JPH0655029A - Compressed air dryer - Google Patents

Compressed air dryer

Info

Publication number
JPH0655029A
JPH0655029A JP4208765A JP20876592A JPH0655029A JP H0655029 A JPH0655029 A JP H0655029A JP 4208765 A JP4208765 A JP 4208765A JP 20876592 A JP20876592 A JP 20876592A JP H0655029 A JPH0655029 A JP H0655029A
Authority
JP
Japan
Prior art keywords
pressure
drying chamber
chamber
compressed air
outlet port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4208765A
Other languages
Japanese (ja)
Inventor
Kanehito Nakamura
兼仁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4208765A priority Critical patent/JPH0655029A/en
Publication of JPH0655029A publication Critical patent/JPH0655029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To keep the flow rate of air flowing in a pressure reducing restriction mechanism on drying agent regeneration almost constant irrespective of main pressure. CONSTITUTION:A communicating hole 52 is formed for making a drying chamber 11 and an outlet port 27 communicate with each other in an upper cover 11c of the drying chamber 11. A movable restriction member 53 is arranged above the communicating hole 52 and energized upwards by a spring 56. When a drying agent 21 is dried, an exhaust valve 92 is opened to release compressed air in the drying chamber 11 in the air, causing pressure in the drying chamber 11 to be lowered. Consequently, compressed air backflows into the drying chamber 11 through the communicating hole 52 from the outlet port 27 side by the difference in pressure between the outlet port 27 side and the drying chamber 11 side, and simultaneously, the movable restriction member 53 is moved downwards against the spring 56. At this time, the movable restriction member 53 is moved so that the passage resistance of air flowing through the communicating hole 52 may be made large with the increase in the pressure difference to keep the rate of air flowing into the drying chamber 11 almost constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水分を吸着した乾燥剤
を再生するときに、出口ポート側から乾燥室内に圧縮空
気を逆流させる減圧絞りを改良した圧縮空気乾燥装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compressed air drying apparatus having an improved decompression throttle for reversing compressed air from the outlet port side into the drying chamber when regenerating a desiccant having adsorbed water.

【0002】[0002]

【従来の技術】従来、例えば特開平3−30813号公
報に記載されている圧縮空気乾燥装置や、自動車用エア
サスペンションに使用されている圧縮空気乾燥装置は、
乾燥室内に導入した圧縮空気中の水分を吸着する乾燥剤
を内蔵し、この乾燥室内で乾燥した圧縮空気を出口ポー
トから所定の蓄圧タンク等に送るようになっている。こ
のものでは、水分を吸着した乾燥剤を再生するために、
出口ポートと乾燥室との間に減圧絞り(オリフィス)を
設け、乾燥運転終了後に排気弁を開放して乾燥室内の圧
縮空気を大気中に排出することにより、前記蓄圧タンク
内の乾燥圧縮空気を出口ポート側から前記減圧絞りを通
して減圧し、より乾燥した空気を乾燥室内に逆流させ
て、この乾燥空気により乾燥剤から水分を取り除いて大
気中に排出するようにしている。
2. Description of the Related Art Conventionally, for example, a compressed air drying device disclosed in Japanese Patent Laid-Open No. 3-30813 and a compressed air drying device used for an air suspension for an automobile are
A desiccant for adsorbing moisture in the compressed air introduced into the drying chamber is built in, and the compressed air dried in the drying chamber is sent from the outlet port to a predetermined accumulator tank or the like. In this product, in order to regenerate the desiccant that has absorbed water,
A decompression throttle (orifice) is provided between the outlet port and the drying chamber, and after the drying operation is completed, the exhaust valve is opened to discharge the compressed air in the drying chamber into the atmosphere, so that the dry compressed air in the accumulator tank is removed. The pressure is reduced from the outlet port side through the pressure reducing throttle, and the drier air is made to flow back into the drying chamber, and the dry air removes water from the desiccant and discharges it into the atmosphere.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来構成のものでは、減圧絞りは、開口面積が固定された
オリフィスであるため、出口ポートに連通する蓄圧タン
クの圧力(以下「元圧」という)が高いときには、減圧
絞りを流れる空気流量が多くなって乾燥室内の乾燥剤中
を通る空気流の流速が速くなり、反対に、元圧が低いと
きには、減圧絞りを流れる空気流量が少なくなって乾燥
剤中を通る空気流の流速が遅くなってしまう。このた
め、空気流の流速に依存する乾燥剤の再生効率が元圧の
高低によって変動してしまい、乾燥剤の再生が不十分に
なることがあると共に、乾燥剤の再生に必要な時間(再
生時間)も元圧の高低によって変動してしまい、特に、
元圧が低いときには、再生時間を長くしなければならな
いという欠点もある。かといって、再生時間を短くする
ために、減圧絞りの開口面積を大きくすれば、元圧が高
いときに、乾燥剤中を通る空気流の流速が速くなり過ぎ
て、その空気流により乾燥剤(シリカゲル等)が砕けて
しまうおそれがある。
However, in the above-mentioned conventional structure, the pressure reducing throttle is an orifice having a fixed opening area, and therefore the pressure of the accumulator tank communicating with the outlet port (hereinafter referred to as "source pressure"). Is high, the flow rate of the air flowing through the decompression throttle increases, and the flow rate of the air flow through the desiccant in the drying chamber is high. The flow velocity of the air flow through the agent becomes slow. For this reason, the regeneration efficiency of the desiccant, which depends on the flow velocity of the air flow, may fluctuate depending on the level of the source pressure, and the desiccant may not be sufficiently regenerated. (Time) also fluctuates depending on the level of the source pressure, especially
There is also a drawback that the regeneration time must be lengthened when the source pressure is low. However, if the opening area of the decompression throttle is increased in order to shorten the regeneration time, the flow velocity of the air flow passing through the desiccant becomes too fast when the original pressure is high, and the desiccant is caused by the air flow. (Silica gel etc.) may be broken.

