JPH065633Y2 - Anti-ic snow equipment for ultrasonic wind anemometer - Google Patents

Anti-ic snow equipment for ultrasonic wind anemometer

Info

Publication number
JPH065633Y2
JPH065633Y2 JP1988093592U JP9359288U JPH065633Y2 JP H065633 Y2 JPH065633 Y2 JP H065633Y2 JP 1988093592 U JP1988093592 U JP 1988093592U JP 9359288 U JP9359288 U JP 9359288U JP H065633 Y2 JPH065633 Y2 JP H065633Y2
Authority
JP
Japan
Prior art keywords
far
probe
ultrasonic
snow
anemometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988093592U
Other languages
Japanese (ja)
Other versions
JPH0216061U (en
Inventor
二郎 栗原
Original Assignee
光進電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光進電気工業株式会社 filed Critical 光進電気工業株式会社
Priority to JP1988093592U priority Critical patent/JPH065633Y2/en
Publication of JPH0216061U publication Critical patent/JPH0216061U/ja
Application granted granted Critical
Publication of JPH065633Y2 publication Critical patent/JPH065633Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) この考案は、超音波の空気中の伝播速度を利用して風向
風速を測定する超音波風向風速計において、超音波を発
信又は受信するプローブが氷雪の付着により凍結するこ
とを防止する防氷雪装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is a probe for transmitting or receiving ultrasonic waves in an ultrasonic wind anemometer that measures the wind direction wind speed by utilizing the propagation velocity of ultrasonic waves in the air. The present invention relates to an anti-icing snow device that prevents the snow from freezing due to the adhesion of ice and snow.

(従来の技術) 超音波風向風速計は、超音波の空気中の伝播速度を利用
して測定するために、微風向風速が測定できる利点を有
している。
(Prior Art) An ultrasonic anemometer is advantageous in that it can measure a slight wind speed because it uses the propagation velocity of ultrasonic waves in the air.

寒冷地等においては、プローブへの着雪、着氷が発生す
ると、超音波の発受信が不可能となり、測定不能とな
る。この対策として、プローブを電気ヒータで温めた
り、投光器に依り投光して、その熱で温めることにより
氷雪を融かしていた。
In a cold region or the like, if snow or icing occurs on the probe, it becomes impossible to send and receive ultrasonic waves, which makes measurement impossible. As a measure against this, the ice and snow is melted by warming the probe with an electric heater, or by projecting light with a projector and warming it with the heat.

(考案が解決しようとする課題) しかしながら、前述の従来の装置にあって、前者ではヒ
ータを組み込むためにプローブを特別の構成とする必要
があり、後者では熱を空気中を介して伝達するために特
に風の影響を受け易く、充分なる融氷雪効果が得られな
かった。
(Problems to be solved by the invention) However, in the above-mentioned conventional device, in the former case, the probe needs to have a special structure in order to incorporate the heater, and in the latter case, heat is transferred through the air. Especially, it was easily affected by wind, and a sufficient melting ice and snow effect was not obtained.

そこで、この考案は、上記の従来の問題点に鑑み、風の
影響を受けることなくプローブを効率良く加熱すること
ができる超音波風向風速計の防氷雪装置を提供すること
を課題としている。
Therefore, in view of the above-mentioned conventional problems, it is an object of the present invention to provide an anti-icing snow device for an ultrasonic anemometer that can efficiently heat a probe without being affected by wind.

(課題を解決するための手段) しかして、この考案の要旨とするところは、超音波を発
信又は受信するプローブを有し、超音波の空気中の伝播
速度を利用して風向風速を測定する超音波風向風速計に
おいて、 遠赤外線を放射する遠赤外線放射器を前記プローブの数
と同数設けると共に、前記各遠赤外線放射器から各プロ
ーブに向けて遠赤外線を放射させるように胴部に取付金
具にて装着したことにある。
(Means for Solving the Problem) However, the gist of the present invention is to have a probe that transmits or receives ultrasonic waves, and measures the wind direction wind speed using the propagation speed of ultrasonic waves in the air. In the ultrasonic anemometer, the same number of far-infrared radiators that emit far-infrared rays as the number of the probes are provided, and a mounting bracket is attached to the body so that the far-infrared radiators emit the far-infrared rays toward each probe. I installed it at.

