JPH0657241A - Heat-storing structural building material - Google Patents
Heat-storing structural building materialInfo
- Publication number
- JPH0657241A JPH0657241A JP4098659A JP9865992A JPH0657241A JP H0657241 A JPH0657241 A JP H0657241A JP 4098659 A JP4098659 A JP 4098659A JP 9865992 A JP9865992 A JP 9865992A JP H0657241 A JPH0657241 A JP H0657241A
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- building material
- heat
- storage material
- paraffins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0028—Aspects relating to the mixing step of the mortar preparation
- C04B40/0039—Premixtures of ingredients
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00241—Physical properties of the materials not provided for elsewhere in C04B2111/00
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Building Environments (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、蓄熱構造建材に関する
ものであり、更に詳しくは、床、壁、天井、タイル、パ
ネル、仕切り、床パッド等の建材中に、蓄熱材が分散さ
れてなる蓄熱構造建材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage structure building material, more specifically, a heat storage material dispersed in a building material such as floors, walls, ceilings, tiles, panels, partitions and floor pads. Heat storage structure building materials.
【0002】近年、快適な室内環境を構築するため、蓄
熱材を建材中に分散して、部屋の内部温度を調整するこ
とが提案され、一部実現しつつある。上記蓄熱材とし
て、物質の顕熱を利用するもの、物質の相変化潜熱を利
用するもの、物質の化学変化を利用するもの等が知られ
ているが、実用面から物質の相変化潜熱を利用する蓄熱
材が注目されている。In recent years, in order to construct a comfortable indoor environment, it has been proposed to disperse a heat storage material in a building material to adjust the internal temperature of the room, and it is partially realized. As the above-mentioned heat storage material, there are known ones that utilize sensible heat of a substance, ones that utilize latent heat of phase change of a substance, and ones that utilize chemical change of substance. The heat storage material that does is attracting attention.
【0003】この相変化潜熱を利用する蓄熱材として
は、パラフィン類を蓄熱成分として用いた、所謂有機蓄
熱材が、簡単かつ安価に製造できるので、注目されてい
る。この蓄熱成分のパラフィン類は、固体から液体への
相変化時に蓄熱し、液体から固体への相変化時に放熱す
る作用をなすものである。As a heat storage material utilizing this latent heat of phase change, a so-called organic heat storage material using paraffins as a heat storage component has been attracting attention because it can be easily and inexpensively produced. The paraffins, which are heat storage components, have the function of storing heat during the phase change from solid to liquid and releasing heat during the phase change from liquid to solid.
【0004】このような蓄熱成分を分散した建材として
は、例えばパラフィン類を無機質セメント状材料に含
浸させたもの(特開昭63−75083号公報参照)、
マイクロカプセル化して発泡断熱材中に埋設したもの
(特開平1−268942号公報参照)、架橋ポリエ
チレンに含浸させコンクリート等の建材用材料中に充填
したもの(特開平1−135890号、特開平1−28
0147号公報参照)等が公知である。Examples of building materials in which such heat storage components are dispersed include, for example, paraffins impregnated in an inorganic cement-like material (see JP-A-63-75083).
Microcapsules embedded in a foamed heat insulating material (see JP-A-1-268942), and impregnated with cross-linked polyethylene and filled in a building material such as concrete (JP-A-1-135890, JP-A-1-135890). -28
No. 0147) is known.
【0005】[0005]
【発明が解決しようとする課題】ところが、蓄熱成分の
パラフィン類は蓄熱時に液化するため、上記やのパ
ラフィン類を含浸させた蓄熱材を建材用材料に分散して
建材とした場合には、液化したパラフィン類が建材の表
面に滲出するおそれがある。したがって、これを防止す
るために、蓄熱材の表面に耐アルカリ性の樹脂皮膜を形
成したり、建材中の蓄熱材層を紙や板で遮断することが
なされている。However, since the paraffins as heat storage components are liquefied during heat storage, when the above-mentioned heat storage material impregnated with paraffins is dispersed in a building material to be used as a building material, liquefaction occurs. There is a possibility that the paraffins formed will exude to the surface of the building material. Therefore, in order to prevent this, an alkali-resistant resin film is formed on the surface of the heat storage material, or the heat storage material layer in the building material is blocked with paper or a plate.
【0006】一方、のマイクロカプセル化したものを
使用した場合、蓄熱成分の相変化膨張時にマイクロカプ
セルが破損すると、上記と同様に液化したパラフィン類
が建材の表面に滲出するおそれがあり、またマイクロカ
プセル化のため高価となり不経済である。On the other hand, in the case of using the microencapsulated product, if the microcapsule is damaged during the phase change expansion of the heat storage component, the liquefied paraffins may exude to the surface of the building material in the same manner as described above. It is expensive and uneconomical because of encapsulation.
【0007】前記の他、蓄熱材をコンクリート等の建材
用材料に含有させると、蓄熱成分が相変化する際の膨張
−収縮によって、建材にそり、たわみ、クラック、表面
凹凸変化等が生じ、強度の減少をきたす。In addition to the above, when a heat storage material is contained in a building material such as concrete, expansion / contraction when the heat storage component undergoes a phase change causes warping, flexure, cracks, surface irregularity change, etc., in the building material, resulting in strength. Cause a decrease.
【0008】本発明は、従来技術における前述の如き難
点を解消し、蓄熱成分が建材の表面に滲出せず、また、
建材の外観変化等の強度の減少が極めて少ない蓄熱構造
建材を提供することを目的とする。The present invention solves the above-mentioned problems in the prior art, the heat storage component does not exude to the surface of the building material, and
It is an object of the present invention to provide a building material having a heat storage structure in which the decrease in the strength such as the appearance change of the building material is extremely small.
