JPH0655945A - Bearing structure for differential device - Google Patents

Bearing structure for differential device

Info

Publication number
JPH0655945A
JPH0655945A JP4229203A JP22920392A JPH0655945A JP H0655945 A JPH0655945 A JP H0655945A JP 4229203 A JP4229203 A JP 4229203A JP 22920392 A JP22920392 A JP 22920392A JP H0655945 A JPH0655945 A JP H0655945A
Authority
JP
Japan
Prior art keywords
bearing
inner race
drive pinion
pinion shaft
differential device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4229203A
Other languages
Japanese (ja)
Inventor
Hiroaki Takeuchi
博明 武内
Hitoshi Azuma
均 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4229203A priority Critical patent/JPH0655945A/en
Publication of JPH0655945A publication Critical patent/JPH0655945A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2229/00Setting preload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/42Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon
    • F16H2048/423Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon characterised by bearing arrangement

Abstract

PURPOSE:To reconcile reduction of uneven abrasion of a bearing and facilitation of pre-load setting by reducing a press-in load of this inner race even if a fastening margin of the inner race of the bearing is set large to a drive pinion shaft. CONSTITUTION:In a bearing structure of a differential device constituted in such a way that a drive pinion shaft 12 is supported rotatably freely with a bearing 30 to a differential gear 10, and a pre-load is set when shaft force based on fastening of a nut to this drive pinion shaft 12 is made to act through an inner race 32 of the bearing 30, annular grooves 36 are formed on the inner peripheral surface of the inner race 32 in the bearing 30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両用駆動系の終減速
装置であるディファレンシャル装置の軸受構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing structure for a differential gear which is a final reduction gear for a drive train of a vehicle.

【0002】[0002]

【従来の技術】例えば実公平2−36735号公報に、
ディファレンシャル装置におけるドライブピニオンシャ
フトの軸受構造が開示されている。この公報で示されて
いるように、ドライブピニオンシャフトはディファレン
シャルキャリヤに対しフロント及びリヤの各ベアリング
(テーパードローラベアリング)で回転自在に支持され
ている。そしてこのディファレンシャル装置の組付け工
程においては、前記ドライブピニオンシャフトのフロン
ト端部に対するナットの締付けトルクに基づいて前記フ
ロントベアリングのインナレースに軸力を与え、これに
よって両ベアリングの予圧(プレロード)設定が行われ
る。
2. Description of the Related Art For example, in Japanese Utility Model Publication No. 2-36735,
A bearing structure for a drive pinion shaft in a differential device is disclosed. As shown in this publication, the drive pinion shaft is rotatably supported on the differential carrier by front and rear bearings (tapered roller bearings). Then, in the assembling process of this differential device, an axial force is applied to the inner race of the front bearing based on the tightening torque of the nut with respect to the front end of the drive pinion shaft, whereby preload (preload) setting of both bearings is performed. Done.

【0003】[0003]

【発明が解決しようとする課題】前記ベアリングのうち
特にフロントベアリングのインナレースは前記軸力を他
に伝える構造上、前記ドライブピニオンシャフトに対す
る締代を大きくできず、このベアリングのローラ及びレ
ース面に偏摩耗が生じやすい。この偏摩耗の原因はレー
ス面とローラとの間に生じる微小な滑りとされており、
これはインナレースの締代を大きくする(タイトにす
る)ことで抑制できることが判明した。しかしこの締代
を大きくすれば、ドライブピニオンシャフトに対するイ
ンナレースの圧入荷重も当然に増大して前記ナットの締
付け限界トルクを越えることとなり、前記予圧の設定が
できなくなる。したがってフロントベアリングの偏摩耗
を低減することと予圧を容易に設定できることとの両立
は困難とされていた。
Among the bearings, the inner race of the front bearing in particular cannot transmit a large amount of the axial force to the other, so that the tightening margin for the drive pinion shaft cannot be increased. Uneven wear is likely to occur. The cause of this uneven wear is said to be the minute slip that occurs between the race surface and the roller.
It was found that this can be suppressed by increasing the tightening margin of the inner race (making it tighter). However, if the tightening allowance is increased, the press-fitting load of the inner race on the drive pinion shaft naturally increases and exceeds the tightening limit torque of the nut, so that the preload cannot be set. Therefore, it has been considered difficult to reduce uneven wear of the front bearing and easily set the preload.