(作用) したがって、各遠赤外線放射器から各プローブに対して
照射される遠赤外線は、各プローブの吸収波長帯域内の
波長を有しているために、各プローブに効率良く吸収さ
れて、その着氷、着雪を防止することができるものであ
る。
(Operation) Therefore, since the far infrared rays emitted from each far infrared radiator to each probe have a wavelength within the absorption wavelength band of each probe, they are efficiently absorbed by each probe, and It is possible to prevent ice accretion and snow accretion.

(実施例) 以下、この考案の実施例を図面により説明する。(Embodiment) An embodiment of the present invention will be described below with reference to the drawings.

第1図、第2図において、超音波風向風速計1は、基部
2に鉛直に胴部3が立設され、その先端に主柱4a〜4
dが各4本設けられ、該主柱4a〜4dにはそれぞれ超
音波を発信及び受信するプローブ5a〜5dが取付られ
ている。
In FIGS. 1 and 2, an ultrasonic anemometer 1 has a body 2 in which a body 3 is vertically installed on a base 2, and main columns 4a to 4 are provided at the tips thereof.
Four d are provided, and probes 5a to 5d for transmitting and receiving ultrasonic waves are attached to the main columns 4a to 4d, respectively.

この一対のプローブ間にて相互に発受する超音波の伝播
時間から、所定の演算式を基に風向と風速が測定される
ものである。
From the propagation time of ultrasonic waves transmitted and received between the pair of probes, the wind direction and the wind speed are measured based on a predetermined arithmetic expression.

防氷雪装置10は、四個の遠赤外線放射器11a〜11d
と、これを支える放射器取付アーム12a〜12dと、こ
の各放射取付アーム12a〜12dを支える取付金具13と
より成り、該取付金具13は二つ割りの部品から成り、ボ
ルト14にて一体化されて前記胴部3に装着されてい
る。尚、夏場等では取外しておくことも可能である。
The anti-icing snow device 10 includes four far infrared radiators 11a to 11d.
And radiator mounting arms 12a to 12d for supporting this and mounting brackets 13 for supporting each of the radiating mounting arms 12a to 12d. The mounting bracket 13 is composed of two parts and is integrated by bolts 14. It is mounted on the body 3. It can be removed in the summer.

遠赤外線放射器11a〜11dは、プローブ5a〜5dの
数に対応して四個設けられ、第3図に示すような構成と
なっている。即ち、ニクロム線等の発熱体15,15
と、その外側に設けられた遠赤外線の放射に適するセラ
ミックス製放射体16と、反射器17とより成ってい
る。
Four far-infrared radiators 11a to 11d are provided corresponding to the number of probes 5a to 5d, and have a configuration as shown in FIG. That is, the heating elements 15, 15 such as nichrome wire
And a ceramic radiator 16 provided on the outer side thereof and suitable for emitting far infrared rays, and a reflector 17.

前記発熱体15は、通常100Vの商用電源が接続さ
れ、例えば、前記取付金具13に取付けられた引き出し
線18から前記超音波風向風速計1とは別に給電され、
発熱体15の発熱によってセラミックス製放射体16か
ら遠赤外線が放射される。この遠赤外線は、波長が約5
〜25μmの電磁波を言い、紫外線や可視光線に比較し
て、大気や大気中の微粒子により散乱されたり吸収され
たりすることが少なく、大気中をよく透過する。また、
遠赤外線(電磁波)は熱ではないので、風の影響は全く
受けないものである。
The heating element 15 is usually connected to a commercial power source of 100 V, and is supplied with power separately from the ultrasonic anemometer 1 from, for example, a lead wire 18 attached to the mounting bracket 13.
Far infrared rays are radiated from the ceramic radiator 16 by the heat generated by the heating element 15. This far infrared ray has a wavelength of about 5
An electromagnetic wave of up to 25 μm, which is less likely to be scattered or absorbed by the atmosphere or fine particles in the atmosphere as compared with ultraviolet rays or visible rays, and transmits through the atmosphere well. Also,
Far infrared rays (electromagnetic waves) are not heat, so they are completely unaffected by wind.

前記反射体17は、半円弧状で、反射面には遠赤外線を
よく反射するアルミニウム等がメッキされている。
The reflector 17 has a semi-arcuate shape, and its reflection surface is plated with aluminum or the like that reflects far infrared rays well.

