JPH0654813B2 - Organic photoconductive device and manufacturing method thereof - Google Patents

Organic photoconductive device and manufacturing method thereof

Info

Publication number
JPH0654813B2
JPH0654813B2 JP61213977A JP21397786A JPH0654813B2 JP H0654813 B2 JPH0654813 B2 JP H0654813B2 JP 61213977 A JP61213977 A JP 61213977A JP 21397786 A JP21397786 A JP 21397786A JP H0654813 B2 JPH0654813 B2 JP H0654813B2
Authority
JP
Japan
Prior art keywords
photoconductive
substrate
organic
film
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61213977A
Other languages
Japanese (ja)
Other versions
JPS6370579A (en
Inventor
邦裕 酒井
宏 松田
清 瀧本
謙治 斉藤
俊彦 宮▲崎▼
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61213977A priority Critical patent/JPH0654813B2/en
Priority to US07/099,345 priority patent/US4929524A/en
Priority to EP87308072A priority patent/EP0260152B1/en
Priority to DE3789585T priority patent/DE3789585T2/en
Publication of JPS6370579A publication Critical patent/JPS6370579A/en
Publication of JPH0654813B2 publication Critical patent/JPH0654813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機光導電デバイスおよびその製造方法に関
し、更に詳しくは光導電層が高光導電性領域と低または
非光導電性領域にパターン化された有機光導電デバイス
および該有機光導電デバイスを容易に提供する製造方法
に関する。
Description: FIELD OF THE INVENTION The present invention relates to organic photoconductive devices and methods of making the same, and more particularly to a photoconductive layer patterned into high photoconductive regions and low or non-photoconductive regions. And an organic photoconductive device and a manufacturing method for easily providing the organic photoconductive device.

(従来の技術) 従来、例えば、光電変換素子等の種々の光導電媒体が知
られており、これらの光導電デバイスの機能部分の材料
としては、殆どの場合に無機物が使用されている。しか
しながら、これらの光導電デバイスについて益々高精度
化、高微細化等が要求される結果、光導電デバイスの機
能部分の材料として取扱い容易で種類の多い光導電性有
機化合物の利用が広く検討されている。
(Prior Art) Conventionally, for example, various photoconductive media such as photoelectric conversion elements have been known, and in most cases, an inorganic material is used as a material of a functional portion of these photoconductive devices. However, as these photoconductive devices are required to have higher precision and higher miniaturization, the use of photoconductive organic compounds, which are easy to handle and have many types, as materials for functional parts of photoconductive devices has been widely studied. There is.

光導電性物質の1種としては光導電性有機化合物が知ら
れており、このような光導電性有機化合物を任意の基板
上に均一な膜として形成する方法としては種々の方法が
あるが、その1例としてラングミュアらが提案したラン
グミュア・ブロジェット法(LB法)が知られている。
A photoconductive organic compound is known as one type of photoconductive substance, and there are various methods for forming such a photoconductive organic compound as a uniform film on an arbitrary substrate. As an example thereof, the Langmuir-Blodgett method (LB method) proposed by Langmuir et al. Is known.

このLB法によれば、1分子中に疎水性部位と親水性部
位とを有する光導電性有機化合物の単分子膜またはその
累積膜を基板上に容易に形成することができる。このよ
うに形成された光導電性有機層は、電気的絶縁性の高い
疎水性部位と光導電性の高い親水性部位とが平面状に多
層に重なり合っていることから、膜の水平方向では良好
な光導電性を示し、且つ膜に垂直な方向では高い絶縁性
を有するという光導電性の異方性という特異な性質を有
するものである。
According to this LB method, a monomolecular film of a photoconductive organic compound having a hydrophobic site and a hydrophilic site in one molecule or a cumulative film thereof can be easily formed on a substrate. The photoconductive organic layer formed in this way is good in the horizontal direction of the film because the hydrophobic part having a high electrical insulation property and the hydrophilic part having a high photoconductivity are superposed in a multi-layered manner in a plane. It exhibits unique photoconductivity and has a peculiar property of photoconductivity anisotropy that it has high insulation in the direction perpendicular to the film.

(発明が解決しようとしている問題点) 上記の如き光導電性有機層は層の面方向に対して非常に
均一な光導電性を有するものであり、種々の用途が期待
されている。これらの光有機導電層を有する光導電デバ
イスは、種々の電気素子、例えば、電気回路等として使
用する場合には、それらの光導電層を所望のパターンに
微細加工することが必要である。このような微細加工方
法としては、例えば、上記の如き光導電層を基板上にパ
ターン状に形成および成長させる方法が考えられている
が、前記の如きLB膜は水相上に展開した均一な単分子
膜を基板上に移す方法で形成されるため、かかるパター
ン状の膜形成は未だ実用的な領域には達していない。
(Problems to be Solved by the Invention) The photoconductive organic layer as described above has very uniform photoconductivity in the plane direction of the layer, and various applications are expected. When a photoconductive device having these photoorganic conductive layers is used as various electric elements such as an electric circuit, it is necessary to finely process the photoconductive layers into a desired pattern. As such a microfabrication method, for example, a method of forming and growing a photoconductive layer as described above on a substrate in a pattern is considered, but the LB film as described above has a uniform pattern spread on the water phase. Since the monomolecular film is formed by the method of transferring it onto the substrate, the formation of such a patterned film has not yet reached a practical area.