【0004】本発明の技術的課題は、ドライブピニオン
シャフトに対するベアリングのインナレースの締代を大
きく設定しても、このインナレースの圧入荷重は小さく
抑えてベアリングの偏摩耗の低減と予圧設定の容易化と
の両立を図ることである。
A technical problem of the present invention is that even if the tightening margin of the inner race of the bearing with respect to the drive pinion shaft is set to be large, the press-fit load of this inner race is kept small to reduce uneven wear of the bearing and to easily set the preload. It is to achieve compatibility with

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
に、本発明におけるディファレンシャル装置の軸受構造
は次のように構成されている。すなわちディファレンシ
ャルキャリヤに対してドライブピニオンシャフトがベア
リングにより回転自在に支持され、このドライブピニオ
ンシャフトに対するナットの締付けに基づく軸力を前記
ベアリングのインナレースを通じて作用させることによ
り予圧が設定されるディファレンシャル装置の軸受構造
において、前記ベアリングにおけるインナレースの内周
面に環状溝が形成されている。
In order to solve the above-mentioned problems, the bearing structure of the differential device according to the present invention is constructed as follows. That is, the drive pinion shaft is rotatably supported by the bearing with respect to the differential carrier, and the bearing of the differential device in which the preload is set by applying an axial force based on the tightening of the nut to the drive pinion shaft through the inner race of the bearing. In the structure, an annular groove is formed on the inner peripheral surface of the inner race of the bearing.

【0006】[0006]

【作用】この構成によれば、前記ドライブピニオンシャ
フトと前記ベアリングのインナレースとの接触面積が、
このインナレースに形成された前記環状溝の分だけ小さ
くなる。このためディファレンシャル装置の組付けに際
してドライブピニオンシャフトに対するインナレースの
締代を大きく設定しても、その圧入荷重は小さく抑える
ことが可能となる。したがって前記ナットの締付けによ
る予圧の設定作業はこれまでどおり容易に行え、かつベ
アリングの偏摩耗が低減される。
According to this structure, the contact area between the drive pinion shaft and the inner race of the bearing is
It becomes smaller by the amount of the annular groove formed in the inner race. For this reason, even when the tightening margin of the inner race with respect to the drive pinion shaft is set to be large when the differential device is assembled, the press-fitting load can be suppressed to be small. Therefore, the setting work of the preload by tightening the nut can be easily performed as before, and the uneven wear of the bearing is reduced.

【0007】[0007]

【実施例】つぎに本発明の実施例を図面にしたがって説
明する。図2にディファレンシャル装置の軸受構造が断
面図で示されている。この図面で明らかなように、ディ
ファレンシャルキャリヤ10の内部に組込まれているド
ライブピニオンシャフト12は、テーパードローラベア
リングを用いたフロントベアリング30及びリヤベアリ
ング40によりキャリヤ10に対して回転自在に支持さ
れている。なおこのドライブピニオンシャフト12のリ
ヤ側端部には、図示されていないディファレンシャルケ
ースのリングギヤに噛合うドライブピニオン14が一体
に形成されているとともに、フロント側の端部にはスプ
ライン16とこれに続く雄ねじ18とが形成されてい
る。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 2 is a sectional view showing the bearing structure of the differential device. As is apparent from this drawing, the drive pinion shaft 12 incorporated in the differential carrier 10 is rotatably supported with respect to the carrier 10 by a front bearing 30 and a rear bearing 40 using tapered roller bearings. . A drive pinion 14 that meshes with a ring gear of a differential case (not shown) is integrally formed at the rear end of the drive pinion shaft 12, and a spline 16 and a spline 16 follow at the front end. The male screw 18 is formed.