温度センサ18は、外気温を検出するもので、外気温が
着氷、着雪するような所定の温度を検出し、そのような
所定の温度になると、前記発熱体15,15に通電せし
めるように、図示しない制御回路が構成されている。
The temperature sensor 18 detects the outside air temperature, and detects a predetermined temperature at which the outside air temperature becomes icy and snow, and when the temperature reaches such a predetermined temperature, the heating elements 15 and 15 are energized. In addition, a control circuit (not shown) is configured.

上述の構成において、温度センサ18が外気の温度を検
出し、外気の温度が所定の温度以下となったときには、
発熱体15,15への通電が開始され、気温低下に応じ
て電流量が増される。
In the above configuration, when the temperature sensor 18 detects the temperature of the outside air and the temperature of the outside air becomes equal to or lower than the predetermined temperature,
Energization of the heating elements 15 and 15 is started, and the amount of current is increased as the temperature decreases.

発熱体15で発生した熱は、セラミックス製放射体16
で遠赤外線に効率よく変換され、各遠赤外線放射器11
a〜11dから超音波風向風速計の各プローブ5a〜5
dへ第2図の矢印のごとく照射される。
The heat generated by the heating element 15 is generated by the ceramic radiator 16
Far infrared rays are efficiently converted into far infrared rays by
a to 11d to ultrasonic probes 5a to 5 of the anemometer
It is irradiated to d as shown by the arrow in FIG.

超音波風向風速計のプローブ5a〜5dの吸収波長帯
は、通常の物体の場合と同様に大体6〜12μmであ
り、この吸収波長帯の範囲内に、セラミックス製放射体
16から放射される遠赤外線の波長帯が入るように、セ
ラミックス製放射体16の温度が制御される。このた
め、超音波風向風速計1のプローブ5a〜5dは、遠赤
外線を受けて吸収共振し効率よく加熱される。遠赤外線
は、紫外線や可視光線に比較して波長が長いために、空
気中に浮遊する氷雪や塵等によって反射吸収されず、ま
た物質に対する浸透度も大きいためプローブそのものを
加熱するために、風や氷雪の影響も受けず確実に加熱で
きるものである。
The absorption wavelength band of the probes 5a to 5d of the ultrasonic wind anemometer is approximately 6 to 12 μm, similar to the case of a normal object, and the range of the absorption wavelength band in which the radiation from the ceramic radiator 16 is emitted. The temperature of the ceramic radiator 16 is controlled so that the infrared wavelength band is included. Therefore, the probes 5a to 5d of the ultrasonic anemometer 1 receive far infrared rays, absorb and resonate, and are efficiently heated. Far-infrared rays have a longer wavelength than ultraviolet rays and visible rays, so they are not reflected and absorbed by ice, snow, dust, etc. floating in the air. It can be heated reliably without being affected by ice or snow.

また、遠赤外線放射器11a〜11dは、超音波発信器
1の下方に配されているために、測定上の影響は与えな
い。
Further, since the far-infrared radiators 11a to 11d are arranged below the ultrasonic transmitter 1, they do not affect the measurement.

(考案の効果) 以上のように、この考案によれば、各遠赤外線放射器か
ら放射される遠赤外線の波長を各超音波風向風速計のプ
ローブの吸収波長帯の範囲に入るように設定したため
に、各プローブそのものを確実に加熱できるので、効率
良く着氷、着雪を防止できるものである。
(Effect of the Invention) As described above, according to the present invention, the wavelength of the far infrared rays emitted from each far infrared radiator is set to fall within the absorption wavelength band of the probe of each ultrasonic anemometer. Moreover, since each probe itself can be reliably heated, icing and snow accretion can be efficiently prevented.

また、遠赤外線は波長が長いために、空気中に浮遊する
氷雪や塵等によって反射吸収されないため、確実にプロ
ーブを加熱することができる。
Further, since the far infrared ray has a long wavelength, it is not reflected and absorbed by ice and snow or dust floating in the air, so that the probe can be reliably heated.

