JPH0655082U - Heat exchanger with bypass valve - Google Patents

Heat exchanger with bypass valve

Info

Publication number
JPH0655082U
JPH0655082U JP9405792U JP9405792U JPH0655082U JP H0655082 U JPH0655082 U JP H0655082U JP 9405792 U JP9405792 U JP 9405792U JP 9405792 U JP9405792 U JP 9405792U JP H0655082 U JPH0655082 U JP H0655082U
Authority
JP
Japan
Prior art keywords
oil
heat exchanger
pressure
hydraulic
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9405792U
Other languages
Japanese (ja)
Other versions
JP2583103Y2 (en
Inventor
宏二 笠原
Original Assignee
新潟コンバーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新潟コンバーター株式会社 filed Critical 新潟コンバーター株式会社
Priority to JP1992094057U priority Critical patent/JP2583103Y2/en
Publication of JPH0655082U publication Critical patent/JPH0655082U/en
Application granted granted Critical
Publication of JP2583103Y2 publication Critical patent/JP2583103Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

(57)【要約】 【目的】 熱交換器入口の油量や油温(または油の粘
度)が変化しても、熱交換器内の圧力損失を自動的に所
定値以下に保持することによって、冷却効率を高めた小
型の熱交換器を提供する。 【構成】 結合度を可変に調整可能な油圧クラッチ2
と、油圧クラッチ2の入力側部材より駆動される油圧ポ
ンプ13とを備え、油圧ポンプの吐出圧油を熱交換器2
5を介して潤滑油ライン26に供給する動力伝達装置に
おいて、熱交換器25と並列にバイパス油路20を設置
し、その油路の途中にバイパス弁17を設ける。このバ
イパス弁17は熱交換器25内の圧力損失が所定値を越
えると開口し、上流側から下流側へ圧油の一部をバイパ
スさせる機能を持つ。
(57) [Abstract] [Purpose] By automatically maintaining the pressure loss in the heat exchanger below a prescribed value even if the oil amount or oil temperature (or oil viscosity) at the heat exchanger inlet changes. Provide a small heat exchanger with improved cooling efficiency. [Structure] Hydraulic clutch 2 with variable degree of coupling
And a hydraulic pump 13 driven by an input side member of the hydraulic clutch 2, and the pressure oil discharged from the hydraulic pump is transferred to the heat exchanger 2
In the power transmission device that supplies oil to the lubricating oil line 26 via 5, the bypass oil passage 20 is installed in parallel with the heat exchanger 25, and the bypass valve 17 is provided in the middle of the oil passage. The bypass valve 17 opens when the pressure loss in the heat exchanger 25 exceeds a predetermined value, and has a function of bypassing a part of the pressure oil from the upstream side to the downstream side.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は動力伝達装置に用いる熱交換器の小型化に関し、特に熱交換器のバ イパス油路にバイパス弁を設置したものに関する。 The present invention relates to miniaturization of a heat exchanger used in a power transmission device, and more particularly to a heat exchanger having a bypass valve installed in a bypass oil passage.

【0002】[0002]

【従来の技術】[Prior art]

主機関の出力を油圧クラッチを介してプロペラに伝達する船舶の動力伝達装置 において、微速航行する際に機関をアイドル回転速度に固定した状態で、油圧ク ラッチをスリップ制御することにより必要とする船速を得ることが従来より行わ れている。図4は従来より実施されている、油圧クラッチを直結ないしはスリッ プ制御する舶用推進装置の必要潤滑油量と、主機関より駆動される油圧ポンプ吐 出量を示したものである。 A power transmission device for a ship that transmits the output of the main engine to a propeller through a hydraulic clutch, which is required by slip-controlling the hydraulic clutch while the engine is fixed at an idle speed when traveling at a very low speed. Gaining speed has been a traditional practice. FIG. 4 shows the amount of lubricating oil required for a marine propulsion device that has been conventionally implemented and directly controls or slip-controls a hydraulic clutch, and the hydraulic pump discharge amount driven by a main engine.