【0008】前記ドライブピニオンシャフト12のスプ
ライン16には、コンパニオンフランジ20の筒部がト
ルク伝達可能に嵌合されている。またドライブピニオン
シャフト12の雄ねじ18にはナット22が締付けられ
ている。このナット22の締付けトルクに応じて前記コ
ンパニオンフランジ20に加わる軸力は、その筒部を通
じて前記フロントベアリング30のインナレース32に
作用する。一方、ナット22の締付けによってドライブ
ピニオンシャフト12に加わる前記と逆方向の軸力は、
ドライブピニオン14を通じて前記リヤベアリング40
のインナレース42に作用する。このように両ベアリン
グ30,40のそれぞれのインナレース32,42に作
用する互いに逆方向の軸力は、一方においてこれらのイ
ンナレース32,42の間に介在させたスペーサ24で
受けられ、他方においてそれぞれのローラ34,44及
びアウタレース33,43を通じてディファレンシャル
キャリヤ10で受けられる。この結果、両ベアリング3
0,40にはそれぞれ同じ大きさの予圧が付与される。
そしてこの予圧は前記ナット22の締付けトルクによっ
て調整される。
The cylindrical portion of the companion flange 20 is fitted to the spline 16 of the drive pinion shaft 12 so that torque can be transmitted. A nut 22 is fastened to the male screw 18 of the drive pinion shaft 12. The axial force applied to the companion flange 20 according to the tightening torque of the nut 22 acts on the inner race 32 of the front bearing 30 through the tubular portion thereof. On the other hand, the axial force in the opposite direction to the drive pinion shaft 12 applied by tightening the nut 22 is
The rear bearing 40 through the drive pinion 14
It acts on the inner race 42. In this way, axial forces in opposite directions acting on the inner races 32, 42 of the bearings 30, 40 are received by the spacer 24 interposed between the inner races 32, 42 on the one hand, and by the spacer 24 on the other hand. It is received by the differential carrier 10 through the respective rollers 34, 44 and the outer races 33, 43. As a result, both bearings 3
Preloads of the same magnitude are applied to 0 and 40, respectively.
This preload is adjusted by the tightening torque of the nut 22.

【0009】図1に前記フロントベアリング30の一部
が拡大断面図で示されている。この図面で明らかなよう
にフロントベアリング30における前記インナレース3
2の内周面には、軸方向の両端部と中央部とを避けた部
分において二本の環状溝36が形成されている。したが
ってインナレース32の内周面は、その両端部と中央部
とにおいてのみ前記ドライブピニオンシャフト12と接
触することとなる。さて一般にシャフトに対するベアリ
ングのインナレースの嵌合い応力σは次の数式1で求め
られ、その圧入荷重Pは数式2で求められる。
A part of the front bearing 30 is shown in an enlarged sectional view in FIG. As is apparent from this drawing, the inner race 3 in the front bearing 30 is
On the inner peripheral surface of 2, two annular grooves 36 are formed in a portion that avoids both axial end portions and the central portion. Therefore, the inner peripheral surface of the inner race 32 comes into contact with the drive pinion shaft 12 only at both end portions and the central portion. Generally, the fitting stress σ of the inner race of the bearing with respect to the shaft is obtained by the following mathematical formula 1, and the press-fitting load P is obtained by the mathematical formula 2.

【0010】[0010]

【数1】 数2 P=σ×πdB これらの数式においてEは縦弾性係数、Δde は嵌合い
部の有効締代、di はインナレースの平均内径、dはシ
ャフト径、Bは嵌合い部の長さである。前記の数式から
圧入荷重Pは締代Δde と比例関係にあることがわか
る。
[Equation 1] Mathematical Expression 2 P = σ × πdB In these expressions, E is the longitudinal elastic modulus, Δde is the effective interference of the fitting portion, di is the average inner diameter of the inner race, d is the shaft diameter, and B is the fitting portion length. . From the above formula, it can be seen that the press-fit load P is proportional to the tightening margin Δde.