さらに、遠赤外線放射器は、超音波風向風速計に着脱自
在であり、装着に便利なものである。
Further, the far-infrared radiator is detachable from the ultrasonic anemometer, which is convenient for mounting.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案の実施例を示す超音波風向風速計に防
氷雪装置を装着した状態の正面図、第2図は同上の平面
図、第3図は遠赤外線放射器の断面図である。 1…超音波風向風速計、3…胴部、5a〜5d…プロー
ブ、11a〜11d…遠赤外線放射器。
FIG. 1 is a front view of an ultrasonic wind anemometer showing an embodiment of the present invention with an anti-icing snow device attached, FIG. 2 is a plan view of the same as above, and FIG. 3 is a sectional view of a far infrared radiator. . DESCRIPTION OF SYMBOLS 1 ... Ultrasonic anemometer, 3 ... Trunk, 5a-5d ... Probe, 11a-11d ... Far-infrared radiator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】超音波を発信又は受信するプローブを有
し、超音波の空気中の伝播速度を利用して風向風速を測
定する超音波風向風速計において、 遠赤外線を放射する遠赤外線放射器を前記プローブの数
と同数設けると共に、該遠赤外線放射器が、前記プロー
ブの吸収波長帯域内の波長を有する遠赤外線を放射する
ことを特徴とする超音波風向風速計の防氷雪装置。
1. An ultrasonic anemometer that has a probe for transmitting or receiving ultrasonic waves, and measures the wind speed using the propagation velocity of the ultrasonic waves in the air. A far infrared radiator that emits far infrared rays. The same number as the number of the probes is provided, and the far-infrared radiator radiates far-infrared rays having a wavelength within the absorption wavelength band of the probe.
JP1988093592U 1988-07-15 1988-07-15 Anti-ic snow equipment for ultrasonic wind anemometer Expired - Lifetime JPH065633Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988093592U JPH065633Y2 (en) 1988-07-15 1988-07-15 Anti-ic snow equipment for ultrasonic wind anemometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988093592U JPH065633Y2 (en) 1988-07-15 1988-07-15 Anti-ic snow equipment for ultrasonic wind anemometer

Publications (2)

Publication Number Publication Date
JPH0216061U JPH0216061U (en) 1990-02-01
JPH065633Y2 true JPH065633Y2 (en) 1994-02-09

Family

ID=31318056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988093592U Expired - Lifetime JPH065633Y2 (en) 1988-07-15 1988-07-15 Anti-ic snow equipment for ultrasonic wind anemometer

Country Status (1)

Country Link
JP (1) JPH065633Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180471U (en) * 1982-05-28 1983-12-02 海上電機株式会社 Ultrasonic anemometer that prevents snow from accreting

Also Published As

Publication number Publication date
JPH0216061U (en) 1990-02-01

Similar Documents

Publication Publication Date Title
US4237366A (en) Heated automobile mirror
US5010350A (en) Anti-icing and de-icing system for reflector-type microwave antennas
US4109481A (en) Frost detector
NL8002908A (en) CONTROL SYSTEM FOR CONTROLLING TEMPERATURE IN A DEPARTURE.
JP2002540418A (en) Infrared thermometer with heatable probe head and protective cover
JP7077882B2 (en) Distance measuring device
WO2020009063A1 (en) Distance measuring device
JPH065633Y2 (en) Anti-ic snow equipment for ultrasonic wind anemometer
JP7137194B2 (en) Heater system and heater system control method
JPH1056309A (en) On-vehicle radar device
Calawa et al. Medium wave infrared heater for high-speed fiber placement
JPH0635182Y2 (en) Anti-icing snow equipment for wind anemometer
JPH10206521A (en) Distance-measuring device
JP3586174B2 (en) Snow melting sign
JP3917577B2 (en) Ice melting device and refrigeration warehouse
JP2001230062A (en) Induction heating cooking device
JP2978716B2 (en) Far infrared heater
JP3067692B2 (en) Road reflector
WO2019185925A1 (en) A system for initiating a de-icing or a de-fogging formed on a substrate material
JP2002352283A (en) Control panel and heating device for control panel
JP3296676B2 (en) Electric hot plate
JPH11108755A (en) Raindrop detecting device
JP2001288723A (en) Defogging apparatus
JPS5828937Y2 (en) Anti-fog device for back mirrors for vehicles
US20220113382A1 (en) Ranging apparatus