JPH0657346A - Method for melting metal and device therefor - Google Patents

Method for melting metal and device therefor

Info

Publication number
JPH0657346A
JPH0657346A JP24698692A JP24698692A JPH0657346A JP H0657346 A JPH0657346 A JP H0657346A JP 24698692 A JP24698692 A JP 24698692A JP 24698692 A JP24698692 A JP 24698692A JP H0657346 A JPH0657346 A JP H0657346A
Authority
JP
Japan
Prior art keywords
metal
iron core
metal melting
melting tank
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24698692A
Other languages
Japanese (ja)
Inventor
Eiji Shimomura
英二 霜村
Kazuo Yamada
一夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24698692A priority Critical patent/JPH0657346A/en
Publication of JPH0657346A publication Critical patent/JPH0657346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Details (AREA)
  • Molten Solder (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To efficiently melt metal in a short period of time and to uniformalize the temp. of the molten metal substantially independent of a stirrer. CONSTITUTION:Iron cores 6a, 6b consisting of magnetic materials are arranged in and out of a molten metal chamber 2. Magnetic fluxes having the iron cores 6a, 6b in and out of the molten metal chamber 2 as their magnetic paths are passed in the molten metal chamber 2 by energizing a winding 7 provided on the iron core 6a existing on the outside of the chamber. As a result, short circuit current flows to the metal 1 in the molten metal chamber 2 and the metal 1 is melted and heated by the Joule heat generated at this time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電磁誘導作用によって
金属の溶融、溶融維持を行なう方法及びその装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for melting and maintaining a metal by electromagnetic induction.

【0002】[0002]

【従来の技術】金属を溶融して使用する用途は、はん
だ,ろう,メッキ等がある。これら金属は、金属溶融槽
であるバス内に大量に収納され、バス内に配置したヒー
ターにより、加熱、溶融されて液状体で維持管理されて
いる。図5に溶融装置の概略構成を示す。金属1は金属
溶融槽であるバス2内に固体状態で収納され、ヒーター
3で加熱されて溶融される。溶融した金属1は均一な溶
融状態を維持するため、撹拌器5で撹拌される。4はヒ
ーター3に電力を供給する交流電源である。
2. Description of the Related Art Applications of melting and using metals include soldering, brazing, and plating. A large amount of these metals are stored in a bath, which is a metal melting tank, and are heated and melted by a heater arranged in the bath and maintained in a liquid state. FIG. 5 shows a schematic configuration of the melting device. The metal 1 is stored in a solid state in a bath 2 which is a metal melting tank, and is heated by a heater 3 to be melted. The molten metal 1 is stirred by the stirrer 5 in order to maintain a uniform molten state. Reference numeral 4 is an AC power source for supplying electric power to the heater 3.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述し
たヒーター3による金属溶融には次のような問題点があ
る。
However, the melting of the metal by the heater 3 described above has the following problems.

【0004】ヒーター3による加熱は、ヒーター3に近
接した金属1に対してのみ行なわれ、ヒーター3から離
れた金属1はもっぱら伝熱に依存するところが大きい。
これは、溶融に時間がかかることを意味し、短時間での
溶融が困難となる。また溶融した金属1は、ヒーター3
から離れると温度が低下するため、固化等が生じ易く、
このため、溶融金属の温度は撹拌器5の撹拌による均一
化に依存することになる。この撹拌は、溶融金属内への
雰囲気の巻き込み、波立ちを発生するため酸化等も含
め、金属の品質維持管理を難しくしている。
The heating by the heater 3 is performed only on the metal 1 close to the heater 3, and the metal 1 away from the heater 3 largely depends on heat transfer.
This means that it takes a long time to melt, and it becomes difficult to melt in a short time. In addition, molten metal 1 is heater 3
As the temperature decreases when it is separated from, solidification easily occurs,
Therefore, the temperature of the molten metal depends on the homogenization by the stirring of the stirrer 5. This agitation makes it difficult to maintain the quality of the metal, including oxidization, etc., because it entrains the atmosphere in the molten metal and causes waviness.