【0011】一方、図3に前記フロントベアリング30
におけるインナレース32の締代とローラ34の摩耗面
積との関係が試験の測定データに基づいて示されてい
る。この図3からインナレース32の締代を大きくする
(タイトにする)ことで、ローラ34の摩耗面積は明ら
かに減少している。また図4に前記インナレース32の
締代が小の場合(図4のA参照)、中の場合(図4のB
参照)及び大の場合(図4のC参照)における前記ロー
ラ34の摩耗形状がそれぞれ示されている。この図面か
ら明らかなようにインナレース32の締代を大きくする
に連れてローラ34の偏摩耗が減少し、図4のCで示す
場合ではローラ34の偏摩耗がほとんど解消された。
On the other hand, FIG. 3 shows the front bearing 30.
The relationship between the tightening margin of the inner race 32 and the worn area of the roller 34 is shown based on the measurement data of the test. From FIG. 3, by increasing the tightening margin of the inner race 32 (making it tight), the wear area of the roller 34 is obviously reduced. Further, in FIG. 4, when the tightening margin of the inner race 32 is small (see A in FIG. 4) and in the middle (B in FIG. 4).
(See FIG. 4) and a large case (see FIG. 4C), the wear shape of the roller 34 is shown. As is clear from this drawing, the uneven wear of the roller 34 decreased as the tightening margin of the inner race 32 increased, and in the case shown in FIG. 4C, the uneven wear of the roller 34 was almost eliminated.

【0012】なお前記インナレース32の締代とその圧
入荷重とは、すでに説明したように比例関係にあるが、
本実施例ではインナレース32の前記環状溝36により
前記の数式2における嵌合い部の長さBが見掛け上小さ
くなる。つまりインナレース32の内周面と前記ドライ
ブピニオンシャフト12との接触面積が小さくなり、イ
ンナレース32の締代を例えば35μm 以上にしてもそ
の圧入荷重は従前のものと同程度に抑えることが可能と
なる。特にフロントベアリング30におけるインナレー
ス32の圧入荷重は、前述したナット22の締付けトル
クに基づく予圧設定可能な範囲内におさめる必要がある
が、本実施例ではそれが可能である。
The tightening margin of the inner race 32 and the press-fitting load thereof are in a proportional relationship as described above,
In the present embodiment, the annular groove 36 of the inner race 32 apparently reduces the length B of the fitting portion in the above mathematical expression 2. That is, the contact area between the inner peripheral surface of the inner race 32 and the drive pinion shaft 12 becomes small, and even if the tightening margin of the inner race 32 is, for example, 35 μm or more, the press-fitting load can be suppressed to the same level as the conventional one. Becomes Particularly, the press-fitting load of the inner race 32 on the front bearing 30 needs to be kept within a range in which the preload can be set based on the tightening torque of the nut 22, which is possible in the present embodiment.

【0013】[0013]

【発明の効果】このように本発明によれば、ドライブピ
ニオンシャフトに対するベアリングのインナレースの圧
入荷重はこれまでどおりの範囲に抑えたまま、その締代
を大きく設定することができ、ベアリングの偏摩耗を低
減できるとともに予圧の設定も容易に行える。
As described above, according to the present invention, the tightening margin of the bearing can be set large while the press-fitting load of the inner race of the bearing with respect to the drive pinion shaft is kept within the range as before, and the bearing deviation can be set. Wear can be reduced and preload can be easily set.

【図面の簡単な説明】[Brief description of drawings]

【図1】フロントベアリングの一部を表した拡大断面図
である。
FIG. 1 is an enlarged cross-sectional view showing a part of a front bearing.

【図2】ディファレンシャル装置の軸受構造を表した断
面図である。
FIG. 2 is a cross-sectional view showing a bearing structure of a differential device.