【0003】 前記微速航行時のスリップ運転に伴う油圧クラッチの発熱量は、直結運転時に 比較して大幅に大となることから図4の線分Aに示される如く、発熱を除去する ために必要潤滑油量は直結運転域にくらべ多量となる。Since the calorific value of the hydraulic clutch associated with the slip operation during the slow speed navigation is significantly larger than that during the direct drive operation, it is necessary to remove the heat generation as shown by the line segment A in FIG. The amount of lubricating oil is larger than that in the direct operation range.

【0004】 また、上記潤滑油を供給する油圧ポンプは、省スペース、省エネルギーの観点 から機関に連結される油圧クラッチの入力部材から歯車を介して駆動されること が広く行われており、その吐出量は機関アイドル回転速度において、スリップ運 転時に要求される最大潤滑油量が得られるよう設定されるので、図4の線分Bに 示される通り、直結運転域においては機関の回転速度に比例した量の圧油が供給 される。Further, from the viewpoint of space saving and energy saving, it is widely known that the hydraulic pump for supplying the lubricating oil is driven from an input member of a hydraulic clutch connected to the engine through a gear, and the discharge thereof. The amount is set so that the maximum amount of lubricating oil required at the time of slip operation can be obtained at the engine idle speed, so as shown by line B in Fig. 4, it is proportional to the engine speed in the direct drive range. A certain amount of pressure oil is supplied.

【0005】 一方、直結運転域では油圧クラッチのスリップ発熱がないため、油圧回路を循 環する油はスリップ運転時に比較して低温で粘度も高い。従って、上記のように 運転条件により油量や油温が変動する動力伝達装置の熱交換器の選定にあたって は、油圧ポンプの吐出量が最大となり、しかも比較的低油温の高粘度油が流通す る機関定格回転時においても、熱交換器内の油流抵抗値が許容限界を越えないよ う配慮して大型の熱交換器を装備する必要があった。On the other hand, since there is no slip heat generation in the hydraulic clutch in the direct connection operation range, the oil circulating in the hydraulic circuit has a low temperature and a high viscosity as compared with during the slip operation. Therefore, when selecting a heat exchanger for a power transmission device in which the oil amount and oil temperature fluctuate depending on operating conditions as described above, the discharge amount of the hydraulic pump is maximized, and high viscosity oil with a relatively low oil temperature is distributed. It was necessary to equip a large heat exchanger so that the oil flow resistance value in the heat exchanger would not exceed the allowable limit even at the engine rated speed.

【0006】[0006]

【考案が解決しようとする課題】[Problems to be solved by the device]

上記のように、熱交換器が大型化することは高価になると共に、熱交換器の据 付スペースはもとより、メンテナンスのための分解スペースも広く取る必要が生 じ、特に船舶の機関室のように限られた空間では他の機器の据付にも悪影響を及 ぼすという問題点があった。 As described above, increasing the size of the heat exchanger is expensive, and not only the installation space for the heat exchanger but also the disassembly space for maintenance needs to be wide, especially in the engine room of a ship. There was a problem that the installation of other equipment would be adversely affected in the limited space.

【0007】 本考案は、このような問題点を解決するためになされたもので、被動機の運転 条件によって熱交換器の入口油量や油温(または粘度)が変化しても、熱交換器 内の圧力損失を自動的に所定値以下に保持することによって、冷却効率を高めた 小型の熱交換器を提供することを目的としている。The present invention has been made to solve such a problem, and even if the inlet oil amount or oil temperature (or viscosity) of the heat exchanger changes depending on the operating conditions of the driven machine, the heat exchange is performed. It is an object of the present invention to provide a compact heat exchanger with improved cooling efficiency by automatically maintaining the pressure loss inside the unit below a predetermined value.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