【0005】本発明は、前記事情に基づいてなされたも
ので、金属溶融を短時間に効率良く行ない、また溶融金
属の温度均一化を撹拌器にほとんど依存せずに行なえる
金属の溶融方法及びその装置を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and a method of melting a metal, which can efficiently melt a metal in a short time, and uniformize the temperature of the molten metal almost without depending on a stirrer. The purpose is to provide the device.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明による金属の溶融方法は、磁性体からなる鉄
心を金属溶融槽の内外に配置し、金属溶融槽の外部に位
置する鉄心に設けた巻線に通電して前記金属溶融槽内外
の鉄心を磁路とする磁束を流して前記金属溶融槽内の金
属に短絡電流を流すことにより前記金属を溶融し加熱す
ることを特徴とする。
In order to achieve the above object, the metal melting method according to the present invention is such that an iron core made of a magnetic material is arranged inside and outside the metal melting tank, and the iron core is located outside the metal melting tank. Characterized in that the metal provided in the metal melting tank is melted and heated by flowing a magnetic flux with the iron core inside and outside of the metal melting tank as a magnetic path to cause a short-circuit current to flow through the metal in the metal melting tank. To do.

【0007】また本発明による金属の溶融装置は、金属
溶融槽と、磁性体からなり前記金属溶融槽の内外に配置
されて磁路を構成する鉄心と、前記金属溶融槽の外部に
配置された鉄心の一部に巻回された巻線と、この巻線に
接続された交流電源とから構成したことを特徴とする。
この場合、金属溶融槽に配置した鉄心の少なくとも金属
と接する部分を石英等の耐熱絶縁物で覆うこともでき
る。
The metal melting apparatus according to the present invention includes a metal melting tank, an iron core made of a magnetic material and arranged inside and outside the metal melting tank to form a magnetic path, and outside the metal melting tank. It is characterized by comprising a winding wound around a part of an iron core and an AC power source connected to this winding.
In this case, at least a portion of the iron core arranged in the metal melting tank which is in contact with the metal can be covered with a heat resistant insulator such as quartz.

【0008】また導電材からなる金属溶融槽の場合、そ
の床面或いは側面で金属溶融槽内に配置した鉄心と対向
する部分に前記鉄心の継鉄方向に沿うスリットを設け、
このスリット内に耐熱絶縁物を充填して構成することも
できる。
Further, in the case of a metal melting tank made of a conductive material, a slit along the yoke direction of the iron core is provided at a portion of the floor surface or side surface facing the iron core arranged in the metal melting tank,
The slit may be filled with a heat resistant insulator.

【0009】[0009]

【作用】巻線を通電すると、金属溶融槽内外の鉄心を磁
路として磁束が流れる。金属溶融槽内の金属は、鉄心の
周囲に存在して1ターン回路を構成した状態にあるの
で、金属に大きな短絡電流が流れる。金属は、この電流
により発生するジュール熱のため昇温し、融点を越える
と溶融する。溶融しても金属は導電性を持つので短絡電
流は流れ続け、溶融状態を安定して維持する。
When the winding is energized, a magnetic flux flows through the iron core inside and outside the metal melting tank as a magnetic path. Since the metal in the metal melting tank exists around the iron core and constitutes one turn circuit, a large short-circuit current flows through the metal. The temperature of the metal rises due to the Joule heat generated by this current, and when the temperature exceeds the melting point, the metal melts. Since the metal has conductivity even when melted, the short-circuit current continues to flow, and the molten state is maintained stably.

【0010】この場合、金属溶融槽内の鉄心の少なくと
も金属と接する部分を石英等の耐熱絶縁物で覆って鉄心
と金属とを熱的,物理的にしゃ断しておくことにより、
金属溶融槽内に配置した鉄心は、溶融した金属が鉄心内
に侵入して熱的ダメージを受けたり、或いは溶融金属と
鉄心の一部とで部分的に短絡回路を生じたりすることが
なくなる。
In this case, at least a portion of the iron core in the metal melting tank which is in contact with the metal is covered with a heat resistant insulator such as quartz to thermally and physically cut off the iron core and the metal.
In the iron core arranged in the metal melting tank, the molten metal does not invade the iron core to be thermally damaged, or the molten metal and a part of the iron core do not partially cause a short circuit.