【0009】[0009]
【課題を解決するための手段】本発明者らは、前述の如
き現状に鑑み種々研究を行なった結果、特定の蓄熱成分
とバインダ成分とからなる組成物を機械的手段で混合し
た蓄熱材が、蓄熱時に流動化しないことを見出した。特
に、本発明者らは当該蓄熱材は、これを建材中に分散し
ても、建材にそり、たわみ、クラック、表面凹凸変化等
を実質的に生じさせないことを見出した。本発明はかか
る新知見に基づいて完成されたものである。Means for Solving the Problems As a result of various studies in view of the above-mentioned present situation, the present inventors have found that a heat storage material obtained by mixing a composition comprising a specific heat storage component and a binder component by mechanical means. , It was found that it does not fluidize during heat storage. In particular, the present inventors have found that the heat storage material does not substantially warp, bend, crack, change in surface irregularity, etc. even when dispersed in a building material. The present invention has been completed based on this new finding.
【0010】即ち、本発明の蓄熱構造建材は、建材用材
料中に蓄熱材が分散されたものであって、該蓄熱材が、
蓄熱成分のパラフィン類100重量部とバインダ成分の
炭化水素系有機高分子5〜30重量部とが機械的手段に
て混合されてなることを特徴とする。また、蓄熱構造建
材は、蓄熱材を建材用材料に対して20〜80容量%混
合分散し、これを成形加工したものである。That is, the heat storage structure building material of the present invention is one in which the heat storage material is dispersed in a building material, and the heat storage material is
It is characterized in that 100 parts by weight of paraffins as a heat storage component and 5 to 30 parts by weight of a hydrocarbon organic polymer as a binder component are mixed by mechanical means. Further, the heat storage structure building material is obtained by molding and processing the heat storage material by mixing and dispersing 20 to 80% by volume with respect to the building material.
【0011】[0011]
【作用】本発明の蓄熱構造建材によると、蓄熱時に流動
しない特定の有機蓄熱材が使用され分散されているの
で、蓄熱構造建材の表面に蓄熱成分が滲出しない。した
がって、蓄熱材に流れ防止用表面処理を施したり、構造
建材中に遮蔽層を設ける必要がなくなる。さらに、蓄熱
材を収容する容器や槽を不要にできて、蓄熱構造建材の
製造コストを低減できる。According to the heat storage structure building material of the present invention, since the specific organic heat storage material that does not flow during heat storage is used and dispersed, the heat storage component does not seep to the surface of the heat storage structure building material. Therefore, it is not necessary to subject the heat storage material to a surface treatment for flow prevention or to provide a shielding layer in the structural building material. Furthermore, the container or tank for accommodating the heat storage material can be eliminated, and the manufacturing cost of the heat storage structure building material can be reduced.
【0012】また、この蓄熱材は蓄熱量が多いので、効
率よく吸放熱がなされる。したがって、蓄熱構造建材を
床、壁、天井等に使用すると、蓄熱材が昼間の太陽熱、
室内の熱や補助的加熱等の熱を蓄熱し、夜間に放熱し
て、室内の温度をほぼ一定に保つことができる。また、
熱エネルギーがリサイクルされるので、省エネルギーが
達成できて室内の温度調整のランニングコストを大幅に
低減することが可能となる。Further, since this heat storage material has a large amount of heat storage, it efficiently absorbs and radiates heat. Therefore, if the heat storage structure building material is used for floors, walls, ceilings, etc.
It is possible to store heat in the room or heat such as auxiliary heating and dissipate the heat at night to keep the room temperature substantially constant. Also,
Since the thermal energy is recycled, energy saving can be achieved and the running cost for temperature control in the room can be significantly reduced.
【0013】次に、本発明を更に詳細に説明する。本発
明における建材とは、建築構造物を構成するあらゆる資
材をいい、例えば床材、壁材、天井材、タイル、パネ
ル、仕切り材、床パッド等が例示される。Next, the present invention will be described in more detail. The building material in the present invention refers to all materials constituting a building structure, and examples thereof include flooring materials, wall materials, ceiling materials, tiles, panels, partitioning materials, floor pads, and the like.
【0014】本発明の蓄熱構造建材は、コンクリート、
モルタル、セメント、石膏等の建材用材料中に、以下に
示す特定の蓄熱材組成物を機械的に混合分散し、これを
成形してえられる。The heat storage structure building material of the present invention is concrete,
It can be obtained by mechanically mixing and dispersing the following specific heat storage material composition in a building material such as mortar, cement, gypsum, etc. and molding it.
【0015】上記蓄熱材は、蓄熱成分としてのパラフィ
ン類と、該パラフィン類100重量部当たり5〜30重
量部の炭化水素系有機高分子からなるバインダ成分とを
機械的手段にて混合してえられるものが使用される。The heat storage material may be prepared by mixing paraffins as a heat storage component and a binder component made of a hydrocarbon organic polymer in an amount of 5 to 30 parts by weight per 100 parts by weight of the paraffins by mechanical means. What is used is used.
【0016】上記パラフィン類としては、JIS K
7121(プラスチックの転移温度測定方法)に従って
測定したTmax が使用温度、即ち室温〜100℃、好ま
しくは室温〜80℃前後の温度域にある有機化合物が使
用される。但し、この室温とは、本発明の蓄熱材がその
稼働中に遭遇する最低温度を意味する。As the above-mentioned paraffins, JIS K
An organic compound whose T max measured according to 7121 (Plastic transition temperature measuring method) is in the working temperature, that is, room temperature to 100 ° C., preferably room temperature to about 80 ° C. is used. However, this room temperature means the lowest temperature that the heat storage material of the present invention encounters during its operation.
