JPH0532183Y2 - - Google Patents

Info

Publication number
JPH0532183Y2
JPH0532183Y2 JP1986111731U JP11173186U JPH0532183Y2 JP H0532183 Y2 JPH0532183 Y2 JP H0532183Y2 JP 1986111731 U JP1986111731 U JP 1986111731U JP 11173186 U JP11173186 U JP 11173186U JP H0532183 Y2 JPH0532183 Y2 JP H0532183Y2
Authority
JP
Japan
Prior art keywords
pipe
gas
dehumidification
valve
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986111731U
Other languages
Japanese (ja)
Other versions
JPS6320934U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986111731U priority Critical patent/JPH0532183Y2/ja
Publication of JPS6320934U publication Critical patent/JPS6320934U/ja
Application granted granted Critical
Publication of JPH0532183Y2 publication Critical patent/JPH0532183Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)
  • Exhaust Silencers (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、水分を含んだ空気などの未処理ガス
をシリカゲル、活性アルミナ、モレキユラシーブ
ス等の吸着剤に通すことによりその未処理ガスの
除湿を行なうようにした除湿装置に関し、特に、
2本の除湿塔に交互に未処理ガスを流して一方の
除湿塔を通して除湿した処理済みガスの一部を他
方の除湿塔に流してその中の吸着剤から水分を除
去して再生するようにした除湿装置に関する。
[Detailed description of the invention] Industrial application field This invention dehumidifies untreated gas such as air containing moisture by passing it through an adsorbent such as silica gel, activated alumina, or molecular sieves. In particular, regarding the dehumidification device designed to perform
Untreated gas is alternately passed through two dehumidifying towers, and a portion of the treated gas that has been dehumidified through one dehumidifying tower is flowed to the other dehumidifying tower to remove moisture from the adsorbent therein and regenerate it. The present invention relates to a dehumidifying device.

