JPH0657301A - Alloy steel powder for sintered material - Google Patents

Alloy steel powder for sintered material

Info

Publication number
JPH0657301A
JPH0657301A JP4263654A JP26365492A JPH0657301A JP H0657301 A JPH0657301 A JP H0657301A JP 4263654 A JP4263654 A JP 4263654A JP 26365492 A JP26365492 A JP 26365492A JP H0657301 A JPH0657301 A JP H0657301A
Authority
JP
Japan
Prior art keywords
powder
strength
steel powder
alloy steel
sintered material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4263654A
Other languages
Japanese (ja)
Inventor
Osamu Furukimi
古君  修
Shigeru Unami
繁 宇波
Yoshiaki Maeda
義昭 前田
Eiji Hatsuya
栄治 初谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4263654A priority Critical patent/JPH0657301A/en
Publication of JPH0657301A publication Critical patent/JPH0657301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide the alloy steel powder for a sintered material adequate for use in production of sintered parts which have high dimensional accuracy, high strength and high fatigue strength and being decreased in dimensional change and variation in strength. CONSTITUTION:While the raw material steel powder is previously alloyed with 0.1-2.0% Cr and/or 0.1-2.5% Mo, the raw material steel powder is alloyed with 0.5-5.05 Ni and/or 0.5-3.0% Cu by composite alloying; in addition, the geometrical standard deviation of the grain size distribution of the Ni powder is confined to <=1.8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種焼結部品の中で
も、高い寸法精度と共に、高強度及び高疲労特性が要求
される部品の製造に供して好適な焼結材料用の合金鋼粉
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy steel powder for a sintered material, which is suitable for production of various sintered parts which are required to have high dimensional accuracy, high strength and high fatigue characteristics. It is a thing.

【0002】[0002]

【従来の技術】自動車部品のギヤなど、高強度や高疲労
特性と共に高寸法精度が要求される部品を粉末冶金法で
製造する場合、強度及び疲労特性の向上のためには、合
金元素を添加し、さらに浸炭処理や浸窒処理を施すと共
に、その後に焼入れ、焼戻し処理が施される。
2. Description of the Related Art When manufacturing parts such as gears of automobile parts that require high strength and fatigue characteristics as well as high dimensional accuracy by powder metallurgy, alloying elements are added to improve strength and fatigue characteristics. Then, a carburizing process or a nitrifying process is further performed, followed by quenching and tempering.

【0003】純鉄粉中に合金成分を固溶させて合金鋼粉
を製造する予合金鋼粉では、その焼結材料の熱処理後に
おける寸法精度は高いものの、鋼粉の圧縮性が損なわれ
ることが多く、その場合に高い焼結密度が得られなくな
り、結果的に強度、疲労特性の向上が望めない。とくに
Niの予合金化は圧縮性を低下させる。
In the case of a prealloyed steel powder, which is produced by dissolving alloy components in pure iron powder to form an alloyed steel powder, the dimensional accuracy of the sintered material after heat treatment is high, but the compressibility of the steel powder is impaired. In such a case, a high sintered density cannot be obtained, and as a result, improvement in strength and fatigue properties cannot be expected. Especially
Prealloying Ni reduces the compressibility.

【0004】この点、例えば特公昭45−9649号公報で
は、純鉄粉にNi, Cu, Moなどの合金化成分粉末を拡散付
着する(以下、複合合金化法と称す)ことによって上述
の問題の解決を図っている。しかしながら、上記の方法
によって製造された複合合金鋼粉は、圧縮性には優れる
ものの、異種金属粉を混粉後、加熱により拡散を生じさ
せて部分的に合金化するだけなので、成分的に完全に均
一なものが得られる予合金法に比べると、組織の均一性
が悪く、製品の寸法精度がばらつく原因となる。このよ
うに上記した複合合金鋼粉では、圧縮性が高く、焼結材
料の強度及び疲労特性の向上は図り得るものの、寸法精
度が十分とは言い難く、また強度のばらつきが大きいと
ころにも問題を残していた。
In this respect, for example, in Japanese Examined Patent Publication (Kokoku) No. 45-9649, the above-mentioned problems are caused by diffusing and adhering alloying component powders such as Ni, Cu and Mo to pure iron powder (hereinafter referred to as a complex alloying method) We are trying to resolve However, although the composite alloy steel powder produced by the above method is excellent in compressibility, it is only partially alloyed by causing diffusion by heating after mixing different metal powders, so that the composition is completely Compared with the pre-alloying method, in which a uniform material can be obtained, the uniformity of the structure is poor, which causes variations in the dimensional accuracy of the product. As described above, in the above-described composite alloy steel powder, although the compressibility is high and the strength and fatigue characteristics of the sintered material can be improved, it is difficult to say that the dimensional accuracy is sufficient, and there is a problem in that the strength varies widely. Was left.