別の方法としては一旦形成したLB膜を後処理によって
パターン化する方法、例えば、膜の所望領域を除去する
エッチング方法が考えられているが、この方法は無機物
の化学的エッチングとは異なり、マスク材、マスク方
法、エッチング剤等の選定が困難であり、エッチング領
域以外の光導電層までがエッチング剤により変質する恐
れが大であるという問題がある。特に、有機光導電デバ
イスが高密度、高集積度になればなる程このような微細
加工が困難となり、そのために有機光導電性化合物の単
分子膜または累積膜からなる層の優れた特性を生かすこ
とができないという問題がある。
As another method, a method of patterning the LB film once formed by post-treatment, for example, an etching method of removing a desired region of the film is considered, but this method is different from the chemical etching of the inorganic substance, There is a problem in that it is difficult to select a material, a mask method, an etching agent, and the like, and there is a great possibility that even the photoconductive layer other than the etching region is deteriorated by the etching agent. In particular, the higher the density and the degree of integration of the organic photoconductive device, the more difficult such fine processing becomes, and therefore, the excellent properties of the layer composed of the monomolecular film or the cumulative film of the organic photoconductive compound can be utilized. There is a problem that you can not.

また上記の如きLB膜の光導電性は、通常10-10〜1
-14S/cm程度と有機物としては非常に高いものであ
るが、従来の無機光導電材料に比較すれば著しく小さい
ものであるため、光導電性という面でも不十分であると
いう問題がある。
The photoconductivity of the LB film as described above is usually 10 -10 to 1
Although it is very high as an organic substance of about 0 -14 S / cm, it is extremely small compared to the conventional inorganic photoconductive material, so that there is a problem that it is insufficient in terms of photoconductivity. .

従って、上記の如き光導電性有機物からなる機能部分を
有する光導電デバイスに、これらの層の特性を損なうこ
となくそれらの光導電性を向上させ、且つ高精度で微細
なパターンを容易に形成する技術が要望されている。
Therefore, in a photoconductive device having a functional portion made of a photoconductive organic substance as described above, the photoconductivity of these layers is improved without impairing the characteristics of these layers, and a fine pattern can be easily formed with high accuracy. Technology is required.

(問題点を解決するための手段) 本発明者は上述の如き従来技術の要望に応えるべく鋭意
研究の結果、光導電性有機物からなる光導電層の精密性
やそれらの特性を何ら損なうことなくそれらの光導電層
の光導電性を高め且つ所望のパターンの高光導電領域と
低または非光導電領域に容易にパターン化が可能な技術
を開発した。
(Means for Solving the Problems) As a result of earnest research to meet the above-mentioned demands of the prior art, the present inventor did not impair the precision and the characteristics of the photoconductive layer made of a photoconductive organic material. We have developed a technique that enhances the photoconductivity of these photoconductive layers and allows easy patterning of high photoconductive regions and low or non-photoconductive regions of a desired pattern.

すなわち本発明は、任意の方向性を有する微細な凹凸形
状を有する基板表面に、1分子中に疎水性部位及び親水
性部位を有する光導電性有機化合物の単分子膜あるいは
その累積膜を含む光導電性有機層が形成されていること
を特徴とする有機光導電デバイス及びその製造方法であ
る。
That is, the present invention provides an optical film including a monomolecular film of a photoconductive organic compound having a hydrophobic site and a hydrophilic site in one molecule or a cumulative film thereof on the surface of a substrate having a fine uneven shape having an arbitrary directionality. An organic photoconductive device having a conductive organic layer formed and a method for manufacturing the same.

次に本発明を更に詳細に説明する。Next, the present invention will be described in more detail.

すなわち、本発明者の詳細な研究によれば、表面平滑な
基板上に光導電性有機化合物により光導電層を形成する
と、その光導電層の面に平行な方向においては、ほぼ均
一な光導電性を示すものであったが、これに対して予め
基板表面に任意の方向性を有する微細な凹凸形状を形成
しておいて、その面に光導電層を形成することによっ
て、基板上の凹凸形状に沿ってその上に形成された光有
機導電層の光導電性が著しく向上したりあるいは低下し
たりして、高光導電性領域と低または非光導電性領域と
にパターン化されるものであった。
That is, according to a detailed study by the present inventor, when a photoconductive layer is formed of a photoconductive organic compound on a substrate having a smooth surface, a substantially uniform photoconductive layer is formed in a direction parallel to the surface of the photoconductive layer. However, by forming a fine concavo-convex shape having arbitrary directionality on the substrate surface in advance and forming a photoconductive layer on that surface, the concavo-convex pattern on the substrate can be obtained. The photo-conductivity of the photo-organic conductive layer formed on it along the shape is remarkably improved or lowered to be patterned into the high photo-conductive region and the low or non-photo-conductive region. there were.

このような光導電性の著しい変化は、有機光導電層を微
細な凹凸形状面に移すときに層を構成している分子の配
向性が、凹凸形状に沿って著しく向上することや、層が
凹凸形状に対応して局所的な流動あるいは膜構成分子の
再配列等が生じて膜の光導電性が変化するものと考えら
れている。
Such a remarkable change in photoconductivity means that when the organic photoconductive layer is transferred to a fine uneven surface, the orientation of molecules constituting the layer is significantly improved along the uneven shape, and It is believed that the photoconductivity of the film changes due to local flow or rearrangement of film-constituting molecules depending on the uneven shape.

従って少なくとも基板上に形成もしくは付与された微細
な凹凸形状は、ある一定の方向性を有して連続若しくは
マクロ的に連続(例えば破線の連続)している必要があ
る。
Therefore, at least the fine concavo-convex shape formed or provided on the substrate needs to have a certain directionality and be continuous or macroscopically continuous (for example, continuous broken lines).