上記課題を解決するために、この考案は、結合度を可変に調整可能な油圧クラ ッチと、前記油圧クラッチの入力側部材に歯車を介して連結される油圧ポンプと を備え、油圧ポンプからの圧油を油圧調整弁で所定の圧力に調整して油圧クラッ チに供給すると共に、前記油圧調整弁の排出油を熱交換器を介して潤滑油ライン に供給する動力伝達装置において、熱交換器と並列に、熱交換器の油入口と油出 口とを直接連通するバイパス油路を設け、前記バイパス油路中に熱交換器内の圧 力損失が所定の値を越えた場合のみ上流側から下流側へ圧油の流通を許容するバ イパス弁を設置したことによって達成するものである。 In order to solve the above-mentioned problems, the present invention comprises a hydraulic clutch whose coupling degree is variably adjustable, and a hydraulic pump which is connected to an input side member of the hydraulic clutch via a gear. In the power transmission device that adjusts the pressure oil of the above to a predetermined pressure by the hydraulic pressure adjusting valve and supplies it to the hydraulic clutch, and also supplies the oil discharged from the hydraulic pressure adjusting valve to the lubricating oil line via the heat exchanger, A bypass oil passage that directly connects the oil inlet and oil outlet of the heat exchanger is provided in parallel with the heat exchanger, and only if the pressure loss in the heat exchanger exceeds a specified value in the bypass oil passage, the upstream This is achieved by installing a bypass valve that allows the flow of pressure oil from the downstream side to the downstream side.

【0009】[0009]

【作用】[Action]

熱交換器と並列にバイパス油路を設け、その途中にバイパス弁を設置したので 、油圧ポンプ吐出量の増加、油温低下による粘度上昇等により熱交換器内の圧力 損失がバイパス弁の設定圧力以上になると、バイパス弁が開口して一部の圧油が 熱交換器内を通過せず直接潤滑油ラインに流れ、熱交換器内の圧力損失が自動的 に所定の値以下に保持される。 A bypass oil passage was installed in parallel with the heat exchanger, and a bypass valve was installed in the middle of the heat exchanger.Therefore, pressure loss in the heat exchanger due to increase in hydraulic pump discharge, viscosity increase due to oil temperature decrease, etc. When the above is reached, the bypass valve opens and part of the pressure oil does not pass through the heat exchanger but flows directly into the lubricating oil line, and the pressure loss inside the heat exchanger is automatically maintained below the specified value. .

【0010】 これにより、従来技術の場合に比べて圧力損失が小さくなり、その分、熱交換 器内のバッフルプレートの枚数を増し、油流抵抗が増加しても結果として従来技 術における圧力損失内にとどまり、バッフルプレートを増加した分、冷却効率が 上昇する。従って、交換熱量と熱交換器出口の最高設定油温が従来と同一であれ ば冷却効率が上昇した分だけ熱交換器の冷却面積を小さくすることが可能になり 、小型化することができる。As a result, the pressure loss becomes smaller than in the case of the conventional technique, and the number of baffle plates in the heat exchanger is increased accordingly, and even if the oil flow resistance increases, the pressure loss in the conventional technique is consequently increased. The cooling efficiency increases as much as the number of baffle plates stays inside. Therefore, if the amount of heat exchanged and the maximum oil temperature at the outlet of the heat exchanger are the same as in the conventional case, the cooling area of the heat exchanger can be reduced as much as the cooling efficiency is increased, and the size can be reduced.

【0011】[0011]

【実施例】【Example】

以下、この考案の一実施例として、舶用推進装置に用いたバイパス弁付き熱交 換器について説明する。図1はその系統図、図2は図1のバイパス弁の具体構造 の一例を示す差圧弁の断面図である。 Hereinafter, a heat exchanger with a bypass valve used in a marine propulsion device will be described as an embodiment of the present invention. 1 is a system diagram thereof, and FIG. 2 is a sectional view of a differential pressure valve showing an example of a specific structure of the bypass valve of FIG.

【0012】 図1において、主機関1に接続された動力伝達装置の入力軸3にはスリッピン グクラッチとしても作用する油圧クラッチ2が設けてあり、この油圧クラッチ2 自体は公知のように、入力軸3と一体のクラッチキャリア7にスプラインかん合 された多数の入力側クラッチ板4と、クラッチ出力側のピニオン29と一体のク ラッチハブ33のスプライン6にかん合されると共に、入力側クラッチ板4と交 互に配列された多数の出力側クラッチ板5とから成り立っている。In FIG. 1, an input shaft 3 of a power transmission device connected to a main engine 1 is provided with a hydraulic clutch 2 that also functions as a slipping clutch. This hydraulic clutch 2 itself is, as is well known, an input shaft. 3 and a plurality of input side clutch plates 4 spline-engaged with a clutch carrier 7 and a spline 6 of a clutch hub 33 integrated with a clutch output side pinion 29 and an input-side clutch plate 4. It is composed of a large number of output side clutch plates 5 arranged alternately.