従来の技術及び考案が解決しようとする問題点 このような除湿装置は、従来、水分を含んだ空
気などの未処理ガスを供給する供給管と除湿済み
ガスを取出す取出管との間に、シリカゲルなどの
吸着剤を充填した除湿塔を夫々介設した2本の処
理管を並列して接続するとともに、これら2本の
処理管を各除湿塔の取出管側において、中間に絞
り弁を介設したバイパス管で接続し、加圧した未
処理ガスを各処理管の除湿塔の上流側に介設され
た切換弁の切換えにより各処理管に交互に一定時
間ずつ供給することにより、未処理ガスを一方の
除湿塔に通して除湿して取出管に流出させるとと
もに、その除湿済みガスの一部を他方の除湿塔に
バイパス管を通して減圧して供給することにより
その除湿塔の吸着剤を脱水して再生させるように
なつており、ガス中に含まれる単位体積当りの水
分量は圧力を下げて膨張させるとその圧力低下に
比例して小さくなることから、圧力P1、ガス量
Qの未処理ガスから吸着した吸着剤の水分を除去
するのに必要な再生用ガスのガス量Rは、その圧
力P2とすると、R=P2/P1×Qとなり、したが
つて、再生側の除湿塔には除湿済みガスのP2
P1の分だけを供給すればよいことになり、これ
により、切換弁を一定時間毎に切換えることによ
つて未処理ガスの除湿処理を連続して行なうこと
ができるようになつている。しかるに、切換弁の
切換えの際、除湿側であつた管路内の高圧ガスが
再生用ガスの排出口から急速に排出されて大きな
排出音を発生するため、その排出音を吸収するの
に排出口には消音器が接続されているが、除湿塔
内を流通した再生用ガス中には、除湿塔内の吸着
剤から除去した多量の水分や、除湿塔内のフイル
タを通り抜けた吸着剤の微粒などが含まれている
ため、これによつて消音器が目詰りを生じ易く、
消音器が目詰りすると再生側の管路に背圧がかか
つて吸着剤の再生効率が下がるのであり、再生効
率を上げるには絞り弁の開度を大きくして再生用
ガスの流量を増やさなければならず、そうする
と、処理済みガスの取出量が減少することとなつ
て、除湿処理の効率が低くなる欠点があつた。
Problems to be solved by conventional techniques and ideas Conventionally, such a dehumidifying device uses silica gel between a supply pipe that supplies untreated gas such as air containing moisture and a take-out pipe that takes out dehumidified gas. Two processing pipes, each with a dehumidifying tower filled with an adsorbent such as The pressurized untreated gas is alternately supplied to each treatment pipe for a fixed period of time by switching the switching valve installed upstream of the dehumidification tower of each treatment pipe. The dehumidified gas is passed through one dehumidification tower to be dehumidified and discharged to the take-out pipe, and a portion of the dehumidified gas is supplied to the other dehumidification tower through a bypass pipe under reduced pressure to dehydrate the adsorbent in that dehumidification tower. The amount of water contained in the gas per unit volume decreases in proportion to the pressure drop when the gas is expanded by lowering the pressure. The amount R of the regeneration gas required to remove the moisture in the adsorbent adsorbed from the gas is R = P 2 /P 1 ×Q, assuming its pressure P 2 , and therefore, the dehumidification on the regeneration side The tower contains dehumidified gas P2 /
It is now necessary to supply only the amount of P1 , and by switching the switching valve at regular intervals, it is possible to continuously dehumidify the untreated gas. However, when switching the switching valve, the high-pressure gas in the pipeline on the dehumidifying side is rapidly exhausted from the regeneration gas outlet, producing a loud exhaust noise. A silencer is connected to the outlet, but the regeneration gas flowing through the dehumidification tower contains a large amount of moisture removed from the adsorbent in the dehumidification tower and the adsorbent that has passed through the filter in the dehumidification tower. Contains fine particles, which can easily clog the silencer.
When the muffler becomes clogged, back pressure builds up in the pipeline on the regeneration side, reducing the regeneration efficiency of the adsorbent.In order to increase the regeneration efficiency, it is necessary to increase the opening of the throttle valve and increase the flow rate of the regeneration gas. However, in this case, the amount of treated gas taken out is reduced, resulting in a disadvantage that the efficiency of the dehumidification process is lowered.

問題点を解決するための手段 本考案は上記問題点を解決するための手段とし
て、再生に使用した排出ガスを消音器に導く排出
管に、常にはその排出ガスを大気に放出し、切換
弁の切換え作動時に生じる排出ガスの圧力上昇に
よつて閉弁する常開式の逃し弁を介設した構成と
した。
Means for Solving the Problems The present invention, as a means to solve the above-mentioned problems, uses a switching valve that normally discharges the exhaust gas into the atmosphere and connects it to the exhaust pipe that leads the exhaust gas used for regeneration to the muffler. The structure includes a normally open relief valve that closes due to the rise in exhaust gas pressure that occurs when the switch is activated.

考案の作用及び効果 本考案の除湿装置は上記構成になり、再生に使
用した排出ガスは、低圧で排出される定常状態に
おいてはその大部分が逃し弁から排出され、切換
弁の切換え作動時に高圧で排出されるときにはそ
の全部が消音器を通るのであつて、定常状態にお
いては排出ガスの大部分が消音器を経ないで排出
されることから、消音器の目詰りの有無に関係な
く排出ガスの排出抵抗が極めて小さく、このた
め、消音器の目詰りが生じても、再生側の管路に
過大な背圧が掛かつて吸着剤の再生効率が低下す
ることがなく、除湿処理の効率が低下するのが防
止され、また、消音器を通る排出ガス量が少ない
ことから、消音器が短時間で目詰りを生ずるのが
防止され、消音器の長期間の継続使用が可能とな
る効果がある。
Functions and Effects of the Invention The dehumidifying device of the invention has the above-mentioned configuration, and in the steady state where the exhaust gas used for regeneration is discharged at low pressure, most of it is exhausted from the relief valve, and when the switching valve is switched, the exhaust gas is released under high pressure. When the exhaust gas is emitted, all of it passes through the muffler, but in a steady state, most of the exhaust gas is emitted without passing through the muffler, so the exhaust gas Therefore, even if the muffler becomes clogged, the regeneration efficiency of the adsorbent will not be reduced due to excessive back pressure being applied to the pipe on the regeneration side, and the efficiency of the dehumidification process will be improved. In addition, since the amount of exhaust gas passing through the muffler is small, the muffler is prevented from clogging in a short period of time, and the muffler can be used continuously for a long period of time. be.

実施例 以下、本考案の一実施例を添付図面に基づいて
説明する。
Embodiment Hereinafter, an embodiment of the present invention will be described based on the accompanying drawings.

第1図に示すように、水分を含んだ未処理ガス
の供給管1の接続口2と除湿済みガスの取出口3
の接続口4の間に、シリカゲル等の吸着剤の充填
された除湿塔5の介設された2本の処理管6,6
が並列して接続されており、各処理管6の各除湿
塔5の上流側が接続管8により互いに接続され、
接続管8の両処理管6,6との接続部付近に夫々
開閉弁10が介設されているとともに、各処理管
6の接続管8との接続部の上流側に夫々開閉弁1
1が介設され、接続管8の中間部には排出管7が
接続され、この排出管7には後記するドレン分離
器9を介して消音器13が接続されており、一
方、各処理管6の各除湿塔5の下流側が、両端寄
りに逆止弁12,12を互いに逆向きにして介設
した接続管14により互いに接続されているとと
もに、各処理管6の接続管14との接続部より下
流側に夫々逆止弁15,15が同じく互いに逆向
きにして介設され、接続管14の中間部と両処理
管6,6同士の接続部とが絞り弁16の介設され
たバイパス管17により接続されており、逆止弁
12,15の作用によつてバイパス管17内の流
れの向きが常に図の矢線方向となるようになつて
おり、図に示す左側の処理管6の開閉弁11を開
いて右側の開閉弁11を閉じるとともに、接続管
8の左側の開閉弁10を閉じて右側の開閉弁10
を開くと、加圧されて供給管1の接続口2から供
給される未処理ガスが左側の除湿塔5内を流通し
て除湿され、逆止弁15を介して取出管3に流入
するとともに、除湿済みガスの一部がバイパス管
17に流入して絞り弁16を通過することにより
膨張してさらに湿度が低下した状態となり、逆止
弁12を通つて右側の除湿塔5内を流通し、接続
管8の開閉弁10を通つて排出管7に流出し、ま
た、各開閉弁10,11を夫々上記と逆に切換え
ることにより、未処理ガスが今度は右の除湿塔5
内を流通することにより除湿されて取出管3に流
入するとともに、その除湿済みガスの一部がバイ
パス管17に流入し、前記と同様に、さらに湿度
が低下した状態となつて左側の除湿塔5内を流通
し、接続管8を通して排出管7に流出するように
なつており、開閉弁10,11の切換え操作を一
定時間毎に行なうことにより、一方の除湿塔5内
で未処理ガスの除湿が行なわれている間はその除
湿塔5により除湿された除湿済みガスが他方の除
湿塔5内を流通することにより、その中の吸着剤
が脱水されて再生が行なわれるのであつて、これ
により、未処理ガスの除湿処理が連続して行なわ
れるようになつている。
As shown in Fig. 1, a connection port 2 of a supply pipe 1 for untreated gas containing moisture and an outlet 3 for dehumidified gas.
A dehumidifying tower 5 filled with an adsorbent such as silica gel is interposed between two processing pipes 6, 6, and a connecting port 4 of the
are connected in parallel, and the upstream sides of each dehumidifying tower 5 of each processing pipe 6 are connected to each other by a connecting pipe 8,
An on-off valve 10 is interposed near the connecting portion of the connecting pipe 8 with both processing pipes 6 , 6 , and an on-off valve 1 is provided on the upstream side of the connecting portion of each processing pipe 6 with the connecting pipe 8 .
A discharge pipe 7 is connected to the middle part of the connecting pipe 8, and a silencer 13 is connected to the discharge pipe 7 via a drain separator 9, which will be described later. The downstream sides of each of the dehumidifying towers 5 of 6 are connected to each other by a connecting pipe 14 in which check valves 12, 12 are interposed near both ends in opposite directions, and are connected to the connecting pipe 14 of each processing pipe 6. Check valves 15, 15 are provided on the downstream side of the section, respectively, facing oppositely to each other, and a throttle valve 16 is provided between the intermediate section of the connecting pipe 14 and the connecting section between the two processing pipes 6, 6. They are connected by a bypass pipe 17, and by the action of check valves 12 and 15, the flow direction in the bypass pipe 17 is always in the direction of the arrow in the figure. Open the on-off valve 11 on the right side of the connecting pipe 8 and close the on-off valve 11 on the right side.
When opened, pressurized untreated gas supplied from the connection port 2 of the supply pipe 1 flows through the dehumidification tower 5 on the left side to be dehumidified, flows into the take-out pipe 3 via the check valve 15, and A part of the dehumidified gas flows into the bypass pipe 17 and passes through the throttle valve 16 to expand and further reduce the humidity, and then flows through the right dehumidification tower 5 through the check valve 12. , flows out into the discharge pipe 7 through the on-off valve 10 of the connecting pipe 8, and by switching each on-off valve 10, 11 in the opposite direction to the above, the untreated gas is now transferred to the right dehumidification tower 5.
The dehumidified gas flows into the take-out pipe 3, and a part of the dehumidified gas also flows into the bypass pipe 17, and as before, the humidity is further reduced and the dehumidification tower on the left side is dehumidified. 5 and flows out through the connecting pipe 8 to the discharge pipe 7. By switching the on-off valves 10 and 11 at regular intervals, untreated gas is removed in one dehumidifying tower 5. While dehumidification is being performed, the dehumidified gas dehumidified by the dehumidifying tower 5 flows through the other dehumidifying tower 5, and the adsorbent therein is dehydrated and regenerated. As a result, dehumidification of untreated gas is carried out continuously.

前記したドレン分離器9は、流入口18と流出
口20との間にデフレクタ21が介装され、流入
口18からの流入ガスがデフレクタ21の周りを
旋回することによつてガス中の水分や塵が遠心力
により容器の内壁に押しやられ、これらの取除か
れたガスのみがフイルタエレメント19を通過し
て流出口2から流出するようになつており、容器
の底面には弁口22が形成されたものであつて、
このドレン分離器9の下面にはシリンダ23が通
孔24を有する取付部材25によつて取付けら
れ、シリンダ23内に嵌装されたピストン29に
連結されて前記弁口22を貫通したピストンロツ
ド26の先端にその弁口22を開閉する弁体27
が固定され、この弁体27はピストン29の下面
に装着されたばね28の弾力により弁口22を開
く方向に付勢されており、ピストン29の上面側
においてシリンダ23に形成されたポート30
が、連通管31によつてバイパス管17の絞り弁
16の下流側に接続されており、絞り弁16の下
流側が通常は略大気圧に等しくなつていることか
ら弁体27がばね28の弾力により弁口22の上
方へ離間して弁口22が開いた状態に保持されて
いる。
In the drain separator 9 described above, a deflector 21 is interposed between the inlet 18 and the outlet 20, and the inflow gas from the inlet 18 swirls around the deflector 21, thereby removing water and moisture in the gas. The dust is pushed to the inner wall of the container by centrifugal force, and only the removed gas passes through the filter element 19 and flows out from the outlet 2, and a valve port 22 is formed at the bottom of the container. It is something that has been done,
A cylinder 23 is attached to the lower surface of the drain separator 9 by a mounting member 25 having a through hole 24, and a piston rod 26 is connected to a piston 29 fitted in the cylinder 23 and passes through the valve port 22. Valve body 27 that opens and closes the valve port 22 at the tip
is fixed, and this valve body 27 is biased in the direction of opening the valve port 22 by the elasticity of a spring 28 attached to the lower surface of the piston 29, and a port 30 formed in the cylinder 23 on the upper surface side of the piston 29.
is connected to the downstream side of the throttle valve 16 of the bypass pipe 17 by the communication pipe 31, and since the pressure on the downstream side of the throttle valve 16 is normally approximately equal to atmospheric pressure, the valve body 27 is moved by the elasticity of the spring 28. The valve opening 22 is held in an open state by being spaced apart above the valve opening 22.

そして、図の左側の処理管6で除湿が、右側の
処理管6で再生が行なわれていた状態から、逆の
状態に切換えるには、左側の処理管6の開閉弁1
1を開から閉へ、右側の処理管6の開閉弁11を
閉から開へ切換えるとともに、接続管8の左側の
開閉弁10を閉から開へ、右側の開閉弁10を開
から閉へ夫々切換えるのであるが、この切換えの
際に取出管3側の圧力が一時的に低下するのを防
止するために、まず、左右の処理管6の開閉弁1
1,11の切換えを行なうとともに、接続管8の
右側の開閉弁10を閉じた後、左側の開閉弁10
はしばらくの間閉じたままにしておき、除湿側と
なつた右側の管路内の圧力が十分に上昇した時点
で接続管8の左側の開閉弁10を開くようになつ
ており、このようにすることにより、右側の管路
内の圧力が十分に上昇するに至るまでは左側の管
路内の残圧により取出管3内の圧力が高圧に保た
れるのであり、その後、接続管8の左側の開閉弁
10を開くと左側の管路内の高圧ガスが排出管7
に流出するのであつて、接続管8の左側の開閉弁
10が開かれるまでは、除湿側であつた左側の除
湿塔5側の両開閉弁10,11がともに閉じられ
ていることから、右側の除湿塔5に未処理ガスが
供給されるのに伴つてバイパス管17の絞り弁1
6の下流側の圧力が上昇し、その圧力が所定値を
越えるとシリンダ23のばね28の弾力に抗して
ピストン29が押し下げられ、ドレン分離器9の
弁口22が弁体27により、接続管8の左側の開
閉弁10が開かれる前に閉じられるのであつて、
これにより、接続管8の左側の開閉弁10を開い
たときには、除湿側であつた除湿塔5内の高圧ガ
スがドレン分離器9の流出口20から消音器13
を経て排出され、一方、除湿側であつた除湿塔5
内の残圧が排除されるとバイパス管17の絞り弁
16の下流側の圧力が下がつて略大気圧と同一と
なることから、ピストン29がばね28の弾力に
より上動して弁口22が開かれ、これにより、定
常状態においては、再生側の除湿塔5内を流通し
てその中の吸着剤から水分を除去し、排出管7を
通つてドレン分離器9内に流入した排出ガスは、
その大部分が弁口22を通つて取付部材25の通
孔24から排出されるのであつて、消音器13が
目詰りを生じても排出ガスの排出抵抗はほとんど
増大せず、したがつて、再生側の管路に背圧が掛
かつて再生ガスの圧力が増大し再生効率が低下す
るのが防止される。また、消音器13には除湿と
再生の切換時に一時的に排出ガスが流れるだけで
あるから目詰りを生じ難く、長期間連続して使用
することができる。
To switch from the state in which dehumidification is performed in the processing pipe 6 on the left side of the figure and regeneration in the processing pipe 6 on the right side to the opposite state, the on-off valve 1 of the processing pipe 6 on the left side must be
1 from open to closed, the on-off valve 11 of the right processing pipe 6 from closed to open, the on-off valve 10 on the left side of the connecting pipe 8 from closed to open, and the on-off valve 10 on the right side from open to closed. However, in order to prevent the pressure on the extraction pipe 3 side from temporarily decreasing during this switching, first, the on-off valves 1 of the left and right processing pipes 6 are turned off.
1 and 11 and close the on-off valve 10 on the right side of the connecting pipe 8, then switch on the on-off valve 10 on the left side.
is kept closed for a while, and when the pressure in the right pipe, which is the dehumidifying side, has risen sufficiently, the on-off valve 10 on the left side of the connecting pipe 8 is opened. By doing so, the pressure in the extraction pipe 3 is maintained at a high pressure due to the residual pressure in the left pipe until the pressure in the right pipe increases sufficiently, and then the pressure in the connecting pipe 8 is When the left on-off valve 10 is opened, the high pressure gas in the left pipe is discharged to the exhaust pipe 7.
Until the opening/closing valve 10 on the left side of the connecting pipe 8 is opened, both opening/closing valves 10 and 11 on the left side of the dehumidifying tower 5, which was the dehumidifying side, are closed. As the untreated gas is supplied to the dehumidification tower 5, the throttle valve 1 of the bypass pipe 17
6, and when the pressure exceeds a predetermined value, the piston 29 is pushed down against the elasticity of the spring 28 of the cylinder 23, and the valve port 22 of the drain separator 9 is connected by the valve body 27. The on-off valve 10 on the left side of the pipe 8 is closed before being opened, and
As a result, when the on-off valve 10 on the left side of the connecting pipe 8 is opened, the high pressure gas in the dehumidifying tower 5, which was on the dehumidifying side, flows from the outlet 20 of the drain separator 9 to the muffler 13.
On the other hand, the dehumidifying tower 5 which was on the dehumidifying side
When the residual pressure inside the bypass pipe 17 is removed, the pressure on the downstream side of the throttle valve 16 of the bypass pipe 17 decreases and becomes approximately equal to atmospheric pressure, so the piston 29 moves upward due to the elasticity of the spring 28 and closes the valve port 22. As a result, in a steady state, the exhaust gas that flows through the dehumidifying tower 5 on the regeneration side to remove moisture from the adsorbent therein and flows into the drain separator 9 through the exhaust pipe 7 teeth,
Most of the exhaust gas is discharged from the through hole 24 of the mounting member 25 through the valve port 22, and even if the muffler 13 becomes clogged, the discharge resistance of the exhaust gas hardly increases. Back pressure is applied to the pipe line on the regeneration side, which prevents the pressure of the regeneration gas from increasing and reducing the regeneration efficiency. Further, since exhaust gas flows through the muffler 13 only temporarily when switching between dehumidification and regeneration, clogging is less likely to occur, and the muffler 13 can be used continuously for a long period of time.