【0011】また導電材からなる金属溶融槽の場合、そ
の床面或いは側面で金属溶融槽内に配置した鉄心と対向
する部分に鉄心の継鉄方向に沿うスリットを設けておく
ことにより、金属溶融槽の床面或いは側面には短絡回路
が形成されず、鉄心を短絡する回路が金属のみとなり、
金属の加熱効率が向上する。従って金属は短時間に溶融
され、撹拌に頼らず、温度の均一化が達成できる。
In the case of a metal melting tank made of a conductive material, a slit along the yoke direction of the iron core is provided in a portion of the floor surface or side surface facing the iron core arranged in the metal melting tank. No short circuit is formed on the floor or side of the tank, and the circuit that shorts the iron core is only metal,
The heating efficiency of the metal is improved. Therefore, the metal is melted in a short time, and the temperature can be made uniform without relying on stirring.

【0012】[0012]

【実施例】以下本発明を図面で示す一実施例について説
明する。図1は本発明の一実施例を示す斜視図である。
金属溶融槽であるバス2内には溶融する金属1が収納さ
れている。このバス2の底面の外側には、それぞれ巻線
7を巻回したU字型の鉄心6aが2基配置され、各鉄心
6aの端部がバス2の底面に密着されている。またバス
2の中にも同じくU字型の鉄心6bが配置され、各鉄心
6bの端部がバス2の内底面に密着されている。これら
鉄心6a,6bはバス2の底面を介して閉磁路を構成し
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention shown in the drawings will be described below. FIG. 1 is a perspective view showing an embodiment of the present invention.
A metal 1 to be melted is stored in a bath 2 which is a metal melting tank. Two U-shaped iron cores 6a each wound with a winding 7 are arranged outside the bottom surface of the bus 2, and the end portions of the iron cores 6a are closely attached to the bottom surface of the bus 2. A U-shaped iron core 6b is also arranged in the bus 2, and the end of each iron core 6b is in close contact with the inner bottom surface of the bus 2. These iron cores 6a and 6b form a closed magnetic circuit via the bottom surface of the bus 2.

【0013】この状態で巻線7に交流電源4から電流を
流すと、鉄心6a,6bには磁束が誘起される。巻線4
に接続する交流電源4は、高周波電源でもよいが、むし
ろ配電系統(50,60Hz)より直接引き込んだ方が
良い。その理由は専用電源が不用であることから装置の
小型化が図れること及び高周波であると洩れ磁束により
不測の異常加熱が発生する恐れがあるからである。
In this state, when a current is passed through the winding 7 from the AC power source 4, magnetic flux is induced in the iron cores 6a and 6b. Winding 4
The AC power source 4 to be connected to may be a high frequency power source, but rather, it is better to draw it directly from the power distribution system (50, 60 Hz). The reason is that a dedicated power source is not required, so that the device can be downsized, and if the frequency is high, an unexpected abnormal heating may occur due to the leakage magnetic flux.

【0014】磁束はバス2の床面を通ってバス2内の鉄
心6bに入り、またバス2の床面を通って巻線7を施し
た鉄心6aに戻るような、バス2床面の厚さ分のギャッ
プ8を持つ磁路内を流れる。この磁束は、バス2内にあ
る金属1に電磁誘導を引き起こし、鉄心6bの周囲に電
流回路を形成する。この電流回路は、1ターンで短絡さ
れたコイルと等価であるため、磁束が作用すると大きな
短絡電流が流れる。この短絡電流I2 の大きさは、巻線
7の巻回数をN回、巻線7に流れる電流をI1とすると I2 =N×I1 となる。
The thickness of the floor of the bus 2 such that the magnetic flux passes through the floor of the bus 2 to enter the iron core 6b in the bus 2 and returns to the iron core 6a having the winding 7 through the floor of the bus 2. It flows in a magnetic path having a gap 8 of a length. This magnetic flux causes electromagnetic induction in the metal 1 in the bus 2 and forms a current circuit around the iron core 6b. Since this current circuit is equivalent to a coil short-circuited in one turn, when a magnetic flux acts, a large short-circuit current flows. The magnitude of the short-circuit current I 2 is the number of turns N times of the windings 7 and the current flowing through the winding 7 When I 1 and I 2 = N × I 1.

【0015】金属1には短絡電流が流れることに伴なう
損失によりジュール熱が発生し、このジュール熱により
金属1の温度が上昇する。例えば、Nを1000回、I
1 として10A流すと、短絡電流I2 は10000A生
じることになり、損失はその2乗に比例するため、効率
良く短時間で昇温できることになる。温度が金属1の融
点を越えると、金属1は溶融し始める。金属1は温度が
高くなるほど抵抗率が増加するため、短絡電流は抵抗の
小さなところを選択的に流れる。すなわち未溶融部分に
集中するので、その部分の発熱が大きくなり、急速に昇
温される結果、金属1としては、均一に昇温,溶融化が
進むことになる。
Joule heat is generated in the metal 1 due to the loss accompanying the flow of the short-circuit current, and the temperature of the metal 1 is increased by the Joule heat. For example, N 1000 times, I
When 10 A is applied as 1 , the short-circuit current I 2 is 10,000 A, and the loss is proportional to the square of the current, so that the temperature can be efficiently raised in a short time. When the temperature exceeds the melting point of metal 1, metal 1 begins to melt. Since the resistivity of the metal 1 increases as the temperature rises, the short-circuit current selectively flows in a place where the resistance is small. That is, since it concentrates on the unmelted portion, heat generation in that portion becomes large and the temperature is rapidly raised. As a result, the metal 1 is uniformly heated and melted.

【0016】また金属1は溶融しても導電性を持ってい
るので、引き続き短絡電流が流れる。しかも金属1が溶
融した場合において、部分的に降温し凝固した部分には
集中して短絡電流が流れるため、再び溶融・昇温する結
果、金属1の温度は均一に保たれることになる。
Further, since the metal 1 has conductivity even when melted, a short circuit current continues to flow. Moreover, when the metal 1 is melted, the short-circuit current flows concentratedly in the partially cooled and solidified portion, so that the temperature of the metal 1 is kept uniform as a result of melting and rising again.

【0017】図2は、鉄心の構成を変えた本発明の他の
実施例であり、図1の実施例と作用は同じである。この
実施例において、鉄心16,16は、それぞれバス2の
床面1カ所を挟むようにしてバス2内において垂直方向
にのみ配置している。鉄心16,16をバス2内におい
て垂直方向にのみ配置することにより、鉄心16,16
内の磁束は、バス2床面を一度通過するだけで済み、巻
線7と金属1の電気的結合を向上することができる。
FIG. 2 shows another embodiment of the present invention in which the structure of the iron core is changed, and the operation is the same as the embodiment of FIG. In this embodiment, the iron cores 16 and 16 are arranged in the bus 2 only in the vertical direction so as to sandwich one floor surface of the bus 2 therebetween. By arranging the iron cores 16 and 16 in the bus 2 only in the vertical direction,
The internal magnetic flux only needs to pass through the floor of the bus 2 once, and the electrical coupling between the winding 7 and the metal 1 can be improved.

【0018】図3は、請求項3に基づく実施例である。
バス2内に配置する鉄心6b全体或いは鉄心16の金属
と接する部分にのみ、最外層に石英等の耐熱絶縁層8を
コーティング等により設けたものである。実施例では鉄
心6bの場合を示している。溶融した金属1は、例えば
鉄心がけい素鋼板の積層体であれば、層間絶縁を熱劣化
させたり、積層体の一部と局部的に短絡回路を形成して
鉄心に短絡電流を流入させたりして装置の信頼性を低下
させたり、加熱効率の悪化を引き起こす恐れがある。そ
のため上記のように鉄心6b或いは鉄心16の金属と接
する部分にのみ、最外層に耐熱絶縁層8を設けて鉄心6
b或いは16と金属1とを熱的、物理的にしゃ断するこ
とにより上記の問題点を解決することができる。
FIG. 3 shows an embodiment according to claim 3.
A heat-resistant insulating layer 8 made of quartz or the like is provided on the outermost layer by coating or the like only on the entire iron core 6b arranged in the bus 2 or only on the portion of the iron core 16 in contact with the metal. In the embodiment, the case of the iron core 6b is shown. If the molten metal 1 is, for example, a laminated body of a silicon steel sheet having an iron core, the interlayer insulation is thermally deteriorated, or a short circuit is locally formed with a part of the laminated body to cause a short circuit current to flow into the iron core. As a result, the reliability of the device may be reduced, or the heating efficiency may be deteriorated. Therefore, as described above, the heat-resistant insulating layer 8 is provided as the outermost layer only on the portion of the iron core 6b or the iron core 16 that is in contact with the metal.
The above problems can be solved by thermally or physically cutting off b or 16 and the metal 1.

【0019】図4は、請求項4に基づく実施例である。
バス2がステンレス等の導電材からなる場合において、
バス2内の鉄心6bと対向する床面に鉄心6bの継鉄部
の長手方向に沿うスリット9を形成したものである。ス
リット9は、鉄心6bの端部が床面に接する部分では巾
を広くし、継鉄部に沿う部分では巾を狭くしてある。そ
してこのスリット9内には耐熱絶縁物10を充填して溶
融金属の洩れを防止する。
FIG. 4 shows an embodiment according to claim 4.
When the bus 2 is made of a conductive material such as stainless steel,
A slit 9 is formed on the floor surface of the bus 2 facing the iron core 6b along the longitudinal direction of the yoke portion of the iron core 6b. The slit 9 has a wide width at a portion where the end of the iron core 6b contacts the floor surface, and has a narrow width at a portion along the yoke portion. The slit 9 is filled with a heat-resistant insulating material 10 to prevent molten metal from leaking.

【0020】このようにすれば、スリット9により磁束
による短絡回路が床面に構成されるのを防止でき、その
部分での短絡電流の消耗を抑えることができる。これに
より金属1のみで短絡回路を形成させることができ、加
熱効率の向上が図れる。
With this configuration, it is possible to prevent the short circuit due to the magnetic flux from being formed on the floor surface by the slit 9, and it is possible to suppress the consumption of the short circuit current at that portion. As a result, a short circuit can be formed with only the metal 1 and the heating efficiency can be improved.

【0021】[0021]

【発明の効果】以上説明したように本発明による金属の
溶融方法及びその装置によれば、効率のよい加熱が行な
え短時間で金属の溶融ができる。また撹拌器に頼らず溶
融金属の温度の均一化、保持ができ、比較的容易に溶融
金属の品質維持管理が行なえる。特に金属溶融槽内の鉄
心を耐熱絶縁層で覆うことにより鉄心と金属との熱的し
ゃ断が図れ、装置の信頼性を向上できる。また金属溶融
槽内の鉄心と対向する床面或いは側面に継鉄方向に沿っ
てスリットを設けることで、その部分での短絡電流の消
耗を抑えることができ、加熱効率の向上が図れる。
As described above, according to the metal melting method and apparatus of the present invention, efficient heating can be performed and the metal can be melted in a short time. Further, the temperature of the molten metal can be made uniform and maintained without relying on an agitator, and the quality maintenance of the molten metal can be performed relatively easily. In particular, by covering the iron core in the metal melting tank with a heat-resistant insulating layer, the iron core and the metal can be thermally cut off, and the reliability of the apparatus can be improved. Further, by providing slits on the floor surface or the side surface facing the iron core in the metal melting tank along the yoke direction, it is possible to suppress the consumption of the short-circuit current at that portion and improve the heating efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す斜視図FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す斜視図FIG. 2 is a perspective view showing another embodiment of the present invention.

【図3】請求項3に対応する本発明の他の実施例を示す
要部斜視図
FIG. 3 is a perspective view of an essential part showing another embodiment of the present invention corresponding to claim 3;

【図4】請求項4に対応する本発明の他の実施例を示す
要部斜視図
FIG. 4 is a perspective view of an essential part showing another embodiment of the present invention corresponding to claim 4;