【0013】 これらの入出力側クラッチ板4、5は、入力軸3より歯車14、15を介して 駆動される油圧ポンプ13により、クラッチ切換弁19および油圧制御弁21を 経て圧油を環状のピストン室9に供給し、クラッチピストン8を押圧することに より結合される。この場合、油圧制御弁21で油圧を任意に変えることにより油 圧クラッチ2の結合度、即ち、入出力側クラッチ板4、5の間における滑りが制 御される。また、油圧制御弁21の制御圧が設定値を越えると、油圧クラッチ2 はスリップ運転から直結運転に切り換わる。These input / output side clutch plates 4 and 5 are annularly pumped with pressure oil via a clutch switching valve 19 and a hydraulic control valve 21 by a hydraulic pump 13 driven by an input shaft 3 via gears 14 and 15. It is connected by supplying it to the piston chamber 9 and pressing the clutch piston 8. In this case, the degree of engagement of the hydraulic clutch 2, that is, the slip between the input and output side clutch plates 4 and 5 is controlled by arbitrarily changing the hydraulic pressure with the hydraulic control valve 21. When the control pressure of the hydraulic control valve 21 exceeds the set value, the hydraulic clutch 2 switches from slip operation to direct connection operation.

【0014】 油圧クラッチ2の出力側に配置されたピニオン29は、入力軸3に回転自在に 軸支され、出力軸30と一体の大歯車34にかみ合っていて、油圧クラッチ2が 結合されることにより機関1の出力は推進軸31を経てプロペラ32に伝達され る。The pinion 29 arranged on the output side of the hydraulic clutch 2 is rotatably supported by the input shaft 3 and meshes with a large gear 34 integrated with the output shaft 30 so that the hydraulic clutch 2 can be connected. Thus, the output of the engine 1 is transmitted to the propeller 32 via the propulsion shaft 31.

【0015】 一方、油圧ポンプ13からの圧油は、クラッチ切換弁19の入口ライン16よ り分岐され、クラッチ油圧調整弁18によりクラッチ作動油圧に調整されると共 に、前記油圧調整弁18の排出油は、熱交換器25を通過して冷却された後、潤 滑油圧調整弁24で所定の潤滑油圧に調圧され、潤滑油ライン26を経由して油 圧クラッチ2、歯車29、34等へ供給される。On the other hand, the pressure oil from the hydraulic pump 13 is branched from the inlet line 16 of the clutch switching valve 19 and adjusted to the clutch operating oil pressure by the clutch oil pressure adjusting valve 18, and at the same time, the oil pressure of the oil pressure adjusting valve 18 is changed. The discharged oil is cooled by passing through the heat exchanger 25, adjusted to a predetermined lubricating oil pressure by the lubricating oil pressure adjusting valve 24, and passed through the lubricating oil line 26 to the hydraulic clutch 2, the gears 29, 34. Etc.

【0016】 さて、本考案においては、前記熱交換器25の油入口22と油出口23とを直 接連通するバイパス油路20を熱交換器25と並列に配置し、バイパス油路の途 中に、熱交換器内の油流抵抗により生ずる油入口22と油出口23の圧力差が所 定の値(例えば0.5ないし1.0kg/cm)を越えた場合のみ上流側から 下流側へ、圧油の流通を許容するバイパス弁17を設けたものである。Now, in the present invention, the bypass oil passage 20 that directly connects the oil inlet 22 and the oil outlet 23 of the heat exchanger 25 is arranged in parallel with the heat exchanger 25, and the bypass oil passage is in the middle. In addition, only when the pressure difference between the oil inlet 22 and the oil outlet 23 caused by the oil flow resistance in the heat exchanger exceeds a predetermined value (for example, 0.5 to 1.0 kg / cm 2 ) from the upstream side to the downstream side. The bypass valve 17 that allows the flow of pressure oil is provided.