【図3】インナレースの締代とローラの摩耗面積との関
係を表した特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the tightening margin of the inner race and the wear area of the roller.

【図4】インナレースの締代別のローラの摩耗形状を表
した説明図である。
FIG. 4 is an explanatory view showing the wear shape of the roller for each tightening margin of the inner race.

【符号の説明】[Explanation of symbols]

10 ディファレンシャルキャリヤ 12 ドライブピニオンシャフト 22 ナット 30 ベアリング(フロントベアリング) 32 インナレース 36 環状溝 10 Differential Carrier 12 Drive Pinion Shaft 22 Nut 30 Bearing (Front Bearing) 32 Inner Race 36 Annular Groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ディファレンシャルキャリヤに対してド
ライブピニオンシャフトがベアリングにより回転自在に
支持され、このドライブピニオンシャフトに対するナッ
トの締付けに基づく軸力を前記ベアリングのインナレー
スを通じて作用させることにより予圧が設定されるディ
ファレンシャル装置の軸受構造において、 前記ベアリングにおけるインナレースの内周面に環状溝
が形成されていることを特徴とするディファレンシャル
装置の軸受構造。
1. A drive pinion shaft is rotatably supported by a bearing with respect to a differential carrier, and a preload is set by applying an axial force based on the tightening of a nut to the drive pinion shaft through an inner race of the bearing. A bearing structure for a differential device, wherein an annular groove is formed on an inner peripheral surface of an inner race of the bearing.
JP4229203A 1992-08-04 1992-08-04 Bearing structure for differential device Pending JPH0655945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4229203A JPH0655945A (en) 1992-08-04 1992-08-04 Bearing structure for differential device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4229203A JPH0655945A (en) 1992-08-04 1992-08-04 Bearing structure for differential device

Publications (1)

Publication Number Publication Date
JPH0655945A true JPH0655945A (en) 1994-03-01

Family

ID=16888440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4229203A Pending JPH0655945A (en) 1992-08-04 1992-08-04 Bearing structure for differential device

Country Status (1)

Country Link
JP (1) JPH0655945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180138522A (en) * 2017-06-21 2018-12-31 가부시끼가이샤 다쓰노 Charging Apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180138522A (en) * 2017-06-21 2018-12-31 가부시끼가이샤 다쓰노 Charging Apparatus

Similar Documents

Publication Publication Date Title
DE112008001445B4 (en) Wheel bearing device for a vehicle
US6908231B2 (en) Rolling bearing unit for a drive wheel and a wheel driving unit
JP2003097588A (en) Hub unit for automobile driving wheel
JP2001193745A (en) Axle bearing
US8186888B2 (en) Wheel bearing and a bearing apparatus for a wheel of vehicle of semi-floating type having the wheel bearing
JP3902415B2 (en) Drive wheel bearing device
JP5134356B2 (en) Wheel bearing device
JP5077909B2 (en) Wheel bearing device
JPH0655945A (en) Bearing structure for differential device
JP2003130062A (en) Hub unit bearing
JP2003118309A (en) Hub unit bearing for driving axle
US20050206223A1 (en) Connecting structure for wheel bearing and constant velocity joint
JP2003072308A (en) Bearing system for driving wheel and its manufacturing method
JP5116131B2 (en) Drive wheel bearing device
JP2002120506A (en) Bearing unit for driving wheel
JP4904980B2 (en) Axle bearing device
JP4436386B2 (en) Wheel bearing and wheel bearing device including the same
JP4807773B2 (en) Drive wheel bearing device
JP4715005B2 (en) Rolling bearing unit for drive wheels
JP2005319889A (en) Bearing device for driving wheel
JP2002106557A (en) Bearing unit for driving wheel
JP5166754B2 (en) Wheel bearing device
JP2005255165A (en) Driving wheel roller bearing unit and wheel driving unit manufacturing method
JPH0236735Y2 (en)
JP2009222085A (en) Double row angular bearing