【0017】このパラフィン類の好ましい具体例として
は、Cn H2n+2で表される直鎖状または側鎖を有する脂
肪族飽和炭化水素よりなる各種パラフィン、ロウ、ワッ
クスをはじめ、グリセリドとして存在するステアリン
酸、パルミチン酸等の脂肪酸、脂肪酸エステルとして存
在するステアリルアルコール、ポリエチレングリコール
等の高級アルコールが挙げられ、これらの1種または2
種以上の混合物として使用される。Specific preferred examples of the paraffins include various paraffins, waxes and waxes composed of a saturated aliphatic hydrocarbon having a straight chain or a side chain represented by C n H 2n + 2 , and are present as glycerides. Fatty acids such as stearic acid and palmitic acid, higher alcohols such as stearyl alcohol and polyethylene glycol existing as fatty acid esters, and one or two of these.
Used as a mixture of more than one species.
【0018】前記炭化水素系有機高分子としては、主鎖
が基本的に炭化水素であり、主鎖中における他の成分
(例えばO、N、Si、ハロゲン等)の含有量は10重
量%以下、好ましくは5重量%以下である炭化水素系有
機高分子の1種または2種以上が用いられる。かかる炭
化水素系有機高分子の例を以下に示す。In the above hydrocarbon-based organic polymer, the main chain is basically hydrocarbon, and the content of other components (for example, O, N, Si, halogen, etc.) in the main chain is 10% by weight or less. , And preferably 1 or 2 or more of the hydrocarbon-based organic polymers of 5% by weight or less are used. Examples of such hydrocarbon organic polymers are shown below.
【0019】(1)ポリオレフィン系ポリマー類:ポリ
メチレン、ポリエチレン、ポリプロピレン等のα−オレ
フィンのホモポリマー、オレフィン同士のコポリマー、
α−オレフィンと他のモノマー、例えば酢酸ビニル、ア
クリル酸エチル、メタクリル酸エチル等とのコポリマ
ー、およびこれらの軽度にハロゲン化されたポリマー等
が挙げられる。これは非結晶性〜低結晶性でもよいし、
結晶性でもよい。(1) Polyolefin polymers: homopolymers of α-olefins such as polymethylene, polyethylene and polypropylene, copolymers of olefins,
Examples thereof include copolymers of α-olefin with other monomers such as vinyl acetate, ethyl acrylate, ethyl methacrylate, and the like, and lightly halogenated polymers thereof. It may be amorphous to low crystalline,
It may be crystalline.
【0020】(2)熱可塑性エラストマー類:ゴム並び
にプラスチックスの分野で「熱可塑性エラストマー」と
して知られている、或いは知られ得るもののうち、少な
くとも前記した室温以上で、かつ、使用したパラフィン
類のTmax +10℃の温度域で、好ましくは少なくとも
室温以上で且つTmax +20℃の温度域でゴム弾性を有
するものが使用される。勿論Tmax +20℃より高温度
でゴム弾性を持続するものも使用できる。具体的には、
スチレン系、オレフィン系、ウレタン系、エステル系等
の各種の従来公知の熱可塑性エラストマーが例示でき
る。(2) Thermoplastic elastomers: Among those known or known as "thermoplastic elastomers" in the field of rubber and plastics, paraffins used at least at the above room temperature and above. A material having rubber elasticity in a temperature range of T max + 10 ° C., preferably at least room temperature or higher and in a temperature range of T max + 20 ° C. is used. Of course, it is also possible to use one that maintains rubber elasticity at a temperature higher than T max + 20 ° C. In particular,
Various conventionally known thermoplastic elastomers such as styrene type, olefin type, urethane type and ester type can be exemplified.
【0021】(3)炭化水素系ゴム類:天然ゴム、スチ
レン−ブタジエン−共重合体ゴム、ブチルゴム、イソプ
レンゴム、エチレン−プロピレン共重合体ゴム、エチレ
ン−プロピレン−ジエン三元共重合体ゴム、エチレン−
酢酸ビニル共重合体ゴム、エチレン−エチルアクリレー
ト共重合体ゴム等が例示される。(3) Hydrocarbon rubbers: natural rubber, styrene-butadiene-copolymer rubber, butyl rubber, isoprene rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene terpolymer rubber, ethylene −
Examples thereof include vinyl acetate copolymer rubber and ethylene-ethyl acrylate copolymer rubber.
【0022】上記炭化水素系有機高分子は、架橋性、非
架橋性のいずれであってもよいが、夫々プラスチックス
性であるよりもゴム的性質を有するもののほうが好まし
い。The above hydrocarbon-based organic polymer may be crosslinkable or non-crosslinkable, but it is preferable that each of them has rubber-like properties rather than plastics properties.
【0023】この炭化水素系有機高分子の使用量は、パ
ラフィン類100重量部に対して5〜30重量部であ
る。5重量部未満では、得られる組成物の柔軟性が低下
して脆くなる傾向があると共に、Tmax 以上においてパ
ラフィン類が滲み出し、或いは溶融し易くなる傾向があ
り、一方、30重量部を超える過大量では、パラフィン
類の使用量が少なくなるのに比例して蓄熱量も少なくな
る。The amount of the hydrocarbon organic polymer used is 5 to 30 parts by weight based on 100 parts by weight of paraffins. If it is less than 5 parts by weight, the flexibility of the resulting composition tends to be low and brittle, and paraffins tend to exude or melt easily at T max or higher, while it exceeds 30 parts by weight. If the amount is too large, the amount of heat storage will decrease in proportion to the decrease in the amount of paraffins used.
【0024】上記炭化水素系有機高分子の架橋や加硫
は、必要に応じてパラフィン類との混合中、或いは混合
の後に行われる。この架橋又は加硫の方法としては、一
般に用いられている化学架橋、シラン架橋(水架橋)お
よび電子線や放射線照射による架橋等が採用できる。Crosslinking and vulcanization of the above hydrocarbon-based organic polymer are carried out during or after mixing with paraffins, if necessary. As the method of crosslinking or vulcanizing, generally used chemical crosslinking, silane crosslinking (water crosslinking), electron beam or radiation irradiation, or the like can be adopted.