本発明によれば、係る基板に任意の方向性を有する微細
な凹凸形状を付与しておくのみで、後は単にその表面に
有機光導電層を形成することによって、所望の光導電パ
ターンを有する光導電デバイスが提供されるものであ
り、従来技術における種々の欠点、すなわち、煩雑な多
くの工程、高温、高圧等の苛酷な条件の使用、種々の薬
剤の使用等の問題が容易に解決され、非常に簡単な工程
で高密度、高集積度等の有機光導電デバイスが提供され
た。
According to the present invention, it is possible to form a desired photoconductive pattern by merely forming an organic photoconductive layer on the surface of the substrate by providing the substrate with a fine uneven shape having an arbitrary directionality. The present invention provides a photoconductive device, which easily solves various drawbacks in the prior art, that is, many complicated processes, use of severe conditions such as high temperature and high pressure, and use of various chemicals. The organic photoconductive device with high density and high integration has been provided by a very simple process.

本発明の有機光導電デバイスの光導電層を形成する光導
電性有機化合物は、従来公知のいずれの光導電性有機化
合物でも使用することができるが、好ましい光導電性有
機化合物は、1分子内に親水性部位、疎水性部位および
色素部位を有する色素化合物である。
As the photoconductive organic compound forming the photoconductive layer of the organic photoconductive device of the present invention, any conventionally known photoconductive organic compound can be used, but a preferable photoconductive organic compound is within one molecule. It is a dye compound having a hydrophilic site, a hydrophobic site and a dye site in the.

また、先に述べた成膜時の分子再配列は、このときの分
子間力に大きく依存すると考えられ、このため本発明に
好適な分子には比較的分子量が大きいことが望まれる。
しかし通常色素分子は分子量が500以上であり、これ
を満足する。実際殆どの色素はある濃度以上において互
いに影響しあって会合状態を形成することが知られてお
り、従来公知の有機色素で親水性部位と疎水性部位を併
有する分子はいずれも本発明において好ましく使用でき
る。このような好ましい色素としては、例えば、シアニ
ン色素、メロシアニン色素、フタロシアニン色素、トリ
フェニルメタン色素、アズレン色素等に限られず、クロ
ロフィル、ローダミン、チトクロム等の色素タンパク質
等の生体材料も使用可能である。
Further, it is considered that the molecular rearrangement at the time of film formation described above largely depends on the intermolecular force at this time, and therefore, it is desired that the molecule suitable for the present invention has a relatively large molecular weight.
However, the dye molecule usually has a molecular weight of 500 or more, which satisfies this. In fact, most dyes are known to interact with each other at a certain concentration or more to form an association state, and conventionally known organic dyes having both a hydrophilic moiety and a hydrophobic moiety are both preferable in the present invention. Can be used. Such preferable dyes are not limited to cyanine dyes, merocyanine dyes, phthalocyanine dyes, triphenylmethane dyes, azulene dyes and the like, and biomaterials such as chlorophyll, rhodamine, cytochrome and other dye proteins can also be used.

本発明において、前記の光導電性有機化合物を使用し
て、任意の方向性を有する微細凹凸形状を有する基板の
表面に光導電層を形成する好ましい方法は、前記のLB
法である。
In the present invention, the preferred method for forming a photoconductive layer on the surface of a substrate having a fine uneven shape having an arbitrary direction using the photoconductive organic compound is LB described above.
Is the law.

LB法は、例えば、前記の光導電性有機化合物の如く分
子内に親水性部位と疎水性部位とを有する構造の分子に
おいて、両者のバランス(両親媒性のバランス)が適度
に保たれている時、分子は水面上で親水性基を下に向け
て単分子の層になることを利用して単分子膜またはその
累積膜を作成する方法である。
In the LB method, for example, in a molecule having a structure having a hydrophilic site and a hydrophobic site in the molecule like the above-mentioned photoconductive organic compound, the balance between them (the amphipathic balance) is appropriately maintained. At this time, a molecule is a method of forming a monomolecular film or a cumulative film thereof by utilizing the fact that a hydrophilic group faces downward on a water surface to form a monomolecular layer.

水面上の単分子層は二次元系の特徴を有し、分子がまば
らに散開しているときは、一分子当り面積Aと表面圧π
との間に二次元理想気体の式、 πA=kT が成り立ち、“気体膜”となる。ここに、kはボルツマ
ン定数、Tは絶対温度である。Aを十分小さくすれば分
子間相互作用が強まり、二次元固体の“凝縮膜(または
固体膜)”になる。凝縮膜はガラスや樹脂の如き種々の
材質や形状を有する任意の物体の表面へ一層ずつ移すこ
とができる。
The monolayer on the water surface has the characteristic of a two-dimensional system. When the molecules are scattered, the area A per molecule and the surface pressure π
The two-dimensional ideal gas equation, πA = kT, holds between and and becomes a “gas film”. Here, k is the Boltzmann constant and T is the absolute temperature. If A is made sufficiently small, intermolecular interaction will be strengthened, and a two-dimensional solid "condensed film (or solid film)" will be formed. The condensation film can be transferred layer by layer to the surface of any object having various materials and shapes such as glass and resin.

具体的な製法としては、例えば、以下に示す方法を挙げ
ることができる。
Specific methods include, for example, the following methods.

所望の光導電性有機化合物をクロロホルム、ベンゼン、
アセトニトリル等の溶剤に溶解させる。
The desired photoconductive organic compound is chloroform, benzene,
Dissolve in a solvent such as acetonitrile.

次に添付図面の第1図に示す如き適当な装置を用いて、
光導電性有機化合物の溶液を水相1上に展開させて光導
電性有機化合物を膜上に形成させる。
Then, using a suitable apparatus as shown in FIG. 1 of the accompanying drawings,
A solution of the photoconductive organic compound is spread on the aqueous phase 1 to form the photoconductive organic compound on the film.