【0017】 このバイパス弁17の具体構造の一例としては、2図のような差圧弁46が用 いられる。差圧弁46は、ケーシング43の中央に入口ポート40が孔明けされ ると共に、入口ポート40と直角方向に出口ポート44が孔明けされている。入 口ポート40と出口ポート44はピストン42で仕切られており、ピストン42 はコイルバネ45によって入口ポートの段差41に押し付けられている。また、 バネ室48と出口ポート44とは油路47で連通している。As an example of a specific structure of the bypass valve 17, a differential pressure valve 46 as shown in FIG. 2 is used. In the differential pressure valve 46, an inlet port 40 is formed in the center of the casing 43, and an outlet port 44 is formed in the direction perpendicular to the inlet port 40. The inlet port 40 and the outlet port 44 are partitioned by a piston 42, and the piston 42 is pressed against the step 41 of the inlet port by a coil spring 45. Further, the spring chamber 48 and the outlet port 44 communicate with each other through an oil passage 47.

【0018】 前記差圧弁46をバイパス弁17としてバイパス油路20に設置した状態で、 熱交換器25内の油流抵抗が増大し、油入口22と油出口23との圧力差が差圧 弁46のコイルバネ45により設定された値以上に上昇すると、ピストン42が 図の左方に押されて入口ポート40と出口ポート44が連通し、熱交換器入口の 圧油の一部はバイパス油路20を通過して直接潤滑油ライン26へ流れる。逆に 、圧力差が設定値以下に低下すると、差圧弁46のピストン42は完全に閉じて 全量が熱交換器25内を通過する。このように、バイパス弁17を設置すること により熱交換器25内の圧力損失が自動的に所定の値以下に保持される。With the differential pressure valve 46 installed in the bypass oil passage 20 as the bypass valve 17, the oil flow resistance in the heat exchanger 25 increases, and the pressure difference between the oil inlet 22 and the oil outlet 23 increases. When it rises above the value set by the coil spring 45 of 46, the piston 42 is pushed to the left in the figure, the inlet port 40 and the outlet port 44 communicate, and part of the pressure oil at the heat exchanger inlet bypass oil passage. It passes through 20 and flows directly to the lubricating oil line 26. On the contrary, when the pressure difference falls below the set value, the piston 42 of the differential pressure valve 46 is completely closed and the entire amount passes through the heat exchanger 25. As described above, by installing the bypass valve 17, the pressure loss in the heat exchanger 25 is automatically maintained at a predetermined value or less.

【0019】 上記実施例では、バイパス弁の具体構造として図2に示す差圧弁46を用いて いるが、バイパス弁はこれに限らず図3に示すような市販の逆止弁56を用いて も同様の作用、効果が得られるものである。In the above embodiment, the differential pressure valve 46 shown in FIG. 2 is used as the specific structure of the bypass valve, but the bypass valve is not limited to this, and a commercially available check valve 56 shown in FIG. 3 may be used. The same action and effect can be obtained.

【0020】 即ち、図3の逆止弁56は、ケーシング53に孔明けされた入口ポート51の 圧力が所定の値に達するとコイルバネ55の反力に抗してチェック弁54を押し 開き、入口ポート51の圧油がチェック弁54の孔57を通過して出口ポート5 2に連通すると共に、出口ポート52の圧力がチェック弁54の反力としても作 用するものである。That is, the check valve 56 of FIG. 3 pushes open the check valve 54 against the reaction force of the coil spring 55 when the pressure of the inlet port 51 bored in the casing 53 reaches a predetermined value, and opens the inlet. The pressure oil of the port 51 passes through the hole 57 of the check valve 54 and communicates with the outlet port 52, and the pressure of the outlet port 52 also acts as a reaction force of the check valve 54.

【0021】[0021]

【考案の考果】[Consideration of device]

この考案によれば、熱交換器内の油流抵抗が増大し設定値を越えると、バイパ ス弁が開口して熱交換器内の圧力損失が自動的に設定圧力以下に保持されるので 、バイパスさせない場合に比べ、熱交換器内のバッフルプレートの枚数を増加さ せて冷却効率を高めることが可能になり、熱交換器を小型にできるので機関室の ような狭いスペースを有効に活用できる。 According to this invention, when the oil flow resistance in the heat exchanger increases and exceeds the set value, the bypass valve opens and the pressure loss in the heat exchanger is automatically maintained below the set pressure. Compared to the case without bypassing, the number of baffle plates in the heat exchanger can be increased to improve cooling efficiency, and the heat exchanger can be downsized, so that a narrow space such as an engine room can be effectively used. .