【0025】蓄熱材を架橋するに際しては、前記いずれ
の架橋方法を採用するにしても、その架橋度はJIS
C 3005に従って測定し、組成物中の架橋物が、ゲ
ル分率にして1重量%以上、好ましくは2重量%以上と
するものである。架橋度が1%以上、好ましくは2%以
上とすることにより、使用したパラフィン類のTmax以
上に蓄熱材が加温されても、蓄熱材が溶融や滴下するこ
となく、元の形状を保持することが可能となる。In cross-linking the heat storage material, whichever of the above-mentioned cross-linking methods is adopted, the degree of cross-linking is JIS
According to C 3005, the crosslinked product in the composition has a gel fraction of 1% by weight or more, preferably 2% by weight or more. By setting the degree of crosslinking to 1% or more, preferably 2% or more, even if the heat storage material is heated to T max or more of the used paraffins, the heat storage material does not melt or drip and retains its original shape. It becomes possible to do.
【0026】前記炭化水素系有機高分子としては、下記
A或いはその架橋物またはBの材料が特に好ましい。 A.前記(1)のポリオレフィン系ポリマー類と前記
(3)の炭化水素系ゴム類との併用系:この場合のポリ
オレフィン系ポリマー類としては、特にその成分として
ポリメチレン、ポリエチレン、ポリスチレン等のホモポ
リマー、オレフィン同士のコポリマー、オレフィンと他
のモノマー、例えば酢酸ビニル、アクリル酸、メタクリ
ル酸等とのコポリマー等がある。これらは1種または2
種以上で使用されるが、就中JIS K 7121(プ
ラスチックの転移温度測定方法)によって測定される最
高結晶転移温度(通常は融点に該当する)が、使用した
パラフィン類のTmax より少なくとも10℃高い高結晶
性のもの、好ましくはTmax より少なくとも20℃高い
ものが使用される。As the above-mentioned hydrocarbon-based organic polymer, the following materials A, their cross-linked products or materials B are particularly preferable. A. Combined system of the above-mentioned (1) polyolefin-based polymers and the above-mentioned (3) hydrocarbon-based rubbers: In this case, as the polyolefin-based polymers, as the components thereof, homopolymers such as polymethylene, polyethylene and polystyrene, and olefins are particularly preferable. Examples thereof include copolymers of olefins with each other, copolymers of olefins with other monomers such as vinyl acetate, acrylic acid, and methacrylic acid. These are 1 or 2
The maximum crystal transition temperature (usually corresponding to the melting point) measured by JIS K 7121 (Plastic transition temperature measurement method) is at least 10 ° C higher than the T max of the paraffins used. Highly crystalline ones are used, preferably at least 20 ° C. above T max .
【0027】この結晶性ポリオレフィンは、炭化水素系
ゴム類との併用下で、適度な柔軟性を有するとともに確
実な形状保持性をも有する。しかも脆くなく、成形して
も割れを生ぜず充分なる保持性を維持するものである。The crystalline polyolefin, when used in combination with a hydrocarbon rubber, has an appropriate flexibility and a reliable shape-retaining property. Moreover, it is not brittle and does not crack even when formed, and maintains sufficient holding properties.
【0028】この併用系の場合、パラフィン類との配合
割合は、パラフィン類100重量部に対し、炭化水素系
ゴム類1〜20重量部、好ましくは5〜15重量部、ポ
リオレフィン系ポリマー類1〜20重量部、好ましくは
5〜15重量部である。In the case of this combination system, the blending ratio with paraffins is 1 to 20 parts by weight, preferably 5 to 15 parts by weight, of hydrocarbon rubbers to 100 parts by weight of paraffins, and 1 to 10 parts of polyolefin polymers. 20 parts by weight, preferably 5 to 15 parts by weight.
【0029】B.前記(2)の熱可塑性エラストマー
類:熱可塑性エラストマーは、パラフィン類のTmax 以
下ではゴム弾性を示すものを使用することが好ましい。
この場合、熱可塑性エラストマーは、Tmax 以下の温度
でゴム弾性を有するので、パラフィン類をうまく包み込
んだ状態で良好に担持でき、混合物の取り扱いが容易で
あり、また、割れ難くなり、成形が容易である。更に上
記エラストマーは、Tmax より高温度においてもゴム弾
性を持続するので、本発明の蓄熱材は溶融したり滴下す
ることはない。B. (2) Thermoplastic elastomer: As the thermoplastic elastomer, it is preferable to use one that exhibits rubber elasticity at T max or less of paraffins.
In this case, since the thermoplastic elastomer has rubber elasticity at a temperature of T max or lower, it can be satisfactorily supported in a state in which paraffins are well wrapped, the mixture is easy to handle, and it is difficult to crack and easy to mold. Is. Further, since the above-mentioned elastomer maintains rubber elasticity even at a temperature higher than T max , the heat storage material of the present invention does not melt or drip.
【0030】本発明で使用する蓄熱材は、前記のパラフ
ィン類と炭化水素系有機高分子とを、前記した割合で機
械的手段により混合して得られるが、ここでいう混合と
は、パラフィン類と炭化水素系有機高分子の少なくとも
1成分の溶融物に、残余の成分が少なくとも膨潤、好ま
しくは溶解することにより、或いは高温度によって混合
対象となるいずれの成分も外力にて流動変形しうる状態
で攪拌、混合、或いは混練されることを意味する。The heat storage material used in the present invention is obtained by mixing the above-mentioned paraffins and a hydrocarbon-based organic polymer by mechanical means in the above-mentioned proportions. The mixing here means paraffins. A state in which any of the components to be mixed can be flow-deformed by an external force due to at least the remaining components swelling, preferably dissolving in the melt of at least one of the hydrocarbon-based organic polymer and the high temperature. Means to be stirred, mixed, or kneaded.