【0004】本発明はこの様な事情を考慮してなされた
もので、その目的は、元圧の高低に拘らず、乾燥剤再生
時に減圧絞り機構を流れる空気流量をほぼ一定化でき
て、乾燥剤の粉砕を防止しつつ再生効率の向上及び再生
時間の短縮を図り得る圧縮空気乾燥装置を提供すること
にある。
The present invention has been made in consideration of such circumstances, and an object thereof is to dry the desiccant by making the flow rate of the air flowing through the depressurization squeezing mechanism almost constant, regardless of whether the original pressure is high or low. It is an object of the present invention to provide a compressed air drying device capable of improving the regeneration efficiency and shortening the regeneration time while preventing pulverization of the agent.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の圧縮空気乾燥装置は、乾燥すべき圧縮空気
を導入する入口ポートと、この入口ポートから導入した
圧縮空気中の水分を吸着する乾燥剤を内蔵した乾燥室
と、この乾燥室から乾燥圧縮空気を所定場所に送るため
の出口ポートと、前記乾燥室から前記出口ポートへの圧
縮空気の流れのみを許容するチェックバルブと、前記乾
燥室と前記出口ポートとの間に設けられた減圧絞り機構
と、前記乾燥室を大気に連通・遮断するための排気弁と
を備えたものにおいて、前記減圧絞り機構は、前記乾燥
室と前記出口ポートとを連通させる連通孔と、前記出口
ポートの圧力と前記乾燥室の圧力とを両側から受けてそ
の圧力差により移動して前記連通孔を通る空気流の流路
抵抗を変化させる可動絞り部材とから構成されている。
In order to achieve the above object, the compressed air drying apparatus of the present invention has an inlet port for introducing compressed air to be dried and a moisture content in the compressed air introduced from the inlet port. A drying chamber containing a desiccant to be adsorbed, an outlet port for sending dry compressed air from the drying chamber to a predetermined location, and a check valve that allows only the flow of compressed air from the drying chamber to the outlet port, A decompression throttle mechanism provided between the drying chamber and the outlet port, and an exhaust valve for communicating and shutting off the drying chamber with the atmosphere, wherein the decompression throttle mechanism is provided with the drying chamber. It is possible to change the flow path resistance of the air flow passing through the communicating hole by receiving the pressure of the outlet port and the pressure of the drying chamber from both sides and moving by the pressure difference between the communicating hole that communicates with the outlet port. It is composed of a diaphragm member.

【0006】[0006]

【作用】乾燥室内の乾燥剤を再生するときには、乾燥室
への圧縮空気の供給(乾燥運転)を終了した後、排気弁
を開放して乾燥室を大気に連通させ、乾燥室内の圧縮空
気を大気中に排出して、乾燥室の圧力を低下させる。こ
の乾燥室の圧力低下に伴って、出口ポート側の圧力(元
圧)が乾燥室の圧力よりも高くなり、その圧力差により
出口ポート側から圧縮空気が減圧絞り機構の連通孔を通
って乾燥室内へ逆流すると共に、出口ポート側と乾燥室
側との圧力差により減圧絞り機構の可動絞り部材が移動
する。この際、可動絞り部材は、上記圧力差が大きくな
るほど、連通孔を通る空気流の流路抵抗を大きくするよ
うに移動して、出口ポート側から乾燥室内への空気流量
をほぼ一定化する。
When the desiccant in the drying chamber is regenerated, after the supply of the compressed air to the drying chamber (drying operation) is finished, the exhaust valve is opened to communicate the drying chamber with the atmosphere, and the compressed air in the drying chamber is discharged. It is discharged into the atmosphere to reduce the pressure in the drying chamber. As the pressure in the drying chamber decreases, the pressure (source pressure) on the outlet port side becomes higher than the pressure in the drying chamber, and the pressure difference causes compressed air to dry from the outlet port side through the communication hole of the decompression throttle mechanism. While flowing back into the room, the movable throttle member of the decompression throttle mechanism moves due to the pressure difference between the outlet port side and the drying chamber side. At this time, the movable throttle member moves so as to increase the flow path resistance of the air flow passing through the communication hole as the pressure difference increases, thereby making the air flow rate from the outlet port side into the drying chamber substantially constant.

【0007】[0007]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。乾燥室11を構成する筒体12の下方に、空気
圧縮機(図示せず)から圧縮空気を導入する入口ポート
13が設けられている。この入口ポート13には、圧縮
空気の逆流を防止するために、スプリング14によって
付勢されたチェックバルブ15が設けられている。この
チェックバルブ15に連通して入口通路16が形成さ
れ、この入口通路16に連通して円筒形の水分離室17
が形成されている。この水分離室17と入口通路16と
の位置関係は、図4に示すように、入口通路16が円筒
形の水分離室17に対して偏心した位置に形成され、こ
の入口通路16から圧縮空気が水分離室17の内周面に
沿って吹き込まれるようになっている。これにより、圧
縮空気を水分離室17の内周面に沿って高速旋回させ
て、圧縮空気中の凝縮水をサイクロン効果(遠心分離作
用)により分離するようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. An inlet port 13 for introducing compressed air from an air compressor (not shown) is provided below the cylindrical body 12 forming the drying chamber 11. The inlet port 13 is provided with a check valve 15 biased by a spring 14 in order to prevent backflow of compressed air. An inlet passage 16 is formed in communication with the check valve 15, and a cylindrical water separation chamber 17 is formed in communication with the inlet passage 16.
Are formed. As shown in FIG. 4, the positional relationship between the water separation chamber 17 and the inlet passage 16 is such that the inlet passage 16 is formed at a position eccentric with respect to the cylindrical water separation chamber 17, and compressed air is supplied from the inlet passage 16 to the compressed air. Are blown along the inner peripheral surface of the water separation chamber 17. Thereby, the compressed air is swirled at high speed along the inner peripheral surface of the water separation chamber 17, and the condensed water in the compressed air is separated by the cyclone effect (centrifugal separation effect).

【0008】この水分離室17内には、図1に示すよう
に、凝縮水を分離した圧縮空気を乾燥室11内に導入す
る漏斗状の導入管18が設けられている。この導入管1
8はテーパ状拡開部18aを下向きにした状態で水分離
室17の上部隔壁に固定されている。この導入管18の
上方には、圧縮空気中の異物を除去するフィルタ19が
設けられ、このフィルタ19を通して通路20から乾燥
室11内の下部空間11bに圧縮空気が流れ込むように
なっている。
As shown in FIG. 1, in the water separation chamber 17, there is provided a funnel-shaped introduction pipe 18 for introducing compressed air from which condensed water has been separated into the drying chamber 11. This introduction pipe 1
Reference numeral 8 is fixed to the upper partition wall of the water separation chamber 17 in a state in which the tapered expansion portion 18a faces downward. A filter 19 for removing foreign matters in the compressed air is provided above the introduction pipe 18, and the compressed air flows from the passage 20 into the lower space 11b in the drying chamber 11 through the filter 19.

【0009】この乾燥室11内には、圧縮空気中の水分
を吸着するシリカゲル、活性アルミナ、ゼオライト等の
乾燥剤21が収容されている。この乾燥剤21は、上下
両側からフィルタ22,23と多孔板24,25とによ
り挟み付けられるように保持され、乾燥室11内の上部
と下部に空間11a,11bが確保されている。そし
て、上部空間11a内には、上側の多孔板24を下方に
付勢するスプリング26が収納されている。
In the drying chamber 11, a desiccant 21 such as silica gel, activated alumina or zeolite which adsorbs water in compressed air is stored. The desiccant 21 is held so as to be sandwiched between the filters 22 and 23 and the perforated plates 24 and 25 from the upper and lower sides, and spaces 11a and 11b are secured in the upper and lower portions of the drying chamber 11. A spring 26 that biases the upper porous plate 24 downward is housed in the upper space 11a.

【0010】また、乾燥室11の上部隔壁には、乾燥室
11内で乾燥された圧縮空気を例えばタイヤ(図示せ
ず)に送るための出口ポート27が形成されている。こ
の出口ポート27と乾燥室11の上部空間11aとは、
フィルタ28とゴム製のチェックバルブ29を介して連
通されている。このチェックバルブ29は、乾燥室11
の圧力により押し上げられて流出孔30を開放し、乾燥
室11の上部空間11aの圧縮空気を、フィルタ28→
流出孔30(チェックバルブ29)→出口ポート27の
経路で流出させる。
An outlet port 27 for sending compressed air dried in the drying chamber 11 to, for example, a tire (not shown) is formed in the upper partition wall of the drying chamber 11. The outlet port 27 and the upper space 11a of the drying chamber 11 are
The filter 28 communicates with a rubber check valve 29. This check valve 29 is used in the drying chamber 11
Is pushed up by the pressure to open the outflow hole 30, and the compressed air in the upper space 11a of the drying chamber 11 is filtered by the filter 28 →
Outflow hole 30 (check valve 29) → outlet port 27 is used to flow out.

【0011】一方、図2に示すように、水分離室17に
隣接して、底部に排水ポート32を有する弁室33が設
けられている。この弁室33と水分離室17とは排水通
路34により連通され、水分離室17内に溜った凝縮水
が排水通路34を通して弁室33内に流入するようにな
っている。この弁室33内には、ポペット型の排水弁3
5が上下動可能に収納され、この排水弁35により弁室
33が第1の圧力室36と第2の圧力室37とに仕切ら
れている。この場合、第1の圧力室36には、水分離室
17の圧力が排水通路34を通して作用し、第2の圧力
室37には、乾燥室11の圧力が排気絞り38とフィル
タ39を通して作用するように構成されている。
On the other hand, as shown in FIG. 2, a valve chamber 33 having a drain port 32 at the bottom is provided adjacent to the water separation chamber 17. The valve chamber 33 and the water separation chamber 17 are communicated with each other by a drainage passage 34, and the condensed water accumulated in the water separation chamber 17 flows into the valve chamber 33 through the drainage passage 34. In this valve chamber 33, the poppet type drain valve 3
5 is accommodated in a vertically movable manner, and the drain valve 35 divides the valve chamber 33 into a first pressure chamber 36 and a second pressure chamber 37. In this case, the pressure of the water separation chamber 17 acts on the first pressure chamber 36 through the drainage passage 34, and the pressure of the drying chamber 11 acts on the second pressure chamber 37 through the exhaust throttle 38 and the filter 39. Is configured.

【0012】更に、第2の圧力室37内には、排水弁3
5を下方に付勢するスプリング40が収納され、このス
プリング40の付勢力により排水弁35が排水ポート3
2を閉鎖した状態に保持されるようになっている。尚、
排水弁35の下部周縁には、シール部材41が固着さ
れ、このシール部材41と排水弁ポート32のシート部
が密着するようになっている。
Further, in the second pressure chamber 37, the drain valve 3
A spring 40 for urging the drainage valve 5 is housed, and the urging force of the spring 40 causes the drain valve 35 to move the drainage port 3
2 is kept closed. still,
A seal member 41 is fixedly attached to the lower peripheral edge of the drain valve 35 so that the seal member 41 and the seat portion of the drain valve port 32 come into close contact with each other.

【0013】また、図3に示すように、弁室33の側方
には、第2の圧力室37ひいては乾燥室11を大気に連
通・遮断するための排気弁42が設けられている。この
排気弁42には、通路43を通して第2の圧力室37に
連通する上流室44と、通路45を通して大気に連通す
る下流室46とが設けられている。この排気弁42は電
磁弁からなり、そのプランジャー47の先端には弁体4
8が設けられている。この場合、マグネットコイル49
に通電しない状態では、プランジャー47がスプリング
50により突出して弁体48が上流室44と下流室46
との間を遮断した状態に保持される。一方、マグネット
コイル49に通電すると、プランジャー47がスプリン
グ50に抗して吸引されて、弁体48が上流室44と下
流室46とを連通させた状態になる。
Further, as shown in FIG. 3, an exhaust valve 42 for connecting / disconnecting the second pressure chamber 37 and thus the drying chamber 11 to the atmosphere is provided on the side of the valve chamber 33. The exhaust valve 42 is provided with an upstream chamber 44 that communicates with the second pressure chamber 37 through the passage 43 and a downstream chamber 46 that communicates with the atmosphere through the passage 45. The exhaust valve 42 is an electromagnetic valve, and the plunger 47 has a valve body 4 at the tip thereof.
8 are provided. In this case, the magnet coil 49
In the state in which the valve 47 is not energized, the plunger 47 is projected by the spring 50 so that the valve body 48 moves the upstream chamber 44 and the downstream chamber 46.
It is maintained in a state in which the gap between and is cut off. On the other hand, when the magnet coil 49 is energized, the plunger 47 is attracted against the spring 50, and the valve body 48 brings the upstream chamber 44 and the downstream chamber 46 into communication with each other.

【0014】一方、図1に示すように、チェックバルブ
29の流出孔30と並列に減圧絞り機構51が設けら
れ、後述する乾燥剤21の再生時に、タイヤ側(元圧
側)の圧縮空気がこの減圧絞り機構51を通して徐々に
乾燥室11内に流れ込むようになっており、以下、この
減圧絞り機構51の構成を説明する。
On the other hand, as shown in FIG. 1, a decompression throttle mechanism 51 is provided in parallel with the outflow hole 30 of the check valve 29 so that the compressed air on the tire side (source pressure side) is generated when the desiccant 21 described later is regenerated. The pressure reducing diaphragm mechanism 51 gradually flows into the drying chamber 11. The configuration of the pressure reducing diaphragm mechanism 51 will be described below.

【0015】即ち、乾燥室11の上部カバー11cに
は、乾燥室11と出口ポート27とを連通させる断面円
形の連通孔52が形成され、この連通孔52の上部に形
成された径大孔54内には、可動絞り部材53が上下動
可能に収納されている。この可動絞り部材53には、上
下方向に貫通する空気通路55が形成され、更に、この
可動絞り部材53の下面中央に、連通孔52よりも小径
の円柱状の減圧弁頭部53aが下向きに形成され、この
減圧弁頭部53aが連通孔52内に出入りすることによ
り、連通孔52内に形成される円筒流路を通る空気流の
流路抵抗が変化するようになっている。この可動絞り部
材53は、径大孔54の下部に収納されたスプリング5
6により上方に付勢されており、このスプリング56の
付勢力と可動絞り部材53に作用する圧力差とが釣り合
う位置へ可動絞り部材53が移動するようになってい
る。この可動絞り部材53は、径大孔54の上部に装着
されたストップリング57により上方への抜止めがなさ
れている。
That is, the upper cover 11c of the drying chamber 11 is formed with a communication hole 52 having a circular cross section for communicating the drying chamber 11 and the outlet port 27, and a large diameter hole 54 formed in the upper part of the communication hole 52. The movable diaphragm member 53 is housed therein so as to be vertically movable. An air passage 55 penetrating in the vertical direction is formed in the movable throttle member 53, and further, in the center of the lower surface of the movable throttle member 53, a cylindrical pressure reducing valve head 53a having a diameter smaller than that of the communication hole 52 is directed downward. When the pressure reducing valve head 53a is formed and moves in and out of the communication hole 52, the flow resistance of the air flow passing through the cylindrical flow path formed in the communication hole 52 is changed. The movable diaphragm member 53 includes a spring 5 housed in a lower portion of the large diameter hole 54.
6, the movable diaphragm member 53 is moved to a position where the biasing force of the spring 56 and the pressure difference acting on the movable diaphragm member 53 are balanced. The movable diaphragm member 53 is prevented from pulling out upward by a stop ring 57 mounted on the upper portion of the large diameter hole 54.

【0016】次に、上記構成の作用について説明する。Next, the operation of the above configuration will be described.

【0017】(1)圧縮空気乾燥運転時の動作 この圧縮空気乾燥運転時には、排気弁42のマグネット
コイル49に通電せず、排気弁42を閉鎖した状態にす
る。この状態では、排気弁42内のスプリング50によ
り弁体48が閉鎖位置に保持されて、上流室44と下流
室46との間が遮断された状態となる。これにより、第
2の圧力室37が大気に対して遮断され、第2の圧力室
37には、乾燥室11の圧力が排気絞り38とフィルタ
39を通して作用することになる。
(1) Operation during compressed air drying operation During this compressed air drying operation, the magnet coil 49 of the exhaust valve 42 is not energized and the exhaust valve 42 is closed. In this state, the valve body 48 is held in the closed position by the spring 50 in the exhaust valve 42, and the upstream chamber 44 and the downstream chamber 46 are shut off from each other. As a result, the second pressure chamber 37 is shut off from the atmosphere, and the pressure of the drying chamber 11 acts on the second pressure chamber 37 through the exhaust throttle 38 and the filter 39.

【0018】一方、第1の圧力室36には、乾燥室11
の圧力とほぼ同じ水分離室17の圧力が排水通路34を
通して作用するので、第1の圧力室36の圧力と第2の
圧力室37の圧力とはほぼ同じになり、両者間に圧力差
はあまりない。この状態ではスプリング40の付勢力に
より排水弁35が排水ポート32を閉鎖した状態に維持
される。
On the other hand, in the first pressure chamber 36, the drying chamber 11
Since the pressure in the water separation chamber 17 that is substantially the same as the pressure in # 1 acts through the drainage passage 34, the pressure in the first pressure chamber 36 and the pressure in the second pressure chamber 37 are approximately the same, and there is no pressure difference between the two. rare. In this state, the drainage valve 35 is kept closed by the biasing force of the spring 40.

【0019】この圧縮空気乾燥運転時には、空気圧縮機
(図示せず)から入口ポート13に導入された圧縮空気
は、チェックバルブ15をスプリング14に抗して図1
の左方へ移動させて開放し、入口通路16を通って水分
離室17内に流入する。流入した圧縮空気は、水分離室
17の内周面に沿って高速旋回して、サイクロン効果
(遠心分離作用)により圧縮空気中の凝縮水が分離さ
れ、水分離室17の底部に溜る。この凝縮水は、排水通
路34を通って第1の圧力室36にも流れ込んで溜るこ
とになる。
During this compressed air drying operation, the compressed air introduced from the air compressor (not shown) into the inlet port 13 resists the check valve 15 against the spring 14 and is shown in FIG.
To the left to open and flow into the water separation chamber 17 through the inlet passage 16. The inflowing compressed air swirls at high speed along the inner peripheral surface of the water separation chamber 17, and the condensed water in the compressed air is separated by the cyclone effect (centrifugal separation action), and is collected at the bottom of the water separation chamber 17. The condensed water also flows into the first pressure chamber 36 through the drainage passage 34 and accumulates therein.

【0020】一方、水分離室17内で凝縮水が分離され
た圧縮空気は、導入管18からフィルタ19と通路20
を通って乾燥室11の下部空間11bに流入し、多孔板
25の孔とフィルタ23を通って乾燥剤21中を上方に
流れる。この過程で、圧縮空気中の水分が乾燥剤21で
吸着され、乾燥圧縮空気となってフィルタ22と多孔板
24の孔を通過し、乾燥室11の上部空間11aに達す
る。この乾燥圧縮空気は、フィルタ28を通って、流出
孔30からチェックバルブ29を押し上げて出口ポート
27に達し(これと並行して乾燥圧縮空気の一部は減圧
絞り機構51を通って出口ポート27に達し)、この出
口ポート27から所定のタイヤ(図示せず)へ流出す
る。
On the other hand, the compressed air from which the condensed water is separated in the water separation chamber 17 is introduced from the introduction pipe 18 to the filter 19 and the passage 20.
To flow into the lower space 11b of the drying chamber 11 and through the holes of the perforated plate 25 and the filter 23 to flow upward in the desiccant 21. In this process, the moisture in the compressed air is adsorbed by the desiccant 21, becomes dry compressed air, passes through the holes of the filter 22 and the perforated plate 24, and reaches the upper space 11a of the drying chamber 11. The dry compressed air passes through the filter 28, pushes up the check valve 29 from the outflow hole 30 and reaches the outlet port 27 (in parallel with this, a part of the dry compressed air passes through the pressure reducing throttle mechanism 51 and exit port 27. And reaches a predetermined tire (not shown) through the outlet port 27.

【0021】(2)排水時(圧縮空気乾燥運転終了時)
の動作 出口ポート27から乾燥圧縮空気が供給されるタイヤが
所定の圧力まで蓄圧されると、入口ポート13へ圧縮空
気を送る空気圧縮機が停止されて、乾燥運転が終了す
る。この後も、乾燥室11の圧力や水分離室17の圧力
はチェックバルブ15により高圧が維持される。従っ
て、第1の圧力室36の圧力と第2の圧力室37の圧力
はほぼ同じになり、両者間に圧力差はあまりない。
(2) During drainage (when the compressed air drying operation is completed)
Operation of When the tire to which the dry compressed air is supplied from the outlet port 27 is accumulated to a predetermined pressure, the air compressor that sends the compressed air to the inlet port 13 is stopped, and the drying operation is completed. Even after this, the pressure in the drying chamber 11 and the pressure in the water separation chamber 17 are kept high by the check valve 15. Therefore, the pressure in the first pressure chamber 36 and the pressure in the second pressure chamber 37 are almost the same, and there is not much pressure difference between the two.

【0022】この後、排水時には、排気弁42のマグネ
ットコイル49に通電して排気弁42を開放する。これ
により、排気弁42のプランジャー47がスプリング5
0に抗して吸引され、弁体48が開放位置に移動され
て、上流室44と下流室46とが連通した状態になる。
この結果、第2の圧力室37は、通路43→上流室44
→下流室46→通路45の経路で大気と連通して、第2
の圧力室37内の圧縮空気が大気中に流出し、第2の圧
力室37の圧力が瞬時に大気圧まで低下する。
Thereafter, when draining, the magnet coil 49 of the exhaust valve 42 is energized to open the exhaust valve 42. This causes the plunger 47 of the exhaust valve 42 to move to the spring 5
The valve body 48 is sucked against 0, moved to the open position, and the upstream chamber 44 and the downstream chamber 46 are in communication with each other.
As a result, the second pressure chamber 37 is changed from the passage 43 to the upstream chamber 44.
→ The downstream chamber 46 → The passage 45 communicates with the atmosphere,
The compressed air in the second pressure chamber 37 flows out into the atmosphere, and the pressure in the second pressure chamber 37 instantly drops to atmospheric pressure.

【0023】一方、第1の圧力室36の圧力が低下する
には、第1の圧力室36内の圧縮空気が、第1の圧力室
36→水分離室17→乾燥室11→排気絞り38→第2
の圧力室37→排気弁42→大気の経路で排出されなけ
ればならず、さらに乾燥室内の容積は比較的大きいた
め、排気弁42を開放しても、排気絞り38により第1
の圧力室36からの圧縮空気の排出が絞られて、第1の
圧力室36の圧力は直ぐには下がらず、暫く高圧状態に
保たれる。このため、排気弁42の開放後の暫くの間、
第1の圧力室36と第2の圧力室37との間に大きな圧
力差が生じ、この圧力差により排水弁35をスプリング
40に抗して上方へ移動させて排水ポート32を開放
し、この排水ポート32を第1の圧力室36と水分離室
17に連通させる。これにより、水分離室17や第1の
圧力室36に溜っている水を、排水ポート32から勢い
良く吹き出す圧縮空気の流れに乗せて速やかに排出す
る。
On the other hand, in order to reduce the pressure in the first pressure chamber 36, the compressed air in the first pressure chamber 36 is converted into the first pressure chamber 36 → the water separation chamber 17 → the drying chamber 11 → the exhaust throttle 38. → second
The pressure chamber 37 → the exhaust valve 42 → the exhaust air must be discharged through the path, and the volume of the drying chamber is relatively large.
The discharge of the compressed air from the pressure chamber 36 is throttled so that the pressure in the first pressure chamber 36 does not immediately drop but is maintained in a high pressure state for a while. Therefore, for a while after the exhaust valve 42 is opened,
A large pressure difference is generated between the first pressure chamber 36 and the second pressure chamber 37, and this pressure difference moves the drain valve 35 upward against the spring 40 to open the drain port 32. The drainage port 32 communicates with the first pressure chamber 36 and the water separation chamber 17. As a result, the water accumulated in the water separation chamber 17 and the first pressure chamber 36 is put on the flow of the compressed air which is blown out vigorously from the drain port 32 and is quickly discharged.

【0024】この排水に伴って、第1の圧力室36内の
圧縮空気も排水ポート32から排出されるので、第1の
圧力室36の圧力が急速に低下して第2の圧力室37の
圧力に近付いていき、やがて、スプリング40の付勢力
が第1の圧力室36と第2の圧力室37との圧力差に打
ち勝つようになる。この時点で、スプリング40の付勢
力により排水弁35が下方に移動して、排水ポート32
を閉鎖する。これにより、第1の圧力室36が大気に対
して遮断される。
With this drainage, the compressed air in the first pressure chamber 36 is also discharged from the drainage port 32, so that the pressure in the first pressure chamber 36 is rapidly reduced and the pressure in the second pressure chamber 37 is reduced. As the pressure approaches, the urging force of the spring 40 eventually overcomes the pressure difference between the first pressure chamber 36 and the second pressure chamber 37. At this point, the drain valve 35 is moved downward by the urging force of the spring 40, and the drain port 32
To close. As a result, the first pressure chamber 36 is shut off from the atmosphere.

【0025】排水終了後、排気弁42が再び閉鎖状態に
切換わり、第2の圧力室37が大気に対して遮断され
る。これにより、再び、圧縮空気の乾燥運転を開始でき
る状態に復帰する。
After the drainage is completed, the exhaust valve 42 is switched to the closed state again, and the second pressure chamber 37 is shut off from the atmosphere. As a result, the state where the drying operation of the compressed air can be started again is restored.

【0026】(3)乾燥剤21の再生時の動作 乾燥剤21を再生するときには、排水時と同じく、排気
弁42を開放する。これにより、第2の圧力室37が大
気と連通して、第2の圧力室37内の圧縮空気が大気中
に流出し、第2の圧力室37の圧力が瞬時に大気圧まで
低下する。このため、第1の圧力室36と第2の圧力室
37との間に大きな圧力差が生じ、この圧力差により排
水弁35をスプリング40に抗して上方へ移動させて排
水ポート32を開放する。これにより、乾燥室11内の
圧縮空気が、乾燥室11→水分離室17→第1の圧力室
36→排水ポート32→大気の経路で排出されると共
に、乾燥室11→排気絞り38→第2の圧力室37→排
気弁42→大気の経路でも排出され、乾燥室11の圧力
が急速に低下する。
(3) Operation when regenerating the desiccant 21 When regenerating the desiccant 21, the exhaust valve 42 is opened as in the case of drainage. As a result, the second pressure chamber 37 communicates with the atmosphere, the compressed air in the second pressure chamber 37 flows into the atmosphere, and the pressure of the second pressure chamber 37 instantly drops to atmospheric pressure. Therefore, a large pressure difference is generated between the first pressure chamber 36 and the second pressure chamber 37, and the pressure difference causes the drain valve 35 to move upward against the spring 40 to open the drain port 32. To do. As a result, the compressed air in the drying chamber 11 is discharged through the drying chamber 11 → the water separation chamber 17 → the first pressure chamber 36 → the drain port 32 → the air path, and at the same time, the drying chamber 11 → the exhaust throttle 38 → the The pressure in the drying chamber 11 is rapidly reduced by exhausting the gas from the second pressure chamber 37 to the exhaust valve 42 to the atmosphere.

【0027】この乾燥室11の圧力低下により、タイヤ
側(出口ポート27側)の圧力(元圧)が乾燥室11の
圧力よりも高くなり、その圧力差によりタイヤ側から少
流量の圧縮空気が後述するように減圧絞り機構51を通
って乾燥室11内に逆流するようになる。この圧縮空気
は、乾燥室11内が低圧であるため、減圧絞り機構51
で減圧されつつ体積が膨脹し、高圧状態のときよりも一
層低湿度の乾燥空気となって、乾燥剤21から吸着水分
を離脱させ、乾燥剤21を再生する。
Due to the pressure drop in the drying chamber 11, the pressure (source pressure) on the tire side (exit port 27 side) becomes higher than the pressure in the drying chamber 11, and a small flow rate of compressed air from the tire side due to the pressure difference. As will be described later, it flows back into the drying chamber 11 through the pressure reducing diaphragm mechanism 51. Since this compressed air has a low pressure in the drying chamber 11, the decompression throttle mechanism 51
The volume is expanded while being decompressed by, and the dry air having a humidity lower than that in the high pressure state is released to remove the adsorbed moisture from the desiccant 21 and regenerate the desiccant 21.

【0028】排気弁42の開放当初は、前述した通り、
乾燥室11内の圧縮空気は、乾燥室11→水分離室17
→第1の圧力室36→排水ポート32→大気の経路でも
排出されるが、この圧縮空気の排出により第1の圧力室
36の圧力が急速に低下し、やがて、スプリング40の
付勢力が第1の圧力室36と第2の圧力室37との圧力
差に打ち勝つようになるので、その時点で、排水弁35
が下方に移動して排水ポート32を閉鎖し、第1の圧力
室36を大気に対して遮断する。この後、乾燥剤21か
ら水分を奪った空気は、乾燥室11→排気絞り38→第
2の圧力室37→排気弁42→大気の経路で排出される
ことになる。
At the beginning of opening the exhaust valve 42, as described above,
The compressed air in the drying chamber 11 is the drying chamber 11 → the water separation chamber 17
→ The first pressure chamber 36 → the drain port 32 → is also discharged through the path of the atmosphere, but the pressure of the first pressure chamber 36 is rapidly reduced by the discharge of this compressed air, and eventually the urging force of the spring 40 becomes the first. Since the pressure difference between the first pressure chamber 36 and the second pressure chamber 37 is overcome, at that time, the drain valve 35
Moves downward to close the drain port 32 and shut off the first pressure chamber 36 from the atmosphere. After this, the air from which the desiccant 21 has deprived of water is discharged through the path of the drying chamber 11 → the exhaust throttle 38 → the second pressure chamber 37 → the exhaust valve 42 → the atmosphere.

【0029】この乾燥剤21の再生時には、減圧絞り機
構51の可動絞り部材53は、上方からタイヤ側(出口
ポート27側)の圧力(元圧)を受け、下方から連通孔
52を通して乾燥室11の圧力を減圧弁頭部53aに受
けることになる。前述したように、再生時は、乾燥室1
1の圧力が低下しているため、元圧が乾燥室11の圧力
よりも高くなり、両者の圧力差により、可動絞り部材5
3は下向きの力を受けて、スプリング56の付勢力に抗
して押し下げられる。これにより、可動絞り部材53
は、上記圧力差とスプリング56の付勢力とが釣り合う
位置まで移動してとどまることになる。
When the desiccant 21 is regenerated, the movable throttle member 53 of the decompression throttle mechanism 51 receives the pressure (source pressure) on the tire side (outlet port 27 side) from above and the drying chamber 11 from below through the communication hole 52. The pressure will be received by the pressure reducing valve head 53a. As mentioned above, the drying room 1
Since the pressure of No. 1 is lowered, the original pressure becomes higher than the pressure of the drying chamber 11, and the movable throttle member 5 is caused by the pressure difference between the two.
3 receives a downward force and is pushed down against the biasing force of the spring 56. Thereby, the movable diaphragm member 53
Moves to a position where the pressure difference and the urging force of the spring 56 are balanced and stays there.

【0030】再生中は、乾燥室11の圧力がほぼ一定で
あるため、元圧が高くなれば、可動絞り部材53に作用
する圧力差が大きくなって、可動絞り部材53の下方へ
の移動量は大きくなり、可動絞り部材53の減圧弁頭部
53aが連通孔52内に挿入されて円筒流路が形成さ
れ、この連通孔52内の円筒流路を通る空気流の流路断
面積が小さくなって、流路抵抗が大きくなる。反対に、
元圧が低下すれば、可動絞り部材53の下方への移動量
は少なくなり、連通孔52を通る空気流の流路断面積が
大きくなって、流路抵抗が小さくなる。これにより、元
圧の高低に応じて減圧絞り機構51の流路抵抗が自動的
に調整され、出口ポート27側から乾燥室11内への空
気流量が一定化される。
During the regeneration, the pressure in the drying chamber 11 is almost constant. Therefore, if the original pressure becomes higher, the pressure difference acting on the movable throttle member 53 becomes larger, and the moving amount of the movable throttle member 53 downward. Becomes large, the pressure reducing valve head 53a of the movable throttle member 53 is inserted into the communication hole 52 to form a cylindrical flow path, and the flow path cross-sectional area of the air flow passing through the cylindrical flow path in the communication hole 52 is small. Therefore, the flow path resistance increases. Conversely,
When the original pressure decreases, the amount of downward movement of the movable throttle member 53 decreases, the flow passage cross-sectional area of the air flow passing through the communication hole 52 increases, and the flow passage resistance decreases. As a result, the flow path resistance of the decompression throttle mechanism 51 is automatically adjusted according to the level of the original pressure, and the air flow rate from the outlet port 27 side into the drying chamber 11 is made constant.

【0031】ここで、可動絞り部材53の減圧弁頭部5
3aの外径をd、連通孔52の内径をD、可動絞り部材
53の移動量をx、元圧をP1 、乾燥室11の圧力をP
2 とすると、減圧絞り機構51を通過する空気流量Q
は、次の(1)式で表される関係がある。
Here, the pressure reducing valve head 5 of the movable throttle member 53.
The outer diameter of 3a is d, the inner diameter of the communication hole 52 is D, the moving amount of the movable diaphragm member 53 is x, the original pressure is P1, and the pressure of the drying chamber 11 is P.
2, the air flow rate Q passing through the decompression throttle mechanism 51
Have a relationship represented by the following expression (1).

【0032】[0032]

【数1】 [Equation 1]

【0033】上記(2)式から明らかなように、減圧絞
り機構51を通過する空気流量Qは減圧弁頭部53aの
外径dと連通孔52の内径Dによって決まり、元圧P1
が変化しても、空気流量Qは変化せず、一定になること
が分かる。
As is apparent from the equation (2), the air flow rate Q passing through the pressure reducing throttle mechanism 51 is determined by the outer diameter d of the pressure reducing valve head 53a and the inner diameter D of the communication hole 52, and the original pressure P1
It can be seen that the air flow rate Q does not change even when changes, and becomes constant.

【0034】以上説明した本実施例によれば、減圧絞り
機構51を、乾燥室11と出口ポート27とを連通させ
る連通孔52と、元圧と乾燥室11との圧力差により移
動する可動絞り部材53とから構成し、この可動絞り部
材53の移動により連通孔52を通る空気流の流路抵抗
を変化させるようにしたので、乾燥剤21の再生時に元
圧に応じて減圧絞り機構51の流路抵抗を自動的に調整
することができて、出口ポート27側から乾燥室11内
への空気流量を一定化することができる。これにより、
再生中の乾燥室11の空気流の流速を元圧の高低に拘ら
ず常に最適な流速に保つことができて、乾燥剤21の再
生効率を向上することができる。
According to the present embodiment described above, the pressure-reducing throttle mechanism 51 has a communication hole 52 for connecting the drying chamber 11 and the outlet port 27, and a movable throttle which moves by the pressure difference between the original pressure and the drying chamber 11. Since the movable diaphragm member 53 is configured to change the flow path resistance of the air flow passing through the communication hole 52 by the movement of the member 53, the decompression diaphragm mechanism 51 of the decompression diaphragm mechanism 51 is regenerated according to the original pressure when the desiccant 21 is regenerated. The flow path resistance can be automatically adjusted, and the air flow rate from the outlet port 27 side into the drying chamber 11 can be made constant. This allows
The flow velocity of the air flow in the drying chamber 11 during regeneration can be always kept at an optimum flow velocity regardless of the level of the original pressure, and the regeneration efficiency of the desiccant 21 can be improved.

【0035】しかも、元圧が低い場合でも、減圧絞り機
構51により乾燥室11内への空気流量が最適値に保た
れるので、乾燥剤21の再生に必要な時間(再生時間)
を従来よりも短縮できる。同様に、元圧が高い場合で
も、減圧絞り機構51により乾燥室11内への空気流量
が最適値に保たれるので、乾燥室11内の空気流の流速
が過大にならず、空気流による乾燥剤21の粉砕を防止
できる。
Moreover, even if the original pressure is low, the decompression throttle mechanism 51 keeps the air flow rate into the drying chamber 11 at an optimum value, so that the time required for regenerating the desiccant 21 (regeneration time).
Can be shortened compared to the conventional one. Similarly, even when the original pressure is high, the decompression throttle mechanism 51 keeps the air flow rate into the drying chamber 11 at an optimum value, so that the flow velocity of the air flow in the drying chamber 11 does not become excessive, and The desiccant 21 can be prevented from crushing.

【0036】尚、上記実施例の減圧絞り機構51は、圧
力差により可動絞り部材53の減圧弁頭部53aが連通
孔52内に挿入されて円筒流路が形成されるように構成
したが、本発明はこの構成に限定されず、例えば、可動
絞り部材の減圧弁頭部をテーパ状に形成して、このテー
パ状の減圧弁頭部と連通孔52とによりオリフィスを構
成し、圧力差によりこのオリフィスの流路断面積を変化
させるようにしても良い。この場合、元圧が変化したと
きに、空気流量が多少変化するが、従来の固定減圧絞り
と比較すれば、空気流量の変化は僅かであり、前記実施
例とほぼ同じ効果を期待できる。
The decompression throttle mechanism 51 of the above embodiment is constructed such that the pressure reducing valve head 53a of the movable throttle member 53 is inserted into the communication hole 52 due to the pressure difference to form a cylindrical flow path. The present invention is not limited to this configuration. For example, the pressure reducing valve head portion of the movable throttle member is formed in a tapered shape, and the tapered pressure reducing valve head portion and the communication hole 52 form an orifice. The flow passage cross-sectional area of this orifice may be changed. In this case, when the source pressure changes, the air flow rate changes a little, but compared to the conventional fixed decompression throttle, the change in the air flow rate is small, and the same effect as that of the above embodiment can be expected.

【0037】また、上記実施例では、排水弁35として
ポペット型の弁を採用したが、圧縮空気の圧力差により
開放・閉鎖する弁であれば、例えば、ダイヤフラム型の
排水弁を採用しても良い。
Although a poppet type valve is used as the drain valve 35 in the above embodiment, a diaphragm type drain valve may be used as long as it is a valve that opens and closes due to the pressure difference of compressed air. good.

【0038】その他、本発明は、前記実施例に限定され
ず、例えばチェックバルブ15,29の構成を変更して
も良く、また、出口ポート27から乾燥圧縮空気を供給
する対象は、タイヤに限らず、例えばニューマチックシ
リンダや蓄圧タンク等であっても良い等、要旨を逸脱し
ない範囲内で種々変更して実施できることは言うまでも
ない。
In addition, the present invention is not limited to the above-mentioned embodiment, for example, the configuration of the check valves 15 and 29 may be changed, and the target for supplying the dry compressed air from the outlet port 27 is not limited to the tire. Needless to say, various modifications may be made without departing from the scope of the invention, such as a pneumatic cylinder or a pressure accumulating tank.

【0039】[0039]

【発明の効果】以上の説明から明らかなように、本発明
によれば、減圧絞り機構を、乾燥室と出口ポートとを連
通させる連通孔と、元圧と乾燥室との圧力差により移動
する可動絞り部材とから構成し、この可動絞り部材の移
動により連通孔を通る空気流の流路抵抗を変化させるよ
うにしたので、元圧の高低に拘らず、乾燥剤再生時に出
口ポート側から乾燥室内への空気流量・流速を常に最適
値に保つことができて、乾燥剤の再生効率を向上するこ
とができる。しかも、元圧が低い場合でも、乾燥剤の再
生に必要な時間(再生時間)を従来よりも短縮でき、一
方、元圧が高い場合でも、乾燥室内の空気流の流速が過
大にならず、空気流による乾燥剤の粉砕を防止できる。
As is apparent from the above description, according to the present invention, the decompression throttle mechanism is moved by the communication hole that connects the drying chamber and the outlet port, and the pressure difference between the original pressure and the drying chamber. It is composed of a movable throttle member, and the flow resistance of the air flow passing through the communication hole is changed by the movement of the movable throttle member. The air flow rate and flow velocity into the room can always be kept at optimum values, and the desiccant regeneration efficiency can be improved. Moreover, even when the original pressure is low, the time required for regenerating the desiccant (regeneration time) can be shortened as compared with the conventional one. On the other hand, even when the original pressure is high, the flow velocity of the air flow in the drying chamber does not become excessive, It is possible to prevent the desiccant from being crushed by the air flow.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すもので、図4のI−I
線に沿って示す断面図
FIG. 1 shows an embodiment of the present invention, which is taken along the line II of FIG.
Cross section shown along the line

【図2】図4のII−II線に沿って示す断面図FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】図4のIII −III 線に沿って示す断面図FIG. 3 is a sectional view taken along line III-III in FIG.

【図4】圧縮空気乾燥装置の底面を部分的に破断して示
す底面図
FIG. 4 is a bottom view showing a bottom surface of the compressed air drying device partially broken away.

【図5】圧縮空気乾燥装置の空気圧回路を示す図FIG. 5 is a diagram showing a pneumatic circuit of a compressed air drying device.

【符号の説明】[Explanation of symbols]

11は乾燥室、13は入口ポート、15はチェックバル
ブ、17は水分離室、21は乾燥剤、27は出口ポー
ト、29はチェックバルブ、32は排水ポート、33は
弁室、34は排水通路、35は排水弁、36は第1の圧
力室、37は第2の圧力室、38は排気絞り、40はス
プリング、42は排気弁、48は弁体、51は減圧絞り
機構、52は連通孔、53は可動絞り部材、53aは減
圧弁頭部、56はスプリングである。
11 is a drying chamber, 13 is an inlet port, 15 is a check valve, 17 is a water separating chamber, 21 is a desiccant, 27 is an outlet port, 29 is a check valve, 32 is a drain port, 33 is a valve chamber, 34 is a drain passage. , 35 is a drain valve, 36 is a first pressure chamber, 37 is a second pressure chamber, 38 is an exhaust throttle, 40 is a spring, 42 is an exhaust valve, 48 is a valve element, 51 is a pressure reducing throttle mechanism, and 52 is communication. A hole, 53 is a movable throttle member, 53a is a pressure reducing valve head, and 56 is a spring.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 乾燥すべき圧縮空気を導入する入口ポー
トと、 この入口ポートから導入した圧縮空気中の水分を吸着す
る乾燥剤を内蔵した乾燥室と、 この乾燥室から乾燥圧縮空気を所定場所に送るための出
口ポートと、 前記乾燥室から前記出口ポートへの圧縮空気の流れのみ
を許容するチェックバルブと、 前記乾燥室と前記出口ポートとの間に設けられた減圧絞
り機構と、 前記乾燥室を大気に連通・遮断するための排気弁とを備
えた圧縮空気乾燥装置において、 前記減圧絞り機構は、 前記乾燥室と前記出口ポートとを連通させる連通孔と、 前記出口ポートの圧力と前記乾燥室の圧力とを両側から
受けてその圧力差により移動して前記連通孔を通る空気
流の流路抵抗を変化させる可動絞り部材とから構成され
ていることを特徴とする圧縮空気乾燥装置。
1. An inlet port for introducing compressed air to be dried, a drying chamber containing a desiccant for adsorbing moisture in the compressed air introduced from the inlet port, and a predetermined location for the compressed compressed air from the drying chamber. An outlet port for sending the compressed air from the drying chamber to the outlet port, a pressure reducing throttle mechanism provided between the drying chamber and the outlet port, In a compressed air drying device including an exhaust valve for communicating and shutting off a chamber with the atmosphere, the decompression throttle mechanism includes a communication hole for communicating the drying chamber and the outlet port, a pressure of the outlet port, and And a movable throttle member that receives the pressure of the drying chamber from both sides and moves according to the pressure difference to change the flow path resistance of the air flow passing through the communication hole. Drying apparatus.
JP4208765A 1992-08-05 1992-08-05 Compressed air dryer Pending JPH0655029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4208765A JPH0655029A (en) 1992-08-05 1992-08-05 Compressed air dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4208765A JPH0655029A (en) 1992-08-05 1992-08-05 Compressed air dryer

Publications (1)

Publication Number Publication Date
JPH0655029A true JPH0655029A (en) 1994-03-01

Family

ID=16561723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4208765A Pending JPH0655029A (en) 1992-08-05 1992-08-05 Compressed air dryer

Country Status (1)

Country Link
JP (1) JPH0655029A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030000873A (en) * 2001-06-27 2003-01-06 현대자동차주식회사 structure for deflation air of air drier for air suspension
JP2020104070A (en) * 2018-12-28 2020-07-09 ナブテスコオートモーティブ株式会社 Air supply system
CN112168003A (en) * 2020-08-28 2021-01-05 宁波方太厨具有限公司 Exhaust structure for cooking device and oven with same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030000873A (en) * 2001-06-27 2003-01-06 현대자동차주식회사 structure for deflation air of air drier for air suspension
JP2020104070A (en) * 2018-12-28 2020-07-09 ナブテスコオートモーティブ株式会社 Air supply system
CN112168003A (en) * 2020-08-28 2021-01-05 宁波方太厨具有限公司 Exhaust structure for cooking device and oven with same
CN112168003B (en) * 2020-08-28 2022-03-18 宁波方太厨具有限公司 Exhaust structure for cooking device and oven with same

Similar Documents

Publication Publication Date Title
CA2233287C (en) E-1 twin tower air dryer for an air compressor unit
US3592563A (en) Filter purging apparatus
US6955713B2 (en) Device for enriching air with oxygen
US5711150A (en) Vehicle height control system for controlling vehicle
US5662727A (en) Twin tower air dryer for an air compressor unit
JP5732756B2 (en) Vehicle air suspension dryer
JP5298922B2 (en) Vehicle air suspension dryer
CN104349829A (en) Oil separator
JPH0655029A (en) Compressed air dryer
JP4257175B2 (en) Air dryer
JPH0655030A (en) Compressed air dryer
JPH0995117A (en) Air suspension control device
US5867918A (en) Gas dryer with an outlet chamber
JPH074880U (en) Oil mist separator
JPS6064616A (en) Compressed air drying apparatus
CN107670471A (en) Automobile electrically-controlled air dryer
KR960015701B1 (en) Air-dryer device for air-brake system
JPS60102920A (en) Drying method of compressed air
JP3326086B2 (en) Drain removal device
JP4023864B2 (en) Air dryer device
JP2005220750A (en) Air compressor
JPH0532183Y2 (en)
JP2002210323A (en) Compressed air drying apparatus
WO2004098969A1 (en) Air dryer system of air break system for vehicles
JPS6025527A (en) Apparatus for drying compressed air