次にこの展開層が水相上を自由に拡散して広がりすぎな
いように仕切板(または浮子)3を設け、展開面積を制
限して膜物質の集合状態を制御し、その集合状態に比例
した表面圧πを得る。この仕切板3を動かし、展開面積
を縮小して膜物質の集合状態を制御し、表面圧を徐々に
上昇させ、膜の製造に適する表面圧πを設定することが
できる。この表面圧を維持しながら、静かに清浄な基板
2を垂直に上昇または下降させることにより光導電性有
機化合物の単分子膜が基板2上に移し取られる。このよ
うな単分子膜は第2a図または第2b図に模式的に示す
如く分子が秩序正しく配列した膜である。
Next, a partition plate (or float) 3 is provided to prevent the spreading layer from freely diffusing over the water phase and spreading too much, limiting the spreading area to control the aggregation state of the membrane substance, and proportional to the aggregation state. The obtained surface pressure π is obtained. The partition plate 3 can be moved to reduce the development area to control the aggregated state of the membrane substances, gradually increase the surface pressure, and set the surface pressure π suitable for the production of the membrane. While maintaining this surface pressure, a clean clean substrate 2 is vertically raised or lowered to transfer the monomolecular film of the photoconductive organic compound onto the substrate 2. Such a monomolecular film is a film in which molecules are arranged in an orderly manner as schematically shown in FIG. 2a or 2b.

光導電性有機化合物の単分子膜は以上で製造されるが、
前記の操作を繰り返すことにより所望の累積数の累積膜
が形成される。光導電性有機化合物の単分子膜を基板上
に移すには、上述した垂直浸漬法の他、水平付着法、回
転円筒法等の方法でも可能である。
The monomolecular film of the photoconductive organic compound is produced as described above,
By repeating the above operation, the desired cumulative number of cumulative films is formed. In order to transfer the monomolecular film of the photoconductive organic compound onto the substrate, a method such as the horizontal dipping method, the rotating cylinder method or the like can be used in addition to the above-mentioned vertical dipping method.

水平付着法は、基板を水面に水平に接触させて単分子膜
を移しとる方法であり、回転円筒法は円筒形の基板を水
面上を回転させて単分子膜を基板表面に移しとる方法で
ある。
The horizontal attachment method is a method of transferring the monomolecular film by horizontally contacting the substrate with the water surface, and the rotating cylinder method is a method of rotating the cylindrical substrate on the water surface to transfer the monomolecular film to the substrate surface. is there.

前述した垂直浸漬法では、表面が親水性である基板を水
面を横切る方向に水中から引き上げると光導電性有機化
合物の親水性基が基板側に向いた光導電性有機化合物の
単分子膜が基板上に形成される(第2b図)。前述のよ
うに基板を上下させると、各行程ごとに一枚ずつ単分子
膜が積み重なって累積膜が形成される。製膜分子の向き
が引上行程と浸漬行程で逆になるので、この方法による
と単分子膜の各層間は光導電性有機化合物の疎水基と疎
水基が向かいあうY型膜が形成される(第3a図)。こ
れに対し、水平付着法は、光導電性有機化合物の疎水性
基が基板側に向いた単分子膜が基板上に形成される(第
2a図)。この方法では、単分子膜を累積しても製膜分
子の向きの交代はなく全ての層において、疎水性基が基
板側に向いたX型膜が形成される(第3b図)。反対に
全ての層において親水性基が基板側に向いた累積膜はZ
型膜と呼ばれる(第3c図)。
In the above-mentioned vertical dipping method, when the substrate whose surface is hydrophilic is pulled up from the water in the direction crossing the water surface, the monomolecular film of the photoconductive organic compound in which the hydrophilic group of the photoconductive organic compound faces the substrate is formed. Formed on top (Fig. 2b). When the substrate is moved up and down as described above, the monomolecular films are stacked one by one in each step to form a cumulative film. Since the directions of the film-forming molecules are opposite in the pulling up process and the dipping process, according to this method, a Y-type film in which the hydrophobic group and the hydrophobic group of the photoconductive organic compound face each other is formed between the layers of the monomolecular film ( (Fig. 3a). On the other hand, in the horizontal deposition method, a monomolecular film in which the hydrophobic groups of the photoconductive organic compound face the substrate is formed on the substrate (Fig. 2a). In this method, even if the monomolecular film is accumulated, there is no change in the direction of the film-forming molecules, and in all the layers, an X-type film in which the hydrophobic group faces the substrate side is formed (Fig. 3b). On the other hand, in all layers, the cumulative film with hydrophilic groups facing the substrate is Z
It is called the mold film (Fig. 3c).

単分子膜を基板上に移す方法は、上記方法に限定される
わけではなく、大面積基板を用いる時には、ロールから
水相中に基板を押し出していく方法なども採り得る。ま
た、前述した親水性基および疎水性基の基板への向きは
原則であり、基板の表面処理等によって変えることもで
きる。
The method of transferring the monomolecular film onto the substrate is not limited to the above method, and when a large-area substrate is used, a method of extruding the substrate from a roll into the aqueous phase may be employed. Further, the orientations of the hydrophilic group and the hydrophobic group described above to the substrate are in principle, and can be changed by surface treatment of the substrate.

以上の如くして前記光導電性有機化合物の単分子膜また
はその累積膜からなる光導電層が基板上に形成される。
As described above, the photoconductive layer composed of the monomolecular film of the photoconductive organic compound or a cumulative film thereof is formed on the substrate.