【0031】例えば100〜200℃に保持されたパラ
フィン類の溶融物に炭化水素系有機高分子を溶解し、得
られる高温度の溶液を攪拌混合する態様、混合各成分が
軟化する温度、例えば50〜250℃で2本ロール、バ
ンバリーミキサ、押出機、2軸混練押出機等の通常の混
練機を使用して混練混合する態様等が例示される。混合
は、可及的に充分であることが好ましいが、一般には1
〜150分程度の混合を行って、目視にて一様に混合さ
れたと判断される程度で十分である。For example, a mode in which a hydrocarbon-based organic polymer is dissolved in a melt of paraffins kept at 100 to 200 ° C. and the resulting high temperature solution is stirred and mixed, and a temperature at which each mixed component is softened, for example, 50 Examples include a mode in which kneading and mixing are performed at a temperature of up to 250 ° C. using an ordinary kneading machine such as a two-roll mill, a Banbury mixer, an extruder, and a twin-screw kneading extruder. Mixing is preferably as complete as possible, but generally 1
It is sufficient to perform the mixing for about 150 minutes and visually judge that they are uniformly mixed.
【0032】上記の混合によって溶液状となった組成物
は、そのままで、或いは若干冷却して任意の形状の蓄熱
材を成形できる。蓄熱材の形状としては、粒状、ペレッ
ト状、チップ状、ブロック状、繊維状、シート状、板状
等に成形できる。例えば、溶液状となった組成物をその
まま粒状化したり、押出機でシート状、板状に押し出し
成形することができ、更に該押出機により棒状、パイプ
状にも成形できる。このシート状、板状、棒状、パイプ
状の成形物を細断すれば粒状、チップ状、ペレット状と
することができる。また、ブロックを粉砕して粒状、チ
ップ状とすることもできる。The composition which has been made into a solution by the above-mentioned mixing can be molded as it is or after being slightly cooled to form a heat storage material having an arbitrary shape. The shape of the heat storage material may be granular, pellet, chip, block, fiber, sheet, plate or the like. For example, the composition in the form of a solution can be granulated as it is, or can be extruded into a sheet shape or a plate shape by an extruder, and further can be formed into a rod shape or a pipe shape by the extruder. If this sheet-shaped, plate-shaped, rod-shaped, or pipe-shaped molded product is shredded, it can be made into a granular form, chip form, or pellet form. Further, the block may be crushed into particles or chips.
【0033】本発明で使用する上記蓄熱材には、必要に
応じて各種の添加剤を配合することができる。たとえば
老化防止剤、酸化防止剤、着色剤、顔料、帯電防止剤等
が配合され、その他用途に応じて防黴剤、難燃剤等、更
には伝熱性向上のために金属粉、金属繊維、金属酸化
物、カーボン、カーボンファイバー等を併用することが
できる。If desired, various additives can be added to the heat storage material used in the present invention. For example, antioxidants, antioxidants, colorants, pigments, antistatic agents, etc. are blended, and depending on other uses, antifungal agents, flame retardants, etc., and further metal powders, metal fibers, metals to improve heat transfer properties. Oxides, carbon, carbon fibers and the like can be used in combination.
【0034】このようにして得られた蓄熱材は、前記建
材用材料に対して任意の割合で混合分散されるが、20
容量%以上、好ましくは30〜80容量%混合される。
この混合方法としては、粒状、チップ状、ペレット状等
の比較的小サイズの蓄熱材を、コンクリートミキサー等
を使用して通常の方法で建材用材料とともに十分に攪拌
し混合することでなされる。ついでこの混合物を注型等
の各種手段で成形加工することにより、所望の大きさ、
形状に成形した蓄熱構造建材がえられる。上記蓄熱材の
混合量が、20容量%未満であると、蓄熱構造建材に十
分な蓄熱がなされず、一方、80容量%を越えると、蓄
熱構造建材の機械的強度が低下し構造物としての強度が
保てないので好ましくない。The heat storage material thus obtained is mixed and dispersed in the building material in an arbitrary ratio.
It is mixed in a volume ratio of not less than 30%, preferably 30 to 80% by volume.
This mixing method is carried out by sufficiently stirring and mixing a relatively small-sized heat storage material such as granules, chips, pellets or the like with a building material using a concrete mixer or the like. Then, this mixture is molded by various means such as casting to obtain a desired size,
A heat storage structure building material molded into a shape can be obtained. When the mixing amount of the heat storage material is less than 20% by volume, the heat storage structure building material does not sufficiently store heat. On the other hand, when it exceeds 80% by volume, the mechanical strength of the heat storage structure building material is reduced and the heat storage structure building material is It is not preferable because the strength cannot be maintained.