なお、本実施例においては、消音器13を通る
排出ガスがドレン分離器9によりガス中に含まれ
た水分や吸着剤の微粒が除去されるため、消音器
13が水分や吸着剤の微粒によつて目詰りを生ず
るのが防止され、さらに長期にわたつて使用を継
続し得る利点がある。
In this embodiment, the exhaust gas passing through the muffler 13 is removed by the drain separator 9 to remove water and adsorbent particles contained in the gas. This has the advantage of preventing clogging and allowing continued use over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例の構成図である。 1……供給管、3……取出管、5……除湿塔、
6……処理管、7……排出管、10,11……開
閉弁、13……消音器、16……絞り弁、17…
…バイパス管、22……弁口(逃し弁の)、27
……弁体(逃し弁の)。
FIG. 1 is a block diagram of an embodiment of the present invention. 1... Supply pipe, 3... Output pipe, 5... Dehumidification tower,
6... Processing pipe, 7... Discharge pipe, 10, 11... On-off valve, 13... Silencer, 16... Throttle valve, 17...
...Bypass pipe, 22...Valve port (relief valve), 27
...Valve body (of the relief valve).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 水分を含んだ未処理ガスを供給する供給管と除
湿済みガスを取出す取出管との間に、吸着剤を充
填した除湿塔を夫々介設した2本の処理管を並列
して接続するとともに該両処理管を前記各除湿塔
の前記取出管側において、絞り弁、オリフイス等
の流量調整器を介設したバイパス管で接続し、加
圧した前記未処理ガスを前記各処理管の前記各除
湿塔の上流側に介設した切換弁の切換えにより前
記各処理管に一定時間ずつ交互に供給することに
より、該未処理ガスを一方の前記除湿塔に通して
前記取出管に流出させるとともに、該取出管に流
出する前記除湿済みガスの一部を前記バイパス管
を通して減圧して他方の前記除湿塔に供給し、該
除湿塔内の前記吸着剤を脱水して再生させるよう
にした除湿装置において、再生に使用した排出ガ
スを消音器に導く排出管に、常には該排出ガスを
大気に放出し、前記切換弁の切換え作動時に生じ
る前記排出ガスの圧力上昇によつて閉弁する常開
式の逃し弁を介設したことを特徴とする除湿装
置。
Two processing pipes, each with a dehumidifying tower filled with an adsorbent, are connected in parallel between a supply pipe that supplies untreated gas containing moisture and an extraction pipe that takes out dehumidified gas. Both processing pipes are connected on the take-out pipe side of each dehumidification tower by a bypass pipe equipped with a flow rate regulator such as a throttle valve or orifice, and the pressurized untreated gas is transferred to each dehumidification pipe of each processing pipe. By switching the switching valve installed on the upstream side of the tower, the untreated gas is alternately supplied to each of the processing pipes for a certain period of time, and the untreated gas is passed through one of the dehumidification towers and flows out to the take-out pipe. A dehumidification device in which a part of the dehumidified gas flowing out into the take-out pipe is depressurized through the bypass pipe and supplied to the other dehumidification tower, and the adsorbent in the dehumidification tower is dehydrated and regenerated, The exhaust pipe that leads the exhaust gas used for regeneration to the muffler is equipped with a normally open type valve that normally releases the exhaust gas into the atmosphere and closes when the pressure of the exhaust gas increases when the switching valve is switched. A dehumidifier characterized by having a relief valve installed.
JP1986111731U 1986-07-21 1986-07-21 Expired - Lifetime JPH0532183Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986111731U JPH0532183Y2 (en) 1986-07-21 1986-07-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986111731U JPH0532183Y2 (en) 1986-07-21 1986-07-21

Publications (2)

Publication Number Publication Date
JPS6320934U JPS6320934U (en) 1988-02-12
JPH0532183Y2 true JPH0532183Y2 (en) 1993-08-18

Family

ID=30991927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986111731U Expired - Lifetime JPH0532183Y2 (en) 1986-07-21 1986-07-21

Country Status (1)

Country Link
JP (1) JPH0532183Y2 (en)

Also Published As

Publication number Publication date
JPS6320934U (en) 1988-02-12

Similar Documents

Publication Publication Date Title
US4162146A (en) Multi-chamber adsorbent gas fractionator with non-jamming effluent flow control valve
JPS6012084B2 (en) gas fractionator
JPS5934485Y2 (en) vehicle height adjustment device
WO2004011125A3 (en) Spin-on desiccant cartridge with integral oil removal filter
CN207042199U (en) Locomotive air dry-set
JP2008508466A5 (en)
JPS63157234U (en)
GB2318150A (en) Adsorption gas dryer two stage silencer with integral by-pass
CN209828657U (en) Micro-thermal regeneration adsorption dryer
JPH078020Y2 (en) Air dryer system
CN205164422U (en) Compressor air purification device
JPH0532183Y2 (en)
MXPA05000265A (en) Spin-on desiccant cartridge with integral oil removal filter.
JPH0647548Y2 (en) Compressed air pressure source
JPH0537628U (en) Silencer for air dryer
JPH0746342Y2 (en) Dehumidifier
US4875911A (en) Apparatus for separating gaseous mixtures
JPH062734Y2 (en) Dehumidifier
JPS60102920A (en) Drying method of compressed air
KR100417295B1 (en) Air dryer system
CN210107868U (en) Multistage formula air compression safety device
JPS56133015A (en) Regeneration controller for compressed-air dehumidifier
SU818637A1 (en) Plant for drying compressed air
KR200258087Y1 (en) Air dryer apparatus
JPH0647540Y2 (en) Pressure swing type mixed gas separator