本発明において、上記の如き光導電性有機化合物の単分
子膜またはその累積膜からなる光導電性有機層を形成す
るための基板は、金属、ガラス、セラミックス、プラス
チック材料等いずれの材料でもよく、更に耐熱性の著し
く低い生体材料も使用できる。金属の如き導電性材料も
使用できるのは、上述の通り、単分子膜または累積膜が
膜に垂直な方向では十分な絶縁性を有していることによ
る。
In the present invention, the substrate for forming the photoconductive organic layer comprising a monomolecular film of the photoconductive organic compound or a cumulative film thereof as described above may be any material such as metal, glass, ceramics and plastic materials, Furthermore, a biomaterial having extremely low heat resistance can also be used. A conductive material such as a metal can be used because, as described above, the monomolecular film or the cumulative film has a sufficient insulating property in the direction perpendicular to the film.

上記の如き基板は、任意の形状でよく、平板状であるの
が好ましいが、平板に何ら限定されない。すなわち本発
明においては、基板の表面がいかなる形状であってもそ
の形状通りに膜を形成し得る利点を有するからである。
The substrate as described above may have any shape and is preferably a flat plate, but is not limited to a flat plate. That is, the present invention has an advantage that a film can be formed according to any shape of the surface of the substrate.

以上の如き基板はその少なくとも1部の表面に任意の方
向性を有する微細な凹凸形状を有するものであり、この
ような凹凸形状は従来公知のいずれの方法によっても形
成できる。例えば、基板が合成樹脂製である場合には、
所望の任意の方向性を有する微細な凹凸形状面を有する
型を用いてその凹凸形状を転写する方法、基板が金属や
セラミックである場合には、従来の印刷版技術やIC技
術で汎用されているホトエッチング方法、上記の基板や
その他の基板において、その所望の表面に感光性樹脂層
を形成し、スクパターンを通して露光して現像し、感光
性樹脂層の厚みにより凹凸形状を形成する方法等任意の
方法が利用できる。また形成される凹凸形状は、直線状
あるいは曲線状あるいはその組合せの如く連続性であり
方向性を有するが好ましい。またこれらの凹凸形状、特
に直線状や曲線状の凹凸形状においては、それらの線の
間隔、すなわちビッチ幅があまり広すぎるときは、その
上に形成される光導電性有機層の光導電性の差が発生し
難くなるので、それらのピッチ幅は0.1〜100μm程
度が好適である。
At least a part of the surface of the substrate as described above has a fine uneven shape having an arbitrary directionality, and such an uneven shape can be formed by any conventionally known method. For example, if the substrate is made of synthetic resin,
A method of transferring the uneven shape using a mold having a fine uneven surface having a desired arbitrary direction, and when the substrate is a metal or a ceramic, it is generally used in conventional printing plate technology and IC technology. Photo-etching method, a method of forming a photosensitive resin layer on the desired surface of the above-mentioned substrate or other substrate, exposing through a mask pattern and developing, and forming an uneven shape by the thickness of the photosensitive resin layer, etc. Any method can be used. Further, it is preferable that the uneven shape formed is continuous and directional, such as a linear shape, a curved shape or a combination thereof. Further, in these uneven shapes, particularly in the case of linear or curved uneven shapes, when the spacing between the lines, that is, the bitch width is too wide, the photoconductive organic layer of the photoconductive organic layer formed thereon is Since the difference hardly occurs, the pitch width thereof is preferably about 0.1 to 100 μm.

また、上記の如き線状の凹凸形状の凹部および凸部、す
なわち谷と山の形状は特に限定されない。しかしなが
ら、それらの高低差、すなわち溝の深さはあまりに浅す
ぎると前述の如き光導電性の差が小さくなるので、一般
的には0.1〜100μm程度の深さが好ましい。
Further, the shapes of the concave and convex portions having the linear uneven shape as described above, that is, the shapes of the valleys and the peaks are not particularly limited. However, if the difference in height between them, that is, the depth of the groove is too shallow, the difference in photoconductivity as described above becomes small. Therefore, a depth of about 0.1 to 100 μm is generally preferable.

本発明の光導電デバイスは以上の如き任意の方向性を有
する微細な凹凸形状を有する基板面に前述の如き方法で
光導電性有機層を形成することによって提供されるが、
使用した光導電性有機化合物が重合性基を有する場合に
は、上記の如く膜を形成後にこれらの膜を重合硬化さ
せ、膜強度を著しく向上させることもできる。
The photoconductive device of the present invention is provided by forming a photoconductive organic layer on the surface of a substrate having a fine uneven shape having an arbitrary direction as described above by the method as described above.
When the photoconductive organic compound used has a polymerizable group, the film strength can be remarkably improved by polymerizing and curing these films after forming the films as described above.

(作用・効果) 以上の如き本発明によれば、所望の方向性を有する微細
な凹凸形状を有する基板を導電デバイスの基板として採
用するのみで有機光導電層に特に高い温度や圧力あるい
は光等の過酷な条件を適用したり、また各種の酸、アル
カリ、有機溶剤等の強力な薬剤を使用することなく所望
の光導電パターンが付与できるので、使用した光導電性
有機化合物の優れた特性を何等害することなく、高密
度、高集積度等の高性能の有機光導電デバイスが提供さ
れる。
(Operation / Effect) According to the present invention as described above, only by adopting a substrate having a fine uneven shape having a desired directionality as a substrate of a conductive device, particularly high temperature, pressure, light, etc. can be applied to the organic photoconductive layer. Since the desired photoconductive pattern can be imparted without applying the harsh conditions of, and without using strong agents such as various acids, alkalis and organic solvents, the excellent characteristics of the photoconductive organic compound used can be obtained. Provided is a high-performance organic photoconductive device having high density and high degree of integration without any harm.