【0035】[0035]
【実施例】以下、本発明をより具体的に説明するために
実施例を示す。なお、本発明が、これらの実施例に限定
されるものでないことはいうまでもない。 実施例1 〔蓄熱材の調製〕 蓄熱材の組成 融点115°Fのパラフィン 50重量部 パルミチルアルコール(商品名NAA−44 日本油脂社製)50重量部 SEBS熱可塑性エラストマー 15重量部 (シェル化学社製、商品名クレイトンG) ポリエチレンワックス 5重量部 酸化防止剤 0.5重量部 上記組成物を、130〜150℃の温度で攪拌混合機に
よって1〜2時間溶融強制攪拌を行った。えられた混合
物を、型に流し込み冷却して棒状成形物とし、さらにこ
れを細断して12mmメッシュのスクリーンを通過する粒
状ないしチップ状の蓄熱材を調製した。この蓄熱材の蓄
熱温度は41℃、蓄熱量は41Cal/g であった。ただ
し、測定は、JIS K 7121およびJIS K
7122に従い行った。EXAMPLES Examples will be shown below to more specifically describe the present invention. Needless to say, the present invention is not limited to these examples. Example 1 [Preparation of heat storage material] Composition of heat storage material Paraffin having a melting point of 115 ° F 50 parts by weight Palmityl alcohol (trade name NAA-44 manufactured by NOF CORPORATION) 50 parts by weight SEBS thermoplastic elastomer 15 parts by weight (Shell Chemical Co., Ltd. Product name, Clayton G) Polyethylene wax 5 parts by weight Antioxidant 0.5 parts by weight The above composition was melt-forced stirred at a temperature of 130 to 150 ° C. for 1 to 2 hours with a stirring mixer. The obtained mixture was poured into a mold and cooled to form a rod-shaped molded product, which was further shredded to prepare a granular or chip-shaped heat storage material that passed through a 12 mm mesh screen. The heat storage temperature of this heat storage material was 41 ° C., and the heat storage amount was 41 Cal / g. However, the measurements are based on JIS K 7121 and JIS K
7122.
【0036】〔蓄熱構造建材の作製〕上記蓄熱材をセメ
ントおよび砂と予備混合した後、適量の水を加えて練り
合わせて蓄熱材を混合したモルタルを調製した。なお、
配合割合は、蓄熱材:セメント:砂=2:1:1(容量
比)とした。[Preparation of Building Material for Thermal Storage Structure] The above thermal storage material was premixed with cement and sand, and then an appropriate amount of water was added and kneaded to prepare a mortar in which the thermal storage material was mixed. In addition,
The mixing ratio was heat storage material: cement: sand = 2: 1: 1 (volume ratio).
【0037】上記蓄熱可能なモルタルを、直径150m
m、長さ300mmに注型し、10日間硬化、養生した
後、この比重を測定し、さらに70℃まで昇温して十分
に蓄熱させた状態で寸法を測定して、熱膨張を調べると
ともに、状態変化を観察した。この結果は、表1に示す
とおりであった。A mortar capable of accumulating heat is used with a diameter of 150 m.
After casting for m and length of 300 mm and curing and curing for 10 days, the specific gravity is measured, and then the dimensions are measured while the temperature is further raised to 70 ° C and the heat is sufficiently stored. , And the state change was observed. The results are shown in Table 1.
【0038】比較例1 セメント:砂=1:2.5の割合で、適量の水を加えて
練り合わせてモルタルを調製した。このモルタルを実施
例1と同様にして直径150mm、長さ300mmに注型
し、10日間硬化、養生した後、この比重を測定し、さ
らに70℃まで昇温して十分に蓄熱させた状態で寸法を
測定して、熱膨張を調べるとともに、状態変化を観察し
た。この結果は、表1に示すとおりであった。Comparative Example 1 A mortar was prepared by adding an appropriate amount of water at a ratio of cement: sand = 1: 2.5 and kneading the mixture. This mortar was cast in a diameter of 150 mm and a length of 300 mm in the same manner as in Example 1, cured and cured for 10 days, then its specific gravity was measured, and the temperature was further raised to 70 ° C. to allow sufficient heat storage. The dimensions were measured to examine the thermal expansion and the state change was observed. The results are shown in Table 1.
【0039】比較例2 実施例1おける蓄熱材の代わりに、架橋ポリエチレンに
融点115°F のパラフィンを70%含浸させたものを
蓄熱材として使用し、実施例1と同じ配合割合でモルタ
ルを調製した。このモルタルを実施例1と同様にして直
径150mm、長さ300mmに注型し、10日間硬化、養
生した後、この比重を測定し、さらに70℃まで昇温し
て十分に蓄熱させた状態で寸法を測定して、熱膨張を調
べるとともに、状態変化を観察した。この結果は、表1
に示すとおりであった。Comparative Example 2 Instead of the heat storage material used in Example 1, a crosslinked polyethylene impregnated with 70% of paraffin having a melting point of 115 ° F. was used as a heat storage material, and mortar was prepared in the same mixing ratio as in Example 1. did. This mortar was cast in a diameter of 150 mm and a length of 300 mm in the same manner as in Example 1, cured and cured for 10 days, then its specific gravity was measured, and the temperature was further raised to 70 ° C. to allow sufficient heat storage. The dimensions were measured to examine the thermal expansion and the state change was observed. This result is shown in Table 1.
It was as shown in.
【0040】[0040]
【表1】 [Table 1]
【0041】上記表1から明らかなように、実施例1の
モルタル注型物は、比較例1のものよりもかなり軽量で
ある。また、蓄熱材を混合したにもかかわらず、熱膨張
の目安となる線膨張係数は、蓄熱材を混合しない比較例
1のものと同じである。さらに、70℃での状態観察に
おいても、外観上の変化は全く無く蓄熱成分が分離した
り滲出することは無かった。これに対して、従来の蓄熱
材を混合したものは、蓄熱時に蓄熱成分の分離、滲み出
しが見られた。このように、本発明の蓄熱材を混合した
構造建材は、蓄熱構造建材として十分に実施できる特性
を有するものであった。As is apparent from Table 1 above, the mortar cast product of Example 1 is considerably lighter than that of Comparative Example 1. In addition, the linear expansion coefficient, which is a measure of thermal expansion, is the same as that of Comparative Example 1 in which the heat storage material is not mixed even though the heat storage material is mixed. Further, even when the state was observed at 70 ° C., there was no change in appearance and no heat storage component separated or exuded. On the other hand, in the case where the conventional heat storage material was mixed, the heat storage components were separated and exuded during heat storage. As described above, the structural building material in which the heat storage material of the present invention was mixed had characteristics that could be sufficiently implemented as a heat storage structural building material.