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はこの考案の一実施例を示す、舶用推進装
置に用いたバイパス弁付き熱交換器の系統図である。
FIG. 1 is a system diagram of a heat exchanger with a bypass valve used in a marine propulsion device, showing an embodiment of the present invention.

【図2】図2は図1のバイパス弁の具体構造の一例を示
す、差圧弁の断面図である。
2 is a sectional view of a differential pressure valve showing an example of a specific structure of the bypass valve of FIG.

【図3】図3は図1のバイパス弁の他の具体構造を示
す、逆止弁の断面図である。
FIG. 3 is a cross-sectional view of a check valve showing another specific structure of the bypass valve of FIG.

【図4】図4は従来より実施されている、油圧クラッチ
を直結ないしはスリップ制御する舶用推進装置の必要潤
滑油量と、主機関より駆動される油圧ポンプ吐出量を示
したものである。
FIG. 4 is a diagram showing a necessary lubricating oil amount of a marine propulsion device which is conventionally implemented and directly controls or slips a hydraulic clutch, and a hydraulic pump discharge amount driven by a main engine.

【符号の説明】[Explanation of symbols]

1 主機関 2 油圧クラッチ 3 入力軸 4 入力側クラッチ板 5 出力側クラッチ板 6 スプライン 7 クラッチキャリア 8 クラッチピストン 9 ピストン室 13 油圧ポンプ 14,15 歯車 16 入口ライン 17 バイパス弁 18 クラッチ油圧調整弁 19 クラッチ切換弁 20 バイパス油路 21 油圧制御弁 22 油入口 23 油出口 24 潤滑油圧調整弁 25 熱交換器 26 潤滑油ライン 29 ピニオン 30 出力軸 31 推進軸 32 プロペラ 33 クラッチハブ 34 大歯車 40,51 入口ポート 41 段差 42 ピストン 43,53 ケーシング 44,52 出口ポート 45,55 コイルバネ 46 差圧弁 47 油路 48 バネ室 54 チェック弁 56 逆止弁 57 孔 1 Main Engine 2 Hydraulic Clutch 3 Input Shaft 4 Input Side Clutch Plate 5 Output Side Clutch Plate 6 Spline 7 Clutch Carrier 8 Clutch Piston 9 Piston Chamber 13 Hydraulic Pump 14, 15 Gear 16 Inlet Line 17 Bypass Valve 18 Clutch Hydraulic Pressure Regulator 19 Clutch Switching valve 20 Bypass oil passage 21 Hydraulic control valve 22 Oil inlet 23 Oil outlet 24 Lubricating oil pressure adjusting valve 25 Heat exchanger 26 Lubricating oil line 29 Pinion 30 Output shaft 31 Propulsion shaft 32 Propeller 33 Clutch hub 34 Large gear 40, 51 Inlet port 41 step 42 piston 43, 53 casing 44, 52 outlet port 45, 55 coil spring 46 differential pressure valve 47 oil passage 48 spring chamber 54 check valve 56 check valve 57 hole