【0005】また発明者らは先に、特開平1−215904号
公報において、高い圧縮性を有するだけでなく、焼結材
料の熱処理後における寸法精度が高い鋼粉を、その製造
方法と共に提案したが、この鋼粉はNiを 5.0wt%(以下
単に%で示す)を超えて含有することから、経済的に不
利なだけでなく、最近の厳しい寸法精度及び強度の均一
性に対する要請には十分応えられないところに問題を残
していた。
Further, the inventors previously proposed, in Japanese Patent Laid-Open No. 1-215904, a steel powder having high compressibility and high dimensional accuracy after heat treatment of a sintered material together with its manufacturing method. However, since this steel powder contains more than 5.0 wt% (hereinafter simply referred to as%) of Ni, it is not economically disadvantageous, but it is sufficient for the recent demands for strict dimensional accuracy and strength uniformity. I left a problem where I couldn't answer.

【0006】[0006]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、焼結材料の熱処理後の寸法
精度が高く、かつ強度及び疲労特性が良好で、しかも強
度のばらつきも小さい焼結材料を、従来に比較して経済
的に得ることができる焼結材料用の合金鋼粉を提案する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems. The sintered material has high dimensional accuracy after heat treatment, has good strength and fatigue characteristics, and has variations in strength. It is an object of the present invention to propose an alloy steel powder for a sintered material, which enables a small sintered material to be obtained economically as compared with conventional ones.

【0007】[0007]

【課題を解決するための手段】さて発明者らは、上記の
目的を達成すべく鋭意研究を重ねた結果、CrやMoは予合
金化により、一方、NiやCuは複合合金化により、それぞ
れ合金化することが、所期した目的の達成に関し、極め
て有効であることの知見を得た。この発明は、上記の知
見に立脚するものである。
[Means for Solving the Problems] As a result of intensive studies to achieve the above-mentioned object, the inventors have found that Cr and Mo are prealloyed, while Ni and Cu are complex alloyed, respectively. We have found that alloying is extremely effective in achieving the intended purpose. The present invention is based on the above findings.

【0008】すなわちこの発明は、 Cr:0.1 〜2.0 %及び Mo:0.1 〜2.5 % のうちから選んだ1種又は2種を含み、残部はFe及び不
可避的不純物からなる予合金鋼粉の表面に、Ni:0.5 〜
5.0 %を粉末の形で部分的に拡散付着させた合金鋼粉で
あって、上記Ni粉末の粒径分布の幾何的標準偏差が 1.8
以下であることを特徴とする焼結材料用の合金鋼粉(第
1発明)である。
That is, the present invention contains one or two selected from Cr: 0.1 to 2.0% and Mo: 0.1 to 2.5%, and the balance on the surface of a prealloyed steel powder consisting of Fe and unavoidable impurities. , Ni: 0.5 ~
An alloy steel powder in which 5.0% is partially diffused and adhered in the form of powder, and the geometric standard deviation of the particle size distribution of the above Ni powder is 1.8.
The alloy steel powder for a sintered material (first invention) is characterized in that:

【0009】またこの発明は、 Cr:0.1 〜2.0 %及び Mo:0.1 〜2.5 % のうちから選んだ1種又は2種を含み、残部はFe及び不
可避的不純物からなる予合金鋼粉の表面に、Ni:0.5 〜
5.0 %及びCu:0.5 〜3.0 %をそれぞれ粉末の形で部分
的に拡散付着させた合金鋼粉であって、上記Ni粉末の粒
径分布の幾何的標準偏差が 1.8以下であることを特徴と
する焼結材料用の合金鋼粉(第2発明)である。
The present invention also includes one or two selected from Cr: 0.1 to 2.0% and Mo: 0.1 to 2.5%, the balance being on the surface of a prealloyed steel powder consisting of Fe and inevitable impurities. , Ni: 0.5 ~
It is an alloy steel powder in which 5.0% and Cu: 0.5 to 3.0% are partially diffused and adhered in the form of powder, respectively, and the geometric standard deviation of the particle size distribution of the above Ni powder is 1.8 or less. 2 is an alloy steel powder for a sintered material (second invention).

【0010】[0010]

【作用】この発明では、合金成分中、CrやMoについては
予合金化する一方、NiやCuについては複合合金化する。
以下、その理由及び各元素の組成範囲を上記の範囲に限
定した理由について説明する。 Cr:0.1 〜2.0 % Crは、焼結材料の強度及び疲労特性の向上に有用な元素
であり、また特に予合金化することにより、酸素の活量
を低下させ、酸化物の生成が抑制されるので、この発明
では、予合金化により合金化を図るものとした。ここに
Cr含有量が 0.1%未満では、これらの効果が小さく、一
方 2.0%を超えると、圧縮性が低下すると共にCr析出物
によって強度及び疲労特性が低下するので、 0.1〜2.0
%の範囲で含有させるものとした。
In the present invention, among alloy components, Cr and Mo are prealloyed, while Ni and Cu are composite alloyed.
Hereinafter, the reason and the reason why the composition range of each element is limited to the above range will be described. Cr: 0.1-2.0% Cr is an element useful for improving the strength and fatigue properties of sintered materials, and by pre-alloying it, in particular, reduces the oxygen activity and suppresses the formation of oxides. Therefore, in the present invention, alloying is intended by prealloying. here
When the Cr content is less than 0.1%, these effects are small. On the other hand, when it exceeds 2.0%, the compressibility is lowered and the strength and fatigue properties are lowered by the Cr precipitates.
The content is set to be in the range of%.

【0011】Mo:0.1 〜2.5 % Moは、焼結材料の強度を向上させる合金元素で、強度向
上のためには少なくとも 0.1%を必要とし、一方 2.5%
を超えて添加すると圧縮性が低下して焼結材料の高密度
化が図れず、また強度、疲労特性が低下するので、 0.1
〜2.5 %の範囲で含有させるものとした。また上記の範
囲であれば、圧縮性を大きく損なうことがなく、しかも
鉄粉への拡散も速いので、予合金化により合金化を図る
ものとした。
Mo: 0.1-2.5% Mo is an alloying element that improves the strength of the sintered material, and at least 0.1% is required to improve the strength, while 2.5%
If added in excess of 0.1%, the compressibility will decrease, the density of the sintered material cannot be increased, and the strength and fatigue properties will decrease.
The content should be within the range of up to 2.5%. Further, within the above range, the compressibility is not greatly impaired, and the diffusion into the iron powder is fast, so alloying is performed by prealloying.

【0012】Ni : 0.5〜5.0 % Niの添加方法は、この発明の大きな特徴である。Niは、
焼結材料の強度及び靭性を向上させる元素であるが、予
合金化すると圧縮性が著しく劣化し、強度、疲労特性が
低下する。この点、複合合金化では上記のような問題が
生じないので、この発明では複合合金化により合金化を
図るものとした。ここに複合合金化を好適に行うには、
予合金鋼粉にNi粉末を混合したのち、 750〜1050℃で水
素中で拡散焼鈍し、ついで解砕、分級すれば良い。なお
Niによって、焼結材料の強度及び靭性を向上させるため
には 0.5%以上の添加が必要であり、一方 5.0%を超え
て添加するとオーステナイトが過剰に生成され、強度及
び疲労特性を低下させるので、 0.5〜5.0 %の範囲に限
定した。
The method of adding Ni: 0.5 to 5.0% Ni is a major feature of the present invention. Ni is
It is an element that improves the strength and toughness of the sintered material, but if pre-alloyed, the compressibility is significantly deteriorated, and the strength and fatigue properties are reduced. In this respect, since the above problems do not occur in complex alloying, in the present invention, alloying is performed by complex alloying. In order to suitably perform the composite alloying here,
After mixing the Ni powder with the prealloyed steel powder, diffusion annealing may be performed in hydrogen at 750 to 1050 ° C, followed by crushing and classification. Note that
Ni should be added in an amount of 0.5% or more to improve the strength and toughness of the sintered material. On the other hand, if added in excess of 5.0%, austenite is excessively generated, which lowers the strength and fatigue properties. It was limited to the range of 0.5-5.0%.