また、本発明によれば、光導電パターンの形成にあた
り、基板上の有機光導電層を何ら破壊する必要がないの
で、有機光導電層に何ら悪影響を与えることなく、任意
の光導電パターンを形成することができるので、高微細
加工が可能であり、優れた電気的特性を有する有機光導
電デバイスが再現性よく容易に提供することが可能とな
った。
Further, according to the present invention, since it is not necessary to destroy the organic photoconductive layer on the substrate in forming the photoconductive pattern, it is possible to form an arbitrary photoconductive pattern without adversely affecting the organic photoconductive layer. As a result, it is possible to provide an organic photoconductive device having a high degree of fine processing and excellent electrical characteristics with good reproducibility.

以上の点から、本発明によれば、本発明の有機光導電デ
バイスは従来の高密度電気素子としては勿論、生体を利
用するバイオエレクトロニクスの素子としても大いに期
待できるものである。
From the above points, according to the present invention, the organic photoconductive device of the present invention can be greatly expected not only as a conventional high-density electric element but also as a bioelectronic element utilizing a living body.

次に実施例を挙げて本発明を更に具体的に説明する。Next, the present invention will be described more specifically with reference to examples.

実施例1 ガラス基板上に、ホトレジスト材OMR(東京応化工業
製)を膜厚1.5μmの厚みになるように塗布および乾燥
させた。
Example 1 On a glass substrate, a photoresist material OMR (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied and dried to a thickness of 1.5 μm.

次に種々太さの線状のシャドウ部分を有するホトマスク
を介して露光後、現像し、第4図に示す様に、基板2上
にそれぞれ溝間隔の異なる溝8((溝幅1.6μm、深さ
1.5μm、溝と溝との間隔は、1,2,5,10,20,100
μmである)を形成した。但し、第4図には、そのうち
の1つを示す。この基板の全面にLB法によりアラキジ
ン酸カドミウム塩の単分子膜を3層累積して処水性処理
を施した。
Next, after exposing through a photomask having linear shadow portions of various thicknesses and developing, as shown in FIG. 4, the grooves 8 ((groove width 1.6 μm, depth It
1.5 μm, the distance between grooves is 1, 2, 5, 10, 20, 100
.mu.m). However, FIG. 4 shows one of them. Three layers of cadmium arachidate monolayers were accumulated on the entire surface of the substrate by the LB method to perform water treatment.

上記のアズレン系色素誘導体(1)をベンゼン溶媒に1mg
/mの濃度で溶解した後、KHCO3でpH6.8に調整され
たCdCl2濃度4×10-4mol/、水温17℃の水相上に
展開した。
1 mg of the above azulene dye derivative (1) in benzene solvent
After dissolving at a concentration of / m, CdCl 2 concentration adjusted to pH 6.8 with KHCO 3 was 4 × 10 −4 mol /, and the solution was developed on a water phase at a water temperature of 17 ° C.

溶媒のベンゼンを蒸発除去した後、表面圧を20mN/m
まで高め単分子膜を形成した。表面圧を一定(20mN/
m)に保ちながら、上記の基板を、水面を横切る方向に
速度3mm/minで静かに基板を浸漬した後、続いて速度
3mm/minで静かに引き上げ2層の単分子膜を基板の面
に累積した。以上の累積操作を5回繰返し単分子膜の1
0層10が積層された本発明の有機光導電デバイスを得
た。
After evaporating and removing the solvent benzene, the surface pressure is 20 mN / m
And a monomolecular film was formed. Constant surface pressure (20mN /
m), the above substrate was gently dipped in the direction crossing the water surface at a speed of 3 mm / min, and then gently pulled up at a speed of 3 mm / min to form a two-layer monomolecular film on the surface of the substrate. Accumulated. Repeating the above accumulation operation 5 times
An organic photoconductive device of the present invention in which 0 layer 10 was laminated was obtained.

以上の様にして得た試料に対し、第4図に示すとおり、
電極11を設け、分光器で単色光化された光線(500〜9
00nm)照射下での光導電率σp測定を行った結果、連続
する溝上の任意の2点間でのσpはいずれの溝間隔の領
域においても、850nmの入射光に対し極大を有し、そ
の値は10-11〜10-10S/cmであった。一方独立する
溝間におけるσpは測定した全波長域に渡って10-14
S/cm以下であり、前記基板表面形状により高い光導電
特性が得られると同時に光導電層の膜面内方向に極めて
大きな光導電性の異方性が得られることが明らかとなっ
た。即ち、基板の凹凸形状の方向性に従ったパターンを
有する光導電デバイスが得られた。尚、本実施例では溝
は直線状のものを用いたが、方向性を有する限り、曲線
であってもよいのは当然である。
As shown in FIG. 4, for the sample obtained as described above,
An electrode 11 is provided and a monochromatic light beam (500-9
As a result of measuring the photoconductivity σp under irradiation, the σp between any two points on the continuous groove has a maximum with respect to the incident light of 850 nm in any groove interval region. The value was 10 -11 to 10 -10 S / cm. On the other hand, σp between independent grooves is 10 -14 over the entire measured wavelength range.
It was S / cm or less, and it was revealed that high photoconductivity was obtained due to the substrate surface shape, and at the same time, extremely large photoconductivity anisotropy was obtained in the in-plane direction of the photoconductive layer. That is, a photoconductive device having a pattern according to the directionality of the uneven shape of the substrate was obtained. Although the groove is linear in this embodiment, it may be curved as long as it has directivity.