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 結合度を可変に調整可能な油圧クラッチ
(2)と、前記油圧クラッチ(2)の入力側部材に歯車
(14,15)を介して連絡される油圧ポンプ(13)
とを備え、油圧ポンプからの圧油を油圧調整弁(18)
で所定の圧力に調整して油圧クラッチ(2)に供給する
と共に、前記油圧調整弁(18)の排出油を熱交換器
(25)を介して潤滑油ライン(26)に供給する動力
伝達装置において、熱交換器(25)と並列に熱交換器
(25)の油入口(22)と油出口(23)とを直接連
通するバイパス油路(20)を設け、前記バイパス油路
中に熱交換器(25)内の圧力損失が所定の値を越えた
場合のみ上流側から下流側へ圧油の流通を許容するバイ
パス弁(17)を設置したことを特徴とするバイパス弁
付き熱交換器。
1. A hydraulic clutch (2) capable of variably adjusting the degree of coupling, and a hydraulic pump (13) connected to an input side member of the hydraulic clutch (2) via gears (14, 15).
And a hydraulic pressure adjusting valve (18) for supplying pressure oil from the hydraulic pump.
A power transmission device that adjusts the pressure to a predetermined pressure with a hydraulic clutch (2) and supplies the oil discharged from the hydraulic pressure regulating valve (18) to a lubricating oil line (26) via a heat exchanger (25). In the above, a bypass oil passage (20) is provided in parallel with the heat exchanger (25) to directly communicate the oil inlet (22) and the oil outlet (23) of the heat exchanger (25), and heat is introduced into the bypass oil passage. A heat exchanger with a bypass valve, characterized in that a bypass valve (17) which allows the flow of pressure oil from the upstream side to the downstream side is installed only when the pressure loss in the exchanger (25) exceeds a predetermined value. .
【請求項2】 バイパス弁としての逆止弁を設けた請求
項1記載のバイパス弁付き熱交換器。
2. The heat exchanger with a bypass valve according to claim 1, wherein a check valve is provided as the bypass valve.
JP1992094057U 1992-12-16 1992-12-16 Heat exchanger with bypass valve Expired - Lifetime JP2583103Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992094057U JP2583103Y2 (en) 1992-12-16 1992-12-16 Heat exchanger with bypass valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992094057U JP2583103Y2 (en) 1992-12-16 1992-12-16 Heat exchanger with bypass valve

Publications (2)

Publication Number Publication Date
JPH0655082U true JPH0655082U (en) 1994-07-26
JP2583103Y2 JP2583103Y2 (en) 1998-10-15

Family

ID=14099920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992094057U Expired - Lifetime JP2583103Y2 (en) 1992-12-16 1992-12-16 Heat exchanger with bypass valve

Country Status (1)

Country Link
JP (1) JP2583103Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551920U (en) * 1978-06-20 1980-01-08
JPS59103032A (en) * 1982-12-06 1984-06-14 Yanmar Diesel Engine Co Ltd Pressure regulating device for hydraulic clutch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551920U (en) * 1978-06-20 1980-01-08
JPS59103032A (en) * 1982-12-06 1984-06-14 Yanmar Diesel Engine Co Ltd Pressure regulating device for hydraulic clutch

Also Published As

Publication number Publication date
JP2583103Y2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US4062329A (en) Fan drive system
US2370526A (en) Hydraulic torque transmission arrangement
CA1297382C (en) Control valve system for a continuously variable cone-sheaves transmission, particularly for motor vehicles
US10066741B2 (en) Transmission and hydraulic control system
US20050235637A1 (en) Hydraulic system and automatic gearbox
SE515747C2 (en) Hydraulic control system for a vehicle transmission
EP0099241A1 (en) Waste heat recovery system driven alternators and auxiliary drive systems therefor
US7341026B2 (en) Propulsion system and method for optimising power supply to the cooling system thereof
CN101925762A (en) Automatic transmission provided with hydraulically assisted clutch and method for operating the same
US4420114A (en) Liquid heating system
JP2000205301A (en) Oil feeder
CN109515164B (en) Hydraulic control device of hybrid vehicle
EP0122113B1 (en) Method and arrangement for operating a cooling plant
US10077834B2 (en) Hydraulic control system for a transmission
US11060604B2 (en) Lubrication system for power transmission unit
JPH0655082U (en) Heat exchanger with bypass valve
US20180087661A1 (en) Multi-pressure hydraulic control system for a step-gear automatic transmission
US4680931A (en) Constant speed control for positive displacement variable stroke hydraulic motor
CN110925400B (en) Mechanical automatic gearbox and automobile
JPS642988Y2 (en)
WO2022218230A1 (en) Vehicle, hydraulic system for powertrain of vehicle, and control method therefor
CN219198099U (en) Clutch hydraulic control system and vehicle
JPS61258930A (en) Fuel gas pressure-up controlling system
CN118030813A (en) Multi-pump alternative oil supply device of alternative firewood-fired device
US5673775A (en) Lock-up control device for lock-up type torque converter and multi-stage hydraulic pressure control device suitable for the lock-up control device