【図5】従来例を示す概略構成図FIG. 5 is a schematic configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1は溶融状態の金属、2はバス(金属溶融槽)、6a,
6b,16は鉄心、4は交流電源、7は巻線、8,10
は耐熱絶縁物、9はスリットを示す。
1 is a molten metal, 2 is a bath (metal melting tank), 6a,
6b and 16 are iron cores, 4 is an AC power supply, 7 is a winding wire, 8 and 10
Indicates a heat resistant insulator, and 9 indicates a slit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁性体からなる鉄心を金属溶融槽の内外
に配置し、金属溶融槽の外部に位置する鉄心に設けた巻
線に通電して前記金属溶融槽内外の鉄心を磁路とする磁
束を流して前記金属溶融槽内の金属に短絡電流を流すこ
とにより前記金属を溶融し加熱することを特徴とする金
属の溶融方法。
1. An iron core made of a magnetic material is arranged inside and outside a metal melting tank, and a winding provided on an iron core located outside the metal melting tank is energized to use the iron core inside and outside the metal melting tank as a magnetic path. A method for melting a metal, wherein the metal is melted and heated by flowing a magnetic flux to cause a short-circuit current to flow through the metal in the metal melting tank.
【請求項2】 金属溶融槽と、磁性体からなり前記金属
溶融槽の内外に配置されて磁路を構成する鉄心と、前記
金属溶融槽の外部に配置された鉄心の一部に巻回された
巻線と、この巻線に接続された交流電源とからなる金属
の溶融装置。
2. A metal melting tank, an iron core made of a magnetic material and arranged inside and outside the metal melting tank to form a magnetic path, and a part of an iron core arranged outside the metal melting tank. A metal melting device consisting of a winding and an AC power source connected to the winding.
【請求項3】 金属溶融槽に配置した鉄心の少なくとも
金属と接する部分を石英等の耐熱絶縁物で覆ったことを
特徴とする請求項2記載の金属の溶融装置。
3. The metal melting apparatus according to claim 2, wherein at least a portion of the iron core arranged in the metal melting tank, which is in contact with the metal, is covered with a heat resistant insulator such as quartz.
【請求項4】 導電材からなる金属溶融槽の床面或いは
側面において、金属溶融槽内に配置した鉄心と対向する
部分に、前記鉄心の継鉄方向に沿うスリットを設け、こ
のスリット内に耐熱絶縁物を充填したことを特徴とする
請求項2記載の金属の溶融装置。
4. A slit along the yoke direction of the iron core is provided in a portion of the floor or side surface of the metal melting bath made of a conductive material, the portion facing the iron core arranged in the metal melting bath. The metal melting apparatus according to claim 2, wherein the apparatus is filled with an insulating material.
JP24698692A 1992-06-08 1992-09-17 Method for melting metal and device therefor Pending JPH0657346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24698692A JPH0657346A (en) 1992-06-08 1992-09-17 Method for melting metal and device therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14707092 1992-06-08
JP4-147070 1992-06-08
JP24698692A JPH0657346A (en) 1992-06-08 1992-09-17 Method for melting metal and device therefor

Publications (1)

Publication Number Publication Date
JPH0657346A true JPH0657346A (en) 1994-03-01

Family

ID=26477729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24698692A Pending JPH0657346A (en) 1992-06-08 1992-09-17 Method for melting metal and device therefor

Country Status (1)

Country Link
JP (1) JPH0657346A (en)

Similar Documents

Publication Publication Date Title
US3797724A (en) Soldering appliance
CA2597529A1 (en) Induction heating device for a metal plate
JPH0646526B2 (en) Self-heating, self-welding bus bar
JP2000030850A (en) Thermal roller device
US6069347A (en) Heating roller device
JP2010063669A (en) Electromagnetic induction heater
JP4734091B2 (en) Hot dipping method and hot dipping equipment
JPH0657346A (en) Method for melting metal and device therefor
WO2010001330A2 (en) Electromagnetic device for coating flat metal products by means of continuous hot dipping, and coating process thereof
US4033398A (en) Methods of manufacturing laminated metal strip bearing materials
US5012488A (en) Crucible for inductive heating
JP3914760B2 (en) Single-turn induction heating coil
EP0086637B1 (en) Treatment of molten materials
US3973878A (en) Method and device for electromagnetic pumping by conduction of liquid metals having low electrical conductivity
JP2000068040A (en) High frequency electromagnetic induction heating apparatus and road marking execution device using the same
JPH11216552A (en) Electromagnetic meniscus control device of continuous casting and control method therefor
CN100484341C (en) Current-collecting induction heater
JPH08192273A (en) Non-consumable electrode type arc welding equipment
JP7080521B1 (en) Conductive container and energizing heating device
JPS5848798Y2 (en) induction melting and holding furnace
JP2618299B2 (en) Electric heating device
JP3342771B2 (en) Continuous casting mold and continuous casting method
JP2000088467A (en) Floating melting apparatus
JPH0917561A (en) C-shaped coil
JP2002194447A (en) Method for heating cylindrical metal coil