【0013】Cu:0.5 〜3.0 % Cuは、焼結性の向上ひいては焼結材料の強度及び疲労特
性の向上に有効に寄与するが、そのためには少なくとも
0.5%の添加を必要とし、一方 3.0%を超えて添加する
と強度及び疲労特性の低下を招くので、 0.5〜3.0 %の
範囲で添加するものとした。なおCuは、予合金化すると
圧縮性が損なわれるので、複合合金化が添加することと
した。
Cu: 0.5-3.0% Cu effectively contributes to the improvement of sinterability and, in turn, the strength and fatigue properties of the sintered material.
It is necessary to add 0.5%. On the other hand, if added over 3.0%, the strength and fatigue properties will be deteriorated, so the addition was made within the range of 0.5 to 3.0%. Note that since pre-alloying impairs the compressibility of Cu, it was decided to add Cu for complex alloying.

【0014】ところでNiは、上記したとおり焼結材料の
強度、靭性の向上に極めて有用な元素であるが、たとえ
複合合金化による場合であっても、Ni粉末の粒径分布の
幾何的標準偏差が 1.8を超えると、熱処理時に寸法精度
が低下し、また焼結材料の引張強さのばらつきが大きく
なるので、Ni粉末の粒径分布の幾何的標準偏差を 1.8以
下にすることが肝要である。ここに幾何的標準偏差と
は、次式 幾何的標準偏差=d84.1/d50 で定義されるもので、d84.1,d50はそれぞれ粉末粒度
の累積度数分布で84.1%と50%のときの粒径を意味す
る。
By the way, Ni is an extremely useful element for improving the strength and toughness of the sintered material as described above, but even in the case of complex alloying, the geometric standard deviation of the particle size distribution of Ni powder is If the value exceeds 1.8, the dimensional accuracy decreases during heat treatment and the tensile strength of the sintered material increases, so it is important to keep the geometric standard deviation of the particle size distribution of the Ni powder to 1.8 or less. . Here, the geometric standard deviation is defined by the following equation: Geometric standard deviation = d 84.1 / d 50 , where d 84.1 and d 50 are the cumulative frequency distributions of the powder particle size at 84.1% and 50%, respectively. Means particle size.

【0015】図1に、(a)Cr:1.0 %及びMo:0.3 %
を予合金化すると共に、Ni:2.0 %を複合合金化した鋼
粉、(b)Cr:1.0 %及びMo:1.0 %を予合金化すると
共に、Ni:1.0 %及びCu:1.0 %を複合合金化した鋼粉
にそれぞれ、黒鉛を 0.2%、ステアリン酸亜鉛を1%添
加し、圧力7 t/cm2で成形後、1250℃, 60 minで焼結
し、ついで 910℃で120min、カーボンポテンシャル 0.8
%の条件で浸炭後、直ちに80℃の油中に焼入れし、引き
続き 180℃で45 minの焼戻し処理を施して得た各焼結材
料の、引張強さのばらつきに及ぼすNi粉末粒径分布の幾
何的標準偏差の影響について調べた結果を示す。同図よ
り明らかなように、いずれの鋼種においても、粒径分布
の幾何的標準偏差が 1.8を超えると、引張強さのばらつ
きが大きくなっている。
In FIG. 1, (a) Cr: 1.0% and Mo: 0.3%
Steel powder that is pre-alloyed with Ni: 2.0% and (b) Cr: 1.0% and Mo: 1.0% is pre-alloyed, and Ni: 1.0% and Cu: 1.0% is a composite alloy. Graphite 0.2% and zinc stearate 1% were added to each of the converted steel powders, molded at a pressure of 7 t / cm 2 and sintered at 1250 ° C for 60 min, then at 910 ° C for 120 min, carbon potential 0.8.
% Of the Ni powder particle size distribution on the variation in tensile strength of each sintered material obtained by carburizing in 80% oil immediately after carburizing at 80% and then tempering at 180 ° C for 45 min. The result of having investigated about the influence of geometric standard deviation is shown. As is clear from the figure, in all the steel types, when the geometric standard deviation of the grain size distribution exceeds 1.8, the variation in tensile strength becomes large.