【0042】応用例1 約20m2の室内の床部に、50mm厚の断熱材を、この上
部に240W/m2の面状ヒータをそれぞれ敷設した。つ
いでこの面状ヒータ上に、実施例1でえた蓄熱材を混合
したモルタルを28mm厚に施工し、さらにその上面に5
0mm厚のモルタルを打設して10日間硬化、養生した。
その後、表面にP−タイルを敷設して、蓄熱材が分散さ
れた床を形成した。Application Example 1 A 50 mm thick heat insulating material was laid on the floor of a room of about 20 m 2 , and a 240 W / m 2 planar heater was laid on top of this. Then, on this sheet heater, mortar mixed with the heat storage material obtained in Example 1 was applied to a thickness of 28 mm, and 5
Mortar with a thickness of 0 mm was placed and cured and cured for 10 days.
Then, a P-tile was laid on the surface to form a floor in which the heat storage material was dispersed.
【0043】床の蓄熱は、夜間に夜間電力を利用して1
0時間ヒータに通電し、昼間は通電を停止する方法で、
冬季(12月〜2月)を通して運転した結果、室温は全
日18〜22℃に保たれてほぼ一定であり快適であっ
た。The floor heat is stored by using nighttime electricity at night.
By energizing the heater for 0 hours and stopping the energization during the day,
As a result of driving through the winter season (December to February), the room temperature was kept at 18 to 22 ° C all day and was almost constant and comfortable.
【0044】運転終了後、P−タイルを剥いでモルタル
表面を調べた結果、クラックや凹凸の異常は見られず、
また、蓄熱成分の滲出も見られなかった。After the operation was completed, the P-tile was peeled off and the surface of the mortar was examined. As a result, no cracks or irregularities were found.
No exudation of the heat storage component was observed.
【0045】実施例2 〔蓄熱材の調製〕 蓄熱材の組成 C16・ノルマルパラフィン 25重量部 C18・ノルマルパラフィン 75重量部 炭化水素系高分子バインダ用SEBS熱可塑性エラストマー 13重量部 (商品名クレイトンG シェル化学社製) ポリエチレンワックス 7重量部 酸化防止剤 0.2重量部Example 2 [Preparation of heat storage material] Composition of heat storage material C 16 normal paraffin 25 parts by weight C 18 normal paraffin 75 parts by weight SEBS thermoplastic elastomer for hydrocarbon polymer binder 13 parts by weight (trade name: Kraton) G Shell Chemical Co., Ltd.) Polyethylene wax 7 parts by weight Antioxidant 0.2 parts by weight
【0046】上記組成物を、実施例1と同様に混合、成
形加工した。この蓄熱材の蓄熱温度は21℃、蓄熱量は
30Cal/g であった。ただし、測定は、JIS K 7
121およびJIS K 7122に従い行った。The above composition was mixed and molded in the same manner as in Example 1. The heat storage temperature of this heat storage material was 21 ° C., and the heat storage amount was 30 Cal / g. However, the measurement is JIS K 7
121 and JIS K 7122.
【0047】〔蓄熱構造建材の作製〕上記蓄熱材を実施
例と同じ比率でセメントおよび砂と予備混合した後、適
量の水を加えて練り合わせて蓄熱材を混合分散したモル
タルを調製した。[Preparation of Building Material for Heat Storage Structure] The above heat storage material was premixed with cement and sand in the same ratio as in the example, and then an appropriate amount of water was added and kneaded to prepare a mortar in which the heat storage material was mixed and dispersed.
【0048】上記蓄熱可能なモルタルを、幅300mm、
長さ900mm、厚さ30mmの枠内に注型し、10日間硬
化、養生させて蓄熱材を分散した壁材を形成した。この
壁材を用いて、室内に内寸法1800mm×1800mm×
1800mm、壁厚さ90mmの小部屋を設けた。室内およ
び小部屋内の温度を計測した結果、室内は昼間23℃、
夜間17℃であったのに対し、小部屋内は、それぞれ2
1℃、20℃で、一日中温度がほぼ一定に保たれた。な
お、室内は昼間のみエアーコンディショナーで23℃前
後にコントロールした。このように、補助的な熱供給を
必要とせず、定温室として有用に利用できる。The mortar capable of storing heat is 300 mm wide,
It was cast in a frame having a length of 900 mm and a thickness of 30 mm and cured and cured for 10 days to form a wall material in which a heat storage material was dispersed. Using this wall material, the inside dimensions are 1800 mm × 1800 mm ×
A small room with a wall thickness of 1800 mm and a wall thickness of 90 mm was set up. As a result of measuring the temperature in the room and the small room, the room was 23 ° C during the day,
It was 17 degrees Celsius at night, but 2 in each small room
At 1 ° C and 20 ° C, the temperature was kept almost constant throughout the day. In addition, the room was controlled at around 23 ° C with an air conditioner only during the day. In this way, it does not require auxiliary heat supply and can be usefully used as a constant temperature room.
【0049】[0049]
【発明の効果】以上述べた通り、本発明では、蓄熱成分
が蓄熱時に流動しない特定の有機蓄熱材を使用するの
で、蓄熱構造建材の表面に蓄熱成分が滲出しない。ま
た、蓄熱材の表面処理や構造建材中の遮蔽層の形成、さ
らに、蓄熱材を収容する容器や槽を不要にして、蓄熱構
造建材の製造コストが低減できる。As described above, in the present invention, since the specific organic heat storage material in which the heat storage component does not flow at the time of heat storage is used, the heat storage component does not seep to the surface of the heat storage structure building material. Further, the surface treatment of the heat storage material, the formation of the shielding layer in the structural building material, and the need for a container or tank for accommodating the heat storage material can reduce the manufacturing cost of the heat storage structural building material.
【0050】また、蓄熱量が多いので、効率よく吸放熱
がなされ、蓄熱構造建材を壁、床、天井等に使用する
と、蓄熱材が昼間の太陽熱、室内の熱や補助的加熱等の
熱を蓄熱し、夜間に放熱するので、室内の温度をほぼ一
定に保つことができる。しかも本発明では、建材の外観
変化等の強度の減少が極めて少ない。したがって、熱エ
ネルギーが有効に利用でき、温度調整のランニングコス
トが大幅に低減できる室内の保温、保冷や床暖房等に有
用な蓄熱構造建材を提供できる。Further, since the heat storage amount is large, heat is efficiently absorbed and radiated, and when the heat storage structure building material is used for walls, floors, ceilings, etc., the heat storage material absorbs heat such as daytime solar heat, indoor heat and auxiliary heating. Since it stores heat and radiates it at night, the temperature inside the room can be kept almost constant. Moreover, in the present invention, the decrease in strength due to the appearance change of the building material is extremely small. Therefore, it is possible to provide a heat storage structure building material that can effectively use thermal energy and can significantly reduce the running cost of temperature adjustment, which is useful for indoor heat retention, cold insulation, floor heating, and the like.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大村 雅彦 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiko Omura 4-3 Ikejiri, Itami City, Hyogo Prefecture Mitsubishi Cable Industries, Ltd. Itami Works
Claims (2)
材であって、該蓄熱材が、蓄熱成分のパラフィン類10
0重量部とバインダ成分の炭化水素系有機高分子5〜3
0重量部とが機械的手段にて混合されてなることを特徴
とする蓄熱構造建材。1. A heat storage structure building material in which a heat storage material is dispersed, wherein the heat storage material is paraffins 10 as a heat storage component.
0 to 3 parts by weight of a hydrocarbon-based organic polymer as a binder component 5 to 3
A heat storage structure building material characterized by being mixed with 0 parts by weight by mechanical means.
熱材を20〜80容量%混合分散し、これを成形加工し
たものである請求項1記載の蓄熱構造建材。2. The heat storage structure building material according to claim 1, wherein the heat storage structure building material is obtained by mixing and dispersing the heat storage material in an amount of 20 to 80% by volume with respect to the building material and molding and processing the mixture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4098659A JPH0657241A (en) | 1992-03-24 | 1992-03-24 | Heat-storing structural building material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4098659A JPH0657241A (en) | 1992-03-24 | 1992-03-24 | Heat-storing structural building material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0657241A true JPH0657241A (en) | 1994-03-01 |
Family
ID=14225647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4098659A Pending JPH0657241A (en) | 1992-03-24 | 1992-03-24 | Heat-storing structural building material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0657241A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102535735A (en) * | 2011-07-05 | 2012-07-04 | 江苏尼高科技有限公司 | Preparation method of phase-change energy-storage gypsum wallboard |
JP2013185352A (en) * | 2012-03-07 | 2013-09-19 | Jsr Corp | Architectural window structure and architectural structure provided with the same |
JP2015010776A (en) * | 2013-06-28 | 2015-01-19 | 株式会社ケーヒン・サーマル・テクノロジー | Heat exchanger |
CN106478011A (en) * | 2016-09-21 | 2017-03-08 | 东莞市联洲知识产权运营管理有限公司 | A kind of phase-change accumulation energy dry powder and mortar based on building and house refuse and preparation method |
-
1992
- 1992-03-24 JP JP4098659A patent/JPH0657241A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102535735A (en) * | 2011-07-05 | 2012-07-04 | 江苏尼高科技有限公司 | Preparation method of phase-change energy-storage gypsum wallboard |
CN102535735B (en) * | 2011-07-05 | 2015-03-04 | 江苏尼高科技有限公司 | Preparation method of phase-change energy-storage gypsum wallboard |
JP2013185352A (en) * | 2012-03-07 | 2013-09-19 | Jsr Corp | Architectural window structure and architectural structure provided with the same |
JP2015010776A (en) * | 2013-06-28 | 2015-01-19 | 株式会社ケーヒン・サーマル・テクノロジー | Heat exchanger |
CN106478011A (en) * | 2016-09-21 | 2017-03-08 | 东莞市联洲知识产权运营管理有限公司 | A kind of phase-change accumulation energy dry powder and mortar based on building and house refuse and preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU584245B2 (en) | Polyethylene containing a phase change material | |
US4617332A (en) | Phase change compositions | |
US5053446A (en) | Polyolefin composites containing a phase change material | |
CA1320623C (en) | Polyolefin composites containing a phase change material | |
USRE34880E (en) | Phase change compositions | |
JP5807244B1 (en) | Insulating material, method for manufacturing the same, and far infrared heating device | |
US5565132A (en) | Thermoplastic, moldable, non-exuding phase change materials | |
US5718835A (en) | Heat storage composition | |
CN1903781A (en) | Phase change anticracking grout and preparation method of used phase change material particulate | |
EP0412021B1 (en) | Latent thermal energy storage material | |
JP2006225474A (en) | Heat storage material | |
JPH0657241A (en) | Heat-storing structural building material | |
JPH0617041A (en) | Heat accumulating material | |
JP7217452B2 (en) | architectural wall material | |
JPH05163485A (en) | Heat storage material | |
JP2852531B2 (en) | Heat storage material | |
JPH0510533A (en) | Floor or road surface structure | |
JPH0510534A (en) | Heat accumulating heating panel | |
JPH0617042A (en) | Heat accumulating componet and heat accumulating material | |
JPH0688627A (en) | Heat srtorage board and floor heating structure using it | |
JPH0598248A (en) | Production of heat storage material | |
CA1339400C (en) | Method of manufacturing phase change, flame retarding, cementitious composite materials and composites made thereby | |
JPH05214710A (en) | Regenerative road surface structure | |
JPH04252288A (en) | Product with heat accumulating function | |
JPH05735U (en) | Heat storage material for heating |