比較例1 上記と全く同一の手法で平滑なガラス基板を使用した例
では、任意の2点間における光導電率は10-13S/cm
程度であった。
Comparative Example 1 In an example in which a smooth glass substrate is used by the same method as above, the photoconductivity between any two points is 10 −13 S / cm.
It was about.

実施例2〜6、比較例2〜6 実施例1における単分子膜の累積数を下記第1表の如く
したことを除いて、他は実施例1および比較例1と同様
にして本発明および比較例の種々の有機光導電デバイス
を作成し、実施例1と同様にして光導電率を測定したと
ころ、下記第1表の結果を得た。
Examples 2 to 6 and Comparative Examples 2 to 6 Except that the cumulative number of monolayers in Example 1 was as shown in Table 1 below, the same as in Example 1 and Comparative Example 1, the present invention and When various organic photoconductive devices of Comparative Examples were prepared and the photoconductivity was measured in the same manner as in Example 1, the results shown in Table 1 below were obtained.

実施例7〜11 実施例1における色素に代えて下記第2表の色素を使用
し、他は実施例1同様にして種々の本発明の有機光導電
デバイスを得た。これらの有機光導電デバイスの光導電
率(S/cm)を実施例1と同様に測定したところ下記第
2表の如き結果を得た。但しこのとき実施例8,9,10
において、その成膜性向上の為、色素分子に対し1:3
の割合でアラキジン酸(C19H39COOH)を混合したものを
膜構成材料とした。また、更に実施例10では色素5と
6がモル比1:1となる様混合したものを用いた。
Examples 7 to 11 Various organic photoconductive devices of the present invention were obtained in the same manner as in Example 1 except that the dyes shown in Table 2 below were used instead of the dyes in Example 1. When the photoconductivity (S / cm) of these organic photoconductive devices was measured in the same manner as in Example 1, the results shown in Table 2 below were obtained. However, at this time, Examples 8, 9, 10
In order to improve the film-forming property, the ratio of dye molecules to 1: 3
A mixture of arachidic acid (C 19 H 39 COOH) at the ratio of was used as the film constituent material. Further, in Example 10, a mixture of dyes 5 and 6 was used so that the molar ratio was 1: 1.

実施例11 ガラス基板上にレジスト材OMRを塗布(1.5μm厚)
し、フォトエッチングによりレジスト上にストライプ状
の溝(溝間隔200μm、幅1.6μm、深さ1.5μm)を形
成した。この基板を使用し、他は実施例1と同様にして
20層の単分子膜を累積して本発明の光導電デバイスと
した。更に溝方向に向き合った外部接続電極を各一対ず
つそれぞれの連続する溝上に形成し、また対向電極の内
一方を共通電極とした。以上の様にして得た試料に対
し、実施例1と同様にして870nmに中心波長を有す
る半導体レーザ光(出力20mw、ビーム径20μmφ)を
照射し、導電率σを測定したところ任意の被測定電極間
に照射した時はσは約10-10S/cmであったのに対
し、全く照射をしない場合あるいは隣接する電極間に照
射を行った場合でもσは10-14S/cm以下であった。
即ち上記の光導電デバイスは所望の形状に従った多数個
の光電変換素子から成り、且つ各素子間は充分に絶縁さ
れていることを示している。
Example 11 A resist material OMR is coated on a glass substrate (1.5 μm thick).
Then, a stripe-shaped groove (groove interval 200 μm, width 1.6 μm, depth 1.5 μm) was formed on the resist by photoetching. Using this substrate, 20 layers of monomolecular films were accumulated in the same manner as in Example 1 to obtain a photoconductive device of the present invention. Further, each pair of external connection electrodes facing each other in the groove direction was formed on each continuous groove, and one of the counter electrodes was used as a common electrode. The sample obtained as described above was irradiated with a semiconductor laser beam having a center wavelength of 870 nm (output 20 mw, beam diameter 20 μmφ) in the same manner as in Example 1, and the conductivity σ was measured. Σ was about 10 -10 S / cm when irradiated between electrodes, whereas σ was 10 -14 S / cm or less when no irradiation was performed or when irradiation was performed between adjacent electrodes. there were.
That is, it is shown that the above-mentioned photoconductive device is composed of a large number of photoelectric conversion elements having a desired shape, and the elements are sufficiently insulated.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の光導電デバイスの光導電性有機色素層
を形成する方法を図解的に示す図である。第2図は単分
子膜の模式図であり、第3図は累積膜の模式図である。
第4図は、本発明の光導電デバイスの断面を図解的に示
す図である。 1;水相、 2;基板、 3;浮子、 4;単分子膜、 5;累積膜、 6;親水性部位、 7;疎水性部位、 8;凹部、 9;凸部、 10;光導電性有機色素層 11;電極
FIG. 1 is a diagram schematically showing a method for forming a photoconductive organic dye layer of the photoconductive device of the present invention. FIG. 2 is a schematic diagram of a monomolecular film, and FIG. 3 is a schematic diagram of a cumulative film.
FIG. 4 is a diagram schematically showing a cross section of the photoconductive device of the present invention. 1; Water phase, 2; Substrate, 3; Float, 4; Monomolecular film, 5; Cumulative film, 6; Hydrophilic part, 7: Hydrophobic part, 8: Recessed part, 9; Convex part, 10: Photoconductive Organic dye layer 11; electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 謙治 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 宮▲崎▼ 俊彦 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 江口 健 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (56)参考文献 特開 昭60−189753(JP,A) 米国特許2599542(US,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Saito Kenji Saito 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Miya ▲ saki ▼ Toshihiko 3-30-2 Shimomaruko, Ota-ku, Tokyo No. Canon Inc. (72) Inventor Ken Eguchi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) Reference JP-A-60-189753 (JP, A) US Patent 2599542 (US) , A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】任意の方向性を有する微細な凹凸形状を有
する基板表面に、1分子中に疎水性部位及び親水性部位
を有する光導電性有機化合物の単分子膜あるいはその累
積膜を含む光導電性有機層が形成されていることを特徴
とする有機光導電デバイス。
1. A light containing a monomolecular film of a photoconductive organic compound having a hydrophobic site and a hydrophilic site in one molecule or a cumulative film thereof on the surface of a substrate having a fine uneven shape having an arbitrary directionality. An organic photoconductive device having a conductive organic layer formed thereon.
【請求項2】光導電性有機化合物が、光導電性有機色素
である特許請求の範囲第1項に記載の有機光導電デバイ
ス。
2. The organic photoconductive device according to claim 1, wherein the photoconductive organic compound is a photoconductive organic dye.
【請求項3】光導電性有機化合物が、シアニン色素、メ
ロシアニン色素、フタロシアニン色素、トリフェニルメ
タン色素、アズレン色素及び色素タンパク質から選択さ
れる特許請求の範囲第2項に記載の有機光導電デバイ
ス。
3. The organic photoconductive device according to claim 2, wherein the photoconductive organic compound is selected from cyanine dyes, merocyanine dyes, phthalocyanine dyes, triphenylmethane dyes, azulene dyes and dye proteins.
【請求項4】任意の方向性を有する微細な凹凸形状を有
する基板表面に、ラングミュア・ブロジェット法により
1分子中に疎水性部位及び親水性部位を有する光導電性
有機化合物の単分子膜あるいはその累積膜を積層するこ
とを特徴とする有機光導電デバイスの製造方法。
4. A monomolecular film of a photoconductive organic compound having a hydrophobic site and a hydrophilic site in one molecule by the Langmuir-Blodgett method on the surface of a substrate having a fine uneven shape having an arbitrary direction or A method for manufacturing an organic photoconductive device, comprising stacking the accumulated films.
JP61213977A 1986-09-12 1986-09-12 Organic photoconductive device and manufacturing method thereof Expired - Fee Related JPH0654813B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61213977A JPH0654813B2 (en) 1986-09-12 1986-09-12 Organic photoconductive device and manufacturing method thereof
US07/099,345 US4929524A (en) 1986-09-12 1987-09-10 Organic photo conductive medium
EP87308072A EP0260152B1 (en) 1986-09-12 1987-09-11 Organic conductive medium
DE3789585T DE3789585T2 (en) 1986-09-12 1987-09-11 Leading organic structure.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61213977A JPH0654813B2 (en) 1986-09-12 1986-09-12 Organic photoconductive device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS6370579A JPS6370579A (en) 1988-03-30
JPH0654813B2 true JPH0654813B2 (en) 1994-07-20