【0016】次に図2に、上述と同様にして得た各焼結
材料の、浸炭焼入れ焼戻し時の寸法変化のばらつきに及
ぼすNi粉末粒径分布の幾何的標準偏差の影響について調
べた結果を示す。同図より明らかなように、いずれの鋼
種においても、粒径分布の幾何的標準偏差が 1.8を超え
ると、寸法変化のばらつきが大きくなっている。
Next, FIG. 2 shows the results of an examination of the effect of the geometric standard deviation of the Ni powder particle size distribution on the variation in dimensional changes during carburizing, quenching and tempering of the respective sintered materials obtained as described above. Show. As is clear from the figure, in all the steel types, when the geometric standard deviation of the grain size distribution exceeds 1.8, the variation in dimensional change becomes large.

【0017】上述したような合金鋼粉を、成形、焼結す
ることにより、その焼結材料の熱処理後における寸法精
度を向上させることができ、また得られた焼結・熱処理
材料の強度及び疲労特性は極めて良好である。なお、こ
こでいう成形、焼結とは、一般に粉末冶金部品を製造す
る方法を意味し、例えば4〜8 t/cm2の圧力による圧縮
成形後、1100〜1300℃におけるN2, AX, RXガス中あるい
は真空中での焼結が好適である。また必要に応じて、成
形に先立ち黒鉛を強度向上を目的として添加することも
でき、その量は0.05〜0.4 %が好適である。
By shaping and sintering the alloy steel powder as described above, the dimensional accuracy of the sintered material after heat treatment can be improved, and the strength and fatigue of the obtained sintered / heat treated material can be improved. The characteristics are extremely good. Incidentally, the term “molding and sintering” as used herein generally means a method for manufacturing powder metallurgical parts, for example, after compression molding under a pressure of 4 to 8 t / cm 2 , N 2 , AX, RX at 1100 to 1300 ° C. Sintering in gas or vacuum is preferred. If necessary, graphite may be added prior to molding for the purpose of improving strength, and the amount is preferably 0.05 to 0.4%.

【0018】[0018]

【実施例】表1に示す化学組成になる合金鋼粉に、黒鉛
を 0.1%、潤滑剤としてステアリン酸亜鉛を1%添加、
混合したのち、圧力7 t/cm2で圧縮成形後、N2ガス中に
て1250℃, 60 minの焼結を施し、ついで 910℃で 30mi
n、カーボンポテンシャル:0.8 %の条件で浸炭後、直
ちに80℃の油中に焼入れし、その後 180℃で45 minの焼
戻し処理を施した。かくして得られた焼結・熱処理材料
について、森式6球面圧疲労試験による疲れ強さ及び引
張強さ(n=30)を調べた。また外径:60mm、内径:20
mm、高さ:5.5 mmのリング状試験片について、図3に示
す要領で、焼結材料と焼戻し材料での寸法変化のばらつ
きの標準偏差を求め、寸法精度とした。この実験におい
て、合金鋼粉は、予合金鋼粉にカーボニルNi粉(平均粒
径:16μm 、幾何的標準偏差:1.6 )やCu粉(金属銅
粉)を所定量混合したのち、水素中にて 900℃、60 min
の拡散焼鈍後、解砕・分級して得たものである。調査結
果を表1に併記する。
[Example] To alloy steel powder having the chemical composition shown in Table 1, 0.1% of graphite and 1% of zinc stearate as a lubricant were added.
After mixing, compression molding at a pressure of 7 t / cm 2 , sintering at 1250 ° C for 60 min in N 2 gas, then at 910 ° C for 30 mi.
n, Carbon potential: Carburized at 0.8%, immediately quenched in oil at 80 ° C, and then tempered at 180 ° C for 45 min. The fatigue strength and tensile strength (n = 30) of the thus obtained sintered / heat-treated material were examined by the Mori type 6 spherical pressure fatigue test. Outer diameter: 60 mm, inner diameter: 20
With respect to a ring-shaped test piece having a height of 5.5 mm and a height of 5.5 mm, the standard deviation of the variation in the dimensional change between the sintered material and the tempered material was obtained as shown in FIG. In this experiment, alloy steel powder was prepared by mixing a predetermined amount of carbonyl Ni powder (average particle size: 16 μm, geometric standard deviation: 1.6) and Cu powder (metal copper powder) with prealloyed steel powder, and then in hydrogen. 900 ° C, 60 min
It was obtained by crushing and classifying after diffusion annealing. The survey results are also shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】同表より明らかなように、この発明に従
い、Cr, Moについては予合金化する一方、NiやCuについ
ては複合合金化することにより、強度、疲労特性及び寸
法精度ともに優れた焼結材料を得ることができた。
As is clear from the table, according to the present invention, by pre-alloying Cr and Mo while making a composite alloy of Ni and Cu, it is possible to obtain a sintered body having excellent strength, fatigue characteristics and dimensional accuracy. The material could be obtained.

【0021】[0021]

【発明の効果】この発明の合金鋼粉は、焼結、熱処理後
において、強度及び疲労特性に優れるだけでなく、極め
て高い寸法精度を維持することができ、しかも強度及び
寸法変化のばらつきを軽減することができ、例えば自動
車のカムギアのような高強度、高疲労強度と共に高い寸
法精度を要求される焼結部品の原料鋼粉として偉効を奏
する。
The alloy steel powder of the present invention is excellent not only in strength and fatigue properties after sintering and heat treatment, but also can maintain extremely high dimensional accuracy and reduce variations in strength and dimensional change. For example, it is very effective as a raw material steel powder for a sintered part, which requires high dimensional accuracy as well as high strength and high fatigue strength such as a cam gear of an automobile.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼結材料の引張強さのばらつきに及ぼすNi粉末
粒径分布の幾何的標準偏差の影響を示したグラフであ
る。
FIG. 1 is a graph showing the effect of the geometric standard deviation of the Ni powder particle size distribution on the variation in tensile strength of sintered materials.

【図2】焼結材料の寸法変化のばらつきに及ぼすNi粉末
粒径分布の幾何的標準偏差の影響を示したグラフであ
る。
FIG. 2 is a graph showing the effect of the geometric standard deviation of the Ni powder particle size distribution on the variation in dimensional change of the sintered material.

【図3】寸法精度の測定要領の説明図である。FIG. 3 is an explanatory diagram of a dimensional accuracy measurement procedure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 義昭 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 初谷 栄治 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiaki Maeda 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Chiba Steel Works (72) Inventor Eiji Hattani, Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Chiba Steel Works, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Cr:0.1 〜2.0 wt%及び Mo:0.1 〜2.5 wt% のうちから選んだ1種又は2種を含み、残部はFe及び不
可避的不純物からなる予合金鋼粉の表面に、Ni:0.5 〜
5.0 wt%を粉末の形で部分的に拡散付着させた合金鋼粉
であって、上記Ni粉末の粒径分布の幾何的標準偏差が
1.8以下であることを特徴とする焼結材料用の合金鋼
粉。
1. A pre-alloyed steel powder containing one or two selected from Cr: 0.1 to 2.0 wt% and Mo: 0.1 to 2.5 wt%, the balance being Fe and inevitable impurities on the surface of the powder. Ni: 0.5 ~
It is an alloy steel powder in which 5.0 wt% is partially diffused and adhered in the form of powder, and the geometric standard deviation of the particle size distribution of the above Ni powder is
Alloy steel powder for sintered materials, characterized by being 1.8 or less.
【請求項2】Cr:0.1 〜2.0 wt%及び Mo:0.1 〜2.5 wt% のうちから選んだ1種又は2種を含み、残部はFe及び不
可避的不純物からなる予合金鋼粉の表面に、Ni:0.5 〜
5.0 wt%及びCu:0.5 〜3.0 wt%をそれぞれ粉末の形で
部分的に拡散付着させた合金鋼粉であって、上記Ni粉末
の粒径分布の幾何的標準偏差が 1.8以下であることを特
徴とする焼結材料用の合金鋼粉。
2. A surface of a prealloyed steel powder comprising one or two selected from Cr: 0.1 to 2.0 wt% and Mo: 0.1 to 2.5 wt%, the balance being Fe and inevitable impurities, Ni: 0.5 ~
5.0 wt% and Cu: 0.5 to 3.0 wt% are alloy steel powders partially diffused and adhered in the form of powder, and the geometric standard deviation of the particle size distribution of the above Ni powder is 1.8 or less. Alloy steel powder for characteristic sintering materials.
JP4263654A 1992-06-11 1992-10-01 Alloy steel powder for sintered material Pending JPH0657301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4263654A JPH0657301A (en) 1992-06-11 1992-10-01 Alloy steel powder for sintered material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-152441 1992-06-11
JP15244192 1992-06-11
JP4263654A JPH0657301A (en) 1992-06-11 1992-10-01 Alloy steel powder for sintered material

Publications (1)

Publication Number Publication Date
JPH0657301A true JPH0657301A (en) 1994-03-01

Family

ID=26481362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4263654A Pending JPH0657301A (en) 1992-06-11 1992-10-01 Alloy steel powder for sintered material

Country Status (1)

Country Link
JP (1) JPH0657301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163569B2 (en) 2003-11-26 2007-01-16 Seiko Epson Corporation Raw or granulated powder for sintering, and their sintered compacts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163569B2 (en) 2003-11-26 2007-01-16 Seiko Epson Corporation Raw or granulated powder for sintering, and their sintered compacts

Similar Documents

Publication Publication Date Title
JP6394768B2 (en) Alloy steel powder and sintered body for powder metallurgy
EP1184107B1 (en) Alloyed steel powder for powder metallurgy
US7384446B2 (en) Mixed powder for powder metallurgy
US4954171A (en) Composite alloy steel powder and sintered alloy steel
US5462577A (en) Water-atomized iron powder and method
WO2017043094A1 (en) Method for producing mixed powder for powder metallurgy, method for producing sintered compact, and sintered compact
JPH03120336A (en) Manufacture of synchronizer hub
WO2010035853A1 (en) Process for production of sintered compact by powder metallurgy
JP3177482B2 (en) Low alloy steel powder for sinter hardening
WO2016088333A1 (en) Alloy steel powder for powder metallurgy, and sintered compact
JP3258765B2 (en) Manufacturing method of high-strength iron-based sintered body
JPH0681001A (en) Alloy steel powder
JP6515955B2 (en) Method of manufacturing mixed powder for powder metallurgy and iron-based sintered body
EP3722022B1 (en) A pre-alloyed water atomized steel powder
JPH07157803A (en) Water atomized iron powder for powder metallurgy and production thereof
JP3272886B2 (en) Alloy steel powder for high strength sintered body and method for producing high strength sintered body
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
JP3294980B2 (en) Alloy steel powder for high-strength sintered materials with excellent machinability
WO1988000505A1 (en) Alloy steel powder for powder metallurgy
JPH0657301A (en) Alloy steel powder for sintered material
JP2003147405A (en) Alloy steel powder for iron sintering heat treatment material
JP4093070B2 (en) Alloy steel powder
JPH06116601A (en) Alloy steel powder for sintered material
EP0334968B1 (en) Composite alloy steel powder and sintered alloy steel
JPH0717923B2 (en) Low alloy iron powder for sintering and method for producing the same