal expansion at a temperature exceeding the transition point becomes large, and if it exceeds 11.5 wt%, the thermal expansion becomes large. The range is 0.5 wt%.

【0012】この発明の特徴であるNiとCoの総量規
制は、図1に示す如く、Ni+Coが40.5wt%未
満では熱膨張の変移点が300℃未満となると変移点を
超える温度での熱膨張が大きくなり、また、γ→α′変
態温度が高くなり、さらに43.5wt%を超えると熱
膨張が大きくなるため、Ni+Coは40.5〜43.
5wt%の範囲とする。
As shown in FIG. 1, when the Ni + Co content is less than 40.5 wt%, the thermal expansion transition temperature is less than 300 ° C. Expansion increases, the γ → α ′ transformation temperature rises, and when it exceeds 43.5 wt%, thermal expansion increases, so that Ni + Co is 40.5 to 43.
The range is 5 wt%.

【0013】添加元素は特に限定しないが、Cは、0,
02wt%を越えると酸洗処理時にスマットが発生し易
く、またガラス封着時に発泡しやすくなるため、0.0
2wt%以下が望ましい。Siは、0.25wt%を越
えると酸洗処理を行う場合、内部粒界酸化が激しくな
り、また非金属介在物が多くなり、材料の折曲げ性が低
下するため、0.25wt%以下が望ましい。Mnは、
0.5wt%を越えると非金属介在物が多くなり、材料
の折曲げ性が低下するため、0.5wt%以下が望まし
い。さらに、Feは、本系組成基本成分であり、Niや
Co等の含有残余を占める、
The additive element is not particularly limited, but C is 0,
If it exceeds 02 wt%, smut is likely to occur during pickling treatment and foaming is likely to occur during glass sealing, so 0.0
2 wt% or less is desirable. When Si is more than 0.25 wt%, internal grain boundary oxidation becomes severe and non-metallic inclusions increase and the bendability of the material decreases when Si is pickled. desirable. Mn is
If it exceeds 0.5 wt%, the amount of non-metallic inclusions increases and the bendability of the material decreases, so 0.5 wt% or less is desirable. Further, Fe is a basic component of this system composition, and accounts for the remaining content of Ni, Co, etc.,

【0014】この発明によるFe−Ni−Co系低熱膨
張合金は、30〜350℃の平均熱膨張係数が3.5×
10-6/℃以下であることを特徴とするが、ICパッケ
ージの組立て等の接合を考えた場合、高温はんだやAu
−Siろう材で接合することが考えられ、この場合の凝
固温度が高いもので約360℃であることから、30〜
350℃の平均熱膨張係数を特定する必要があり、平均
熱膨張係数が3.5×10-6/℃を越えるとシリコン、
窒化アルミ、ガラスセラミックス等との熱膨張差が大き
くなりすぎるため、30〜350℃の平均熱膨張係数を
3.5×10-6/℃以下に限定する。
The Fe—Ni—Co low thermal expansion alloy according to the present invention has an average thermal expansion coefficient of 3.5 × at 30 to 350 ° C.
It is characterized in that it is 10 -6 / ° C or less, but when considering joining such as IC package assembly, high temperature solder or Au is used.
-Si brazing material may be used for joining. In this case, the solidification temperature is high, about 360 ° C.
It is necessary to specify the average coefficient of thermal expansion of 350 ° C., and if the average coefficient of thermal expansion exceeds 3.5 × 10 −6 / ° C., silicon,
Since the thermal expansion difference with aluminum nitride, glass ceramics, etc. becomes too large, the average thermal expansion coefficient at 30 to 350 ° C. is limited to 3.5 × 10 −6 / ° C. or less.

【0015】この発明において、変移点が300℃未満
では高温はんだやAu−Siろう材での接合において、
接合温度までの熱膨張の直線性が確保しにくく、接合後
の残留応力が大きくなるため、変移点を300℃以上と
する。
In the present invention, when the transition point is less than 300 ° C., in joining with high temperature solder or Au-Si brazing material,
Since it is difficult to ensure the linearity of thermal expansion up to the joining temperature and the residual stress after joining increases, the transition point is set to 300 ° C or higher.

【0016】この発明において、γ→α′変態温度が−
70℃より高温にあれば、極寒冷地での使用や輸送中に
γ→α′変態し、熱膨張が大きくなる可能性があるた
め、α′変態温度を−70℃以下に限定する。
In the present invention, the γ → α ′ transformation temperature is −
If the temperature is higher than 70 ° C, the γ → α 'transformation may occur during use or transportation in an extremely cold region and the thermal expansion may increase, so the α'transformation temperature is limited to -70 ° C or lower.

【0017】[0017]

【作用】この発明は、Fe−Ni−Co系合金におい
て、それぞれ特定含有量に規制されたNiとCoの総量
を特定範囲内とすることにより、30〜350℃にわた
ってシリコン、窒化アルミ、ガラスセラミックスと熱膨
張が極めて近似させることができ、さらに、変移点が3
00℃以上、変態温度が−70℃以下となり、需要家が
その目的や種々の用途に適用させるために行う加工や熱
処理、あるいはさらに使用環境温度によっても熱膨張係
数が変化しない。
According to the present invention, in the Fe-Ni-Co based alloy, the total amount of Ni and Co regulated to the respective specific contents is set within the specific range, so that silicon, aluminum nitride, glass ceramics can be obtained over 30 to 350 ° C. And the thermal expansion can be made extremely close to each other, and the transition point is 3
The temperature is not lower than 00 ° C and the transformation temperature is not higher than -70 ° C, and the coefficient of thermal expansion does not change depending on the processing or heat treatment performed by the consumer for application to its purpose or various uses, or further the ambient temperature of use.

【0018】[0018]

【実施例】表1に示す如く、Ni及びCo量を変化させ
た種々組成のFe−Ni−Co系合金試料を高周波真空
溶解炉にて溶製した。鋳塊を熱間圧延後、冷間粗圧延、
中間焼鈍を経て、冷間圧延にて板厚0.5mmに仕上げ
た。最終仕上げ焼鈍を900℃で行なった後、熱膨張特
性を測定した。また、仕上がった板より15mm×15
mmの試験片を切出し、−70℃で3時間保持後、γ→
α′変態の有無を確認した。各測定結果を表1に示す。
EXAMPLES As shown in Table 1, Fe-Ni-Co alloy samples of various compositions with different amounts of Ni and Co were melted in a high frequency vacuum melting furnace. After hot rolling the ingot, cold rough rolling,
After intermediate annealing, it was cold-rolled to a plate thickness of 0.5 mm. After the final finish annealing was performed at 900 ° C., the thermal expansion characteristics were measured. Also, 15mm x 15 from the finished plate
mm test piece was cut out and kept at −70 ° C. for 3 hours, then γ →
The presence or absence of α'transformation was confirmed. Table 1 shows each measurement result.

【0019】また、この発明合金No.4、No.5お
よび比較例合金No.13、さらに、公知のシリコン、
窒化アルミ、ガラスセラミックスのそれぞれの熱膨張曲
線を図2に示す。なお、図2において、実線4は実施例
におけるこの発明合金No.4の場合、実線5は実施例
におけるこの発明合金No.5の場合、小破線は実施例
における比較例合金No.13の場合、大破線はシリコ
ン、窒化アルミの場合、一点鎖線はガラスセラミックス
の場合を示す。
Further, according to the invention alloy No. 4, No. 5 and comparative alloy No. 13, further known silicon,
The thermal expansion curves of aluminum nitride and glass ceramics are shown in FIG. In FIG. 2, solid line 4 indicates the alloy No. of the present invention in the example. In the case of No. 4, the solid line 5 is the alloy No. of the present invention in the example. In the case of No. 5, the small broken line indicates the comparative alloy No. In the case of No. 13, the large broken line shows the case of silicon and aluminum nitride, and the one-dot chain line shows the case of glass ceramics.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】この発明によるFe−Ni−Co系合金
は、それぞれ特定含有量に規制されたNiとCoの総量
を特定範囲内とすることにより、図2に明らかなように
30〜350℃にわたってシリコン、窒化アルミ、ガラ
スセラミックスと熱膨張が極めて近似させることがで
き、さらに、変移点が300℃以上、変態温度が−70
℃以下となり、需要家がその目的や種々の用途に適用さ
せるために行う、切削加工やしなり加工、曲げ加工など
の塑性加工、あるいは熱処理を施しても、あるいはさら
に使用環境温度によっても熱膨張係数が変化しない特性
があり、シリコン、窒化アルミ、ガラスセラミックスな
どのパッケージ材料と接合して使用できるFe−Ni−
Co系低熱膨張合金である。
The Fe-Ni-Co alloy according to the present invention has a total content of Ni and Co regulated to specific contents within a specific range, and as shown in FIG. The thermal expansion of silicon, aluminum nitride, and glass ceramics can be made extremely close to each other, and the transition point is 300 ° C. or higher and the transformation temperature is −70.
It becomes below ℃, even if plastic processing such as cutting, bending, bending, etc., which is carried out by the customer to apply it for various purposes and purposes, or heat treatment, or even thermal expansion due to the operating environment temperature Fe-Ni-, which has the characteristic that the coefficient does not change, can be used by bonding with packaging materials such as silicon, aluminum nitride and glass ceramics.
It is a Co-based low thermal expansion alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の特徴であるNiとCoの総量規制を
示す、Ni量とCo量との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of Ni and the amount of Co, showing the regulation of the total amount of Ni and Co, which is a feature of the present invention.

【図2】温度と熱膨張率との関係を示すグラフであり、
実線4は実施例におけるこの発明合金No.4の場合、
実線5は実施例におけるこの発明合金No.5の場合、
小破線は実施例における比較例合金No.13の場合、
大破線はシリコン、窒化アルミの場合、一点鎖線はガラ
スセラミックスの場合を示す。
FIG. 2 is a graph showing the relationship between temperature and coefficient of thermal expansion,
The solid line 4 indicates the alloy No. of the present invention in the examples. In case of 4,
The solid line 5 is the alloy No. of the present invention in the examples. In case of 5,
The small broken line indicates the comparative alloy No. In case of 13,
The large broken line shows the case of silicon and aluminum nitride, and the alternate long and short dash line shows the case of glass ceramics.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ni 30.6〜34.5wt%、Co
7.8〜11.5wt%、かつ40.5≦Ni+Co
≦43.5wt%を満足し、残部Fe及び不可避的不純
物元素からなり、30〜350℃の平均熱膨張係数が
3.5×10-6/℃以下で熱膨張の変移点が300℃以
上であり、かつγ→α′変態温度が−70℃以下である
ことを特徴とするFe−Ni−Co系低熱膨張合金。
1. Ni 30.6-34.5 wt%, Co
7.8 to 11.5 wt% and 40.5 ≦ Ni + Co
Satisfying ≦ 43.5 wt%, consisting of balance Fe and unavoidable impurity elements, having an average coefficient of thermal expansion of 3.5 × 10 −6 / ° C. or less at 30 to 350 ° C. and a transition point of thermal expansion of 300 ° C. or more. And a γ → α ′ transformation temperature of −70 ° C. or lower, an Fe—Ni—Co based low thermal expansion alloy.
JP23148092A 1992-08-05 1992-08-05 Fe-ni-co low thermal expansion alloy Pending JPH0657381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23148092A JPH0657381A (en) 1992-08-05 1992-08-05 Fe-ni-co low thermal expansion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23148092A JPH0657381A (en) 1992-08-05 1992-08-05 Fe-ni-co low thermal expansion alloy

Publications (1)

Publication Number Publication Date
JPH0657381A true JPH0657381A (en) 1994-03-01

Family

ID=16924159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23148092A Pending JPH0657381A (en) 1992-08-05 1992-08-05 Fe-ni-co low thermal expansion alloy

Country Status (1)

Country Link
JP (1) JPH0657381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985693A (en) * 1995-09-22 1997-03-31 Seiko Precision Kk Punching device for printed circuit board and punching method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985693A (en) * 1995-09-22 1997-03-31 Seiko Precision Kk Punching device for printed circuit board and punching method

Similar Documents

Publication Publication Date Title
US5147469A (en) Process for producing copper-based alloys having high strength and high electric conductivity
US5792286A (en) High-strength thin plate of iron-nickel-cobalt alloy excellent in corrosion resisitance, repeated bending behavior and etchability, and production thereof
JPH09296237A (en) Metallic substrate material for semiconductor packaging
JPH0657381A (en) Fe-ni-co low thermal expansion alloy
US4711826A (en) Iron-nickel alloys having improved glass sealing properties
JPH06248390A (en) Fe-ni-co series low thermal expansion alloy
JPH03166340A (en) High strength lead frame material and its manufacture
JPS64817B2 (en)
JPS63109133A (en) Copper alloy for electronic equipment and its production
US5246511A (en) High-strength lead frame material and method of producing same
JP2523677B2 (en) Low thermal expansion lead frame material
JPS63109134A (en) Copper alloy for lead frame and its production
JP3510278B2 (en) Fe-Ni-Co low thermal expansion alloy
JPH0270040A (en) High-strength low thermal expansion alloy
JPH04180542A (en) High strength material reduced in thermal expansion
JP2724418B2 (en) High-strength sealing alloy with excellent Ag braze flowability and method for producing the same
JP3379153B2 (en) Fe-Ni alloy for lead frame and strip for lead frame
JPH04221039A (en) Alloy material for lead frame and its production
JPH09324243A (en) Low thermal expansion alloy having coefficient of thermal expansion approximate to that of si
JPS61242052A (en) Copper alloy lead material for semiconductor device
JPH01306541A (en) High strength and low thermal expansion alloy
JPS6247457A (en) Low thermal expansion alloy
JPH0243345A (en) Lead frame material for semiconductor device
JPH0331450A (en) Fe-ni-co alloy for lead frame
JPH0331449A (en) Fe-ni alloy for lead frame