Family

ID=16648199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61213977A Expired - Fee Related JPH0654813B2 (en) 1986-09-12 1986-09-12 Organic photoconductive device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0654813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289167B2 (en) 1997-04-14 2016-03-22 Masimo Corporation Signal processing apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289167B2 (en) 1997-04-14 2016-03-22 Masimo Corporation Signal processing apparatus and method

Also Published As

Publication number Publication date
JPS6370579A (en) 1988-03-30

Similar Documents

Publication Publication Date Title
US4586980A (en) Pattern forming method
Clark et al. Selective deposition in multilayer assembly: SAMs as molecular templates
US4728591A (en) Self-assembled nanometer lithographic masks and templates and method for parallel fabrication of nanometer scale multi-device structures
JP4325555B2 (en) Material using pattern surface as template and its manufacturing method
KR940004732A (en) Pattern formation method and thin film formation method used for pattern formation
CN104053628B (en) Can be from group polymer and its application method in photoetching
US20060116001A1 (en) Patterning method
US4798740A (en) Polymerizable film and pattern forming method by use thereof
JPH0766990B2 (en) Organic device and manufacturing method thereof
US20070170064A1 (en) Method of electrolytically depositing materials in a pattern directed by surfactant distribution
US4996075A (en) Method for producing ultrathin metal film and ultrathin-thin metal pattern
US6458426B1 (en) Method for depositing a patterned layer of material over a substrate
US7442403B2 (en) Membrane architectures for ion-channel switch-based electrochemical biosensors
Diguet et al. Preparation of phospholipid multilayer patterns of controlled size and thickness by capillary assembly on a microstructured substrate
JPH0654813B2 (en) Organic photoconductive device and manufacturing method thereof
Watanabe et al. Stepwise deposition of oriented monolayer-polymer films by the Langmuir-Blodgett technique
JP2005175164A (en) Manufacturing method of nano gap electrode, and element using nano gap electrode manufactured by the method
CA1333637C (en) Method of driving device having mim structure
KR100841457B1 (en) Method for preparing nano-circuit including V2O5 nanowire pattern
JPS6370578A (en) Organic photoconductive medium and manufacture thereof
JP2013044604A (en) Biochip based on metal oxide insulator film
Ogawa Evaluation of LB films as quarter micron lithography resists using excimer laser, x-ray, and electron beam exposure
Kang et al. Fabrication of gold nanoparticle pattern using imprinted hydrogen silsesquioxane pattern for surface-enhanced Raman scattering
JPH0675194B2 (en) Polymerizable thin film
JP4023045B2 (en) Manufacturing method of fine structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees