JPH0654638B2 - Alignment device for charged particle beam device - Google Patents

Alignment device for charged particle beam device

Info

Publication number
JPH0654638B2
JPH0654638B2 JP61174882A JP17488286A JPH0654638B2 JP H0654638 B2 JPH0654638 B2 JP H0654638B2 JP 61174882 A JP61174882 A JP 61174882A JP 17488286 A JP17488286 A JP 17488286A JP H0654638 B2 JPH0654638 B2 JP H0654638B2
Authority
JP
Japan
Prior art keywords
signal
deflection
lens
charged particle
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61174882A
Other languages
Japanese (ja)
Other versions
JPS6332845A (en
Inventor
純一 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP61174882A priority Critical patent/JPH0654638B2/en
Publication of JPS6332845A publication Critical patent/JPS6332845A/en
Publication of JPH0654638B2 publication Critical patent/JPH0654638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電界放射電子銃等を備えた電子線装置等の荷電
粒子線装置における軸合わせ装置に関する。
TECHNICAL FIELD The present invention relates to an alignment device for a charged particle beam device such as an electron beam device equipped with a field emission electron gun and the like.

[従来の技術] 電界放射電子銃を備えた電子線装置においては、電子銃
部には静電レンズが備えられており、この電子銃部と電
子銃アライメントコイルを含む下部銃筒とは、電子銃部
を高真空に保つため微小なアパーチャを有するアノード
で仕切られている。
[Prior Art] In an electron beam apparatus equipped with a field emission electron gun, the electron gun section is provided with an electrostatic lens, and the electron gun section and the lower barrel including the electron gun alignment coil are It is partitioned by an anode with a minute aperture to keep the gun in a high vacuum.

[発明が解決しようとする問題点] ところで、電界放射電子銃のエミッターチップから発生
した電子線を集束レンズの中心を通過させると共に対物
レンズの中心を通過させて良好な像を観察するため、軸
合わせを行なうが、上述した装置においては、アノード
のアパーチャが極めて小さいため、軸合わせを簡単に行
なうことはできなかった。
[Problems to be Solved by the Invention] In order to observe an excellent image by passing an electron beam generated from an emitter tip of a field emission electron gun through the center of a focusing lens and a center of an objective lens, Although alignment is performed, in the above-mentioned device, the axis alignment cannot be easily performed because the aperture of the anode is extremely small.

本発明はこのような従来の問題を解決し、アノード等の
電極に設けられているアパーチャが微小な場合に、簡単
に軸合わせを行なうことのできる荷電粒子線装置におけ
る軸合わせ装置を提供することを目的としている。
The present invention solves such a conventional problem, and provides an axis aligning device in a charged particle beam device which can easily perform axis alignment when an aperture provided in an electrode such as an anode is minute. It is an object.

[問題点を解決するための手段] 本発明の荷電粒子線装置における軸合わせ装置は、微小
開口を通過した荷電粒子線源よりの荷電粒子を集束する
ための第1のレンズと、該第1のレンズにより集束され
た荷電粒子を集束するための第2のレンズと、偏向信号
を発生する第1,第2の偏向信号発生手段と、前記微小
開口と前記第1のレンズとの間に配置された軸合わせ用
の第1,第2の偏向手段と、前記荷電粒子線源と前記第
1の偏向手段との距離をa、前記第1,第2の偏向手段
間の距離をb、前記第2の偏向手段と前記第1のレンズ
との距離をc、前記第1,第2の偏向手段による偏向角
をθ,θとするとき、前記第1の偏向信号発生手段
よりの信号をθ/θ=(a+b)/aなる関係に基
づいて2つの信号に変換するための第1の分配手段と、
前記第2の偏向信号発生手段よりの信号をθ/θ
c/(b+c)なる関係に基づいて2つの信号に変換す
るための第2の分配手段と、前記第1の分配手段よりの
2つの信号の一方と前記第2の分配手段よりの2つの信
号の一方とを加算しその加算信号を前記第1の偏向手段
に供給するための手段と、前記第1の分配手段よりの他
方の信号と前記第2の分配手段よりの他方の信号とを加
算しその加算信号を前記第2の偏向手段に供給するため
の手段とを備えている。
[Means for Solving Problems] An axis aligning device in a charged particle beam device according to the present invention includes a first lens for focusing charged particles from a charged particle beam source that has passed through a minute aperture, and the first lens. Disposed between the second lens for focusing the charged particles focused by the lens, first and second deflection signal generating means for generating a deflection signal, and the minute aperture and the first lens. The distance between the charged particle beam source and the first deflecting means, and the distance between the first and second deflecting means is b, and the distance between the first and second deflecting means is b. When the distance between the second deflecting means and the first lens is c, and the deflection angles by the first and second deflecting means are θ 1 and θ 2 , signals from the first deflecting signal generating means To convert two signals into two signals based on the relationship of θ 1 / θ 2 = (a + b) / a. 1 distribution means,
The signal from the second deflection signal generating means is represented by θ 1 / θ 2 =
Second distribution means for converting into two signals based on the relationship c / (b + c), one of the two signals from the first distribution means and two signals from the second distribution means And means for supplying the addition signal to the first deflection means, and the other signal from the first distribution means and the other signal from the second distribution means. And a means for supplying the addition signal to the second deflecting means.

[実施例] 以下、図面に基づき本発明の実施例を詳述する。EXAMPLES Examples of the present invention will be described in detail below with reference to the drawings.

第1図は本発明を電界放射電子銃を備えた走査電子顕微
鏡に適用した場合の実施例を示すためのもので、第1図
(a)は第1段階の軸合わせ動作を説明するための図で
あり、第1図(b)は第2段階の軸合わせ動作を説明す
るための図である。
FIG. 1 is for showing an embodiment in which the present invention is applied to a scanning electron microscope equipped with a field emission electron gun, and FIG. 1 (a) is for explaining an axial alignment operation at a first stage. It is a figure and Drawing 1 (b) is a figure for explaining axis alignment operation of the 2nd step.

第1図中1は電界放射電子銃のエミッターチップであ
り、2は引き出し電極である。3はアノードであり、ア
ノード3には微小なアパーチャ3aが設けられている。
4,5は軸合わせ用の第1,第2の偏向コイルである。
6は集束レンズ、7は対物レンズ、8は試料である。9
は走査コイルであり、走査コイル9には図示していない
が走査信号発生回路より鋸歯状の水平及び垂直走査信号
が送られる。10は二次電子検出器であり、二次電子検
出器10よりの検出信号は図示していないが、前記走査
信号に基づいて同期走査されるCRTに送られる。1
3,14は第1,第2の加算回路であり、これら加算回
路の出力信号は各々増幅器11,12を介して偏向コイ
ル4,5に送られる。第1の加算回路13には第1の分
配回路15の出力信号と、第2の分配回路16の出力信
号が供給される。又、第2の加算回路14にも、第1の
分配回路15と第2の分配回路16の出力信号が供給さ
れる。17は第1の分配回路15へ偏向信号を供給する
ための第1の偏向信号発生回路であり、18は第2の分
配回路16へ偏向信号を供給するための第2の偏向信号
発生回路である。ここで、前記第1の分配回路15は第
1の偏向信号発生回路17よりの信号を次の条件を維持
するように第1,第2の加算回路13,14に分配す
る。即ち、第1図(a)に示すように、偏向コイル4に
より偏向された後偏向コイル5において振り戻された電
子線の延長線Rが常にチップ1に交じわるように回路1
7よりの信号を回路13,14へ分配する。この条件は
又、次のようにも表現できる。即ち、第1図(a)にお
いて、チップ1と第1の偏向コイル4との距離をa,第
1,第2の偏向コイル4,5間の距離をb,電子線EB
1に示すように、第1の偏向コイル4による電子線EB
の偏向角をθ,第2偏向コイルによる電子線EBの偏
向角をθ,電子線EB1の延長線Rと電子線EBとが
成す角をθ,電子線EB1の延長線Rと電子線EBとの
偏向コイル4面における間隔をδとすると、実際には微
小であるθ及びθに対して略 θ=δ/a θ=δ/b を常に成立させることに相当する。
In FIG. 1, 1 is an emitter tip of a field emission electron gun, and 2 is an extraction electrode. Reference numeral 3 is an anode, and the anode 3 is provided with a minute aperture 3a.
Reference numerals 4 and 5 are first and second deflection coils for axis alignment.
Reference numeral 6 is a focusing lens, 7 is an objective lens, and 8 is a sample. 9
Is a scanning coil, and although not shown, the scanning coil 9 is supplied with sawtooth horizontal and vertical scanning signals from a scanning signal generating circuit. Reference numeral 10 is a secondary electron detector. Although not shown, the detection signal from the secondary electron detector 10 is sent to a CRT which is synchronously scanned based on the scanning signal. 1
Reference numerals 3 and 14 denote first and second adder circuits, and the output signals of these adder circuits are sent to the deflection coils 4 and 5 via amplifiers 11 and 12, respectively. The output signal of the first distribution circuit 15 and the output signal of the second distribution circuit 16 are supplied to the first addition circuit 13. The output signals of the first distribution circuit 15 and the second distribution circuit 16 are also supplied to the second addition circuit 14. Reference numeral 17 is a first deflection signal generation circuit for supplying a deflection signal to the first distribution circuit 15, and 18 is a second deflection signal generation circuit for supplying a deflection signal to the second distribution circuit 16. is there. Here, the first distribution circuit 15 distributes the signal from the first deflection signal generation circuit 17 to the first and second addition circuits 13 and 14 so as to maintain the following conditions. That is, as shown in FIG. 1 (a), the circuit 1 is arranged so that the extension line R of the electron beam deflected by the deflection coil 4 and then swung back in the deflection coil 5 always intersects with the chip 1.
The signal from 7 is distributed to the circuits 13 and 14. This condition can also be expressed as follows. That is, in FIG. 1A, the distance between the chip 1 and the first deflection coil 4 is a, the distance between the first and second deflection coils 4 and 5 is b, and the electron beam EB.
As shown in FIG. 1, the electron beam EB from the first deflection coil 4
Is θ 1 , the deflection angle of the electron beam EB by the second deflection coil is θ 2 , the angle formed by the extension line R of the electron beam EB1 and the electron beam EB is θ, the extension line R of the electron beam EB1 and the electron beam EB. When the distance between the EB and the deflection coil on the surface of the deflection coil 4 is δ, it corresponds to the fact that approximately θ = δ / a θ 2 = δ / b is always established for θ 2 and θ which are actually minute.

ところで、 θ=θ+θ であるから、上記条件式を用いれば、以下の関係式が得
られる。
By the way, since θ 1 = θ 2 + θ, the following relational expression can be obtained by using the above conditional expression.

θ/θ=(θ+θ)/θ =(δ/b+δ/a)/(δ/b) 従って、第1の分配回路15は常に略 θ/θ=(a+b)/a …(1) なる関係を維持させる働きを有する。θ 1 / θ 2 = (θ 2 + θ) / θ 2 = (δ / b + δ / a) / (δ / b) Therefore, the first distribution circuit 15 is always approximately θ 1 / θ 2 = (a + b) / a. (1) It has the function of maintaining the following relationship.

また、前記第2の分配回路16は第2の偏向信号発生回
路18よりの信号を次の条件を維持するように第1,第
2の加算回路13,14に分配する。即ち、第1の偏向
信号発生回路17を用いた軸合わせによって、第1図
(a)の電子線EB3 に示すように、集束レンズ6の中
心Oを通るように調整された電子線が、必ずこの中心O
を通過する条件を維持するように、分配回路16は信号
の分配を行なう。この条件は次のように表現することも
できる。
Further, the second distribution circuit 16 distributes the signal from the second deflection signal generation circuit 18 to the first and second addition circuits 13 and 14 so as to maintain the following conditions. That is, an electron beam adjusted to pass through the center O of the focusing lens 6 as shown by the electron beam EB3 in FIG. This center O
The distribution circuit 16 distributes the signal so as to maintain the condition of passing the signal. This condition can also be expressed as follows.

第1図(a),(b)においては、軸ずれを分り易くす
るため、チップ1の位置をレンズ6,7の軸Zから大き
く離して描いたが、実際の軸ずれは微小であるので、い
ま、この軸ずれ角を無視した第2図の光線図に基づいて
上記条件について説明する。
In FIGS. 1 (a) and 1 (b), the position of the chip 1 is drawn far away from the axis Z of the lenses 6 and 7 in order to make it easy to understand the axis deviation, but the actual axis deviation is very small. Now, the above conditions will be described based on the ray diagram of FIG. 2 in which this axis deviation angle is ignored.

第1図(b)と同一の構成要素に対しては同一の符号を
付した第2図において、偏向コイル5と集束レンズ6と
の距離をcとし、最初の場合と同様に偏向コイル4によ
る偏向角をθ,偏向コイル5による偏向角をθ,電
子線EBの延長線Qと電子線EB3 とが成す角をθ′,
偏向コイル5面における電子線EB3 と電子線EBの延
長線Qとの距離をδ′とすると、上記第2の分配回路1
6は実際には微小であるθ及びθ′に対して略 θ′=δ′/c θ=δ′/b が常に成立するように第2の加算回路18よりの偏向信
号を第1,第2の加算回路13,14に分配する。
In FIG. 2 in which the same components as in FIG. 1 (b) are assigned the same reference numerals, the distance between the deflection coil 5 and the focusing lens 6 is c, and the deflection coil 4 is used as in the first case. The deflection angle is θ 1 , the deflection angle by the deflection coil 5 is θ 2 , and the angle formed by the extension line Q of the electron beam EB and the electron beam EB 3 is θ ′,
If the distance between the electron beam EB3 and the extension line Q of the electron beam EB on the plane of the deflection coil 5 is δ ', then the second distribution circuit 1 described above is used.
6 is the first deflection signal from the second adder circuit 18 so that approximately θ ′ = δ ′ / c θ 1 = δ ′ / b is always established for θ 1 and θ ′, which are very small. , To the second adder circuits 13 and 14.

ところで、 θ=θ+θ′ であるから、上記条件式を用いれば、以下の関係式が得
られる。
By the way, since θ 2 = θ 1 + θ ′, the following relational expression can be obtained by using the above conditional expression.

θ/θ=θ/(θ+θ′) =(δ′/b)/(δ′/b+δ′/c) 従って、第2の分配回路16の働きは略 θ/θ=c/(b+c) …(2) なる関係を常に維持させることに相当する。θ 1 / θ 2 = θ 1 / (θ 1 + θ ′) = (δ ′ / b) / (δ ′ / b + δ ′ / c) Therefore, the function of the second distribution circuit 16 is approximately θ 1 / θ 2 = c / (b + c) (2) Corresponds to always maintaining the relationship.

このような構成の装置を用いて、以下のようにして軸合
わせを行なう。
Using the apparatus having such a configuration, axis alignment is performed as follows.

まず、走査用偏向コイル9に走査信号を供給し試料8上
を二次元的に走査し、この走査に伴って試料8より得ら
れる検出器10よりの信号をこの走査に同期走査される
CRT(図示せず)に送り、試料像を表示できるように
する。そこで、第2の偏向信号発生回路18よりの出力
信号を0とした状態において、第1の偏向信号発生回路
17より偏向信号を発生させ、偏向信号の大きさを調整
する。この偏向信号は第1の分配回路15において分配
された後、第1,第2の加算回路13,14を介して偏
向コイル4,5に供給されるため、電子線EBは第1図
(a)に示すように、その延長線Rが常にチップ1に交
差する関係を維持しながら、即ち前記第(1)式を略満
たしながら、第1,第2の偏向コイル4,5の偏向角θ
,θを変化させる。このように調整において、電子
線EBが電子線EB2 のように集束レンズ6を通るよう
になると、前記CRTに表示される像は明るくなる。そ
こで、集束レンズ6の励磁電流を周期的に振動(ウオー
ブラ)させながらCRT像を観察しつつ、第1の偏向信
号発生回路17よりの出力信号を調整すると、CRTに
表示されている像が前記ウオーブラ中にもかかわらず動
かなくなる状態が出現する。この状態においては、電子
線EBは偏向コイル4,5によって偏向された後、第1
図(a)の電子線EB3 に示すように集束レンズ6の中
心Oを通過する。
First, a scanning signal is supplied to the scanning deflection coil 9 so that the sample 8 is two-dimensionally scanned, and a signal from the detector 10 obtained from the sample 8 along with this scanning is synchronously scanned with the CRT ( (Not shown) so that the sample image can be displayed. Therefore, with the output signal from the second deflection signal generation circuit 18 set to 0, the deflection signal is generated from the first deflection signal generation circuit 17 and the magnitude of the deflection signal is adjusted. This deflection signal is distributed in the first distribution circuit 15 and then supplied to the deflection coils 4 and 5 via the first and second adder circuits 13 and 14, so that the electron beam EB is transmitted through the electron beam EB shown in FIG. ), The extension angle R always crosses the chip 1, that is, the expression (1) is substantially satisfied, and the deflection angles θ of the first and second deflection coils 4 and 5 are equal to each other.
1 and θ 2 are changed. In this way, in the adjustment, when the electron beam EB passes through the focusing lens 6 like the electron beam EB2, the image displayed on the CRT becomes bright. Therefore, when the output signal from the first deflection signal generating circuit 17 is adjusted while observing the CRT image while periodically oscillating (wobbling) the exciting current of the focusing lens 6, the image displayed on the CRT is A state where the player cannot move despite the wobbler appears. In this state, the electron beam EB is deflected by the deflection coils 4 and 5 and then the first beam
It passes through the center O of the focusing lens 6 as shown by the electron beam EB3 in FIG.

そこで、この状態で第1の偏向信号発生回路17の出力
信号を固定し、次に第2の偏向信号発生回路18を用い
て第2段階の軸合わせを行なう。
Therefore, in this state, the output signal of the first deflection signal generation circuit 17 is fixed, and then the second deflection signal generation circuit 18 is used to perform the second-stage axis alignment.

即ち、第1の集束レンズ6のウオーブラを停止させると
共に、対物レンズ7をウオーブラさせた状態でCRTを
観察しながら、第2の偏向信号発生回路18よりの出力
信号を調整する。その結果、第2の分配回路16の働き
により、電子線EBは第1図(b)を示すように、第1
の集束レンズ6の中心Oを通過する状態を維持しなが
ら、即ち前記(2)式の関係を略満たしながら、第1,
第2の偏向コイル4,5による偏向角θ,θを変化
させる。このような調整を行ないながらCRTを観察し
ていると、対物レンズ7をウオーブラしているにもかか
わらず、像が動かなくなる状態が出現する。この状態に
おいては、電子線EBは第1図(b)の電子線EB5 に
示すように、集束レンズ6の中心Oのみならず、対物レ
ンズ7の中心Oをも通過し、完全に軸合わせを行なうこ
とができる。
That is, the wobbling of the first focusing lens 6 is stopped, and the output signal from the second deflection signal generating circuit 18 is adjusted while observing the CRT with the objective lens 7 in the wobbling state. As a result, due to the action of the second distribution circuit 16, the electron beam EB moves to the first position as shown in FIG.
While maintaining the state of passing through the center O of the focusing lens 6 of, that is, substantially satisfying the relationship of the formula (2),
The deflection angles θ 1 and θ 2 by the second deflection coils 4 and 5 are changed. When observing the CRT while performing such adjustment, a state in which the image does not move appears although the objective lens 7 is wobbled. In this state, the electron beam EB passes not only the center O of the focusing lens 6 but also the center O of the objective lens 7 as shown in the electron beam EB5 of FIG. Can be done.

尚、上述した実施例は本発明の一実施例に過ぎず、変型
して実施することができる。
The above-described embodiment is merely one embodiment of the present invention and can be modified and implemented.

例えば、上述した実施例は本発明を電界放射電子銃を備
えた電子線装置に適用した例であったが、電界放射型の
イオン銃を備えたイオンビーム装置にも本発明は同様に
適用できる。
For example, the above-described embodiment is an example in which the present invention is applied to an electron beam apparatus equipped with a field emission electron gun, but the present invention can be similarly applied to an ion beam apparatus equipped with a field emission type ion gun. .

[発明の効果] 本願発明においては、微小開口を通過した荷電粒子線を
第1のレンズの中心を通過させることができ、さらに、
荷電粒子線が第1のレンズの中心を通過する状態を維持
したまま、荷電粒子線の第2のレンズへの入射位置を任
意に変えることができるため、軸合わせを簡単に行なう
ことができる。
EFFECTS OF THE INVENTION In the present invention, the charged particle beam that has passed through the minute aperture can be passed through the center of the first lens.
Since the incident position of the charged particle beam on the second lens can be arbitrarily changed while maintaining the state in which the charged particle beam passes through the center of the first lens, the axes can be easily aligned.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明の一実施例装置における第1段階
の軸合わせ動作を説明するための図、第1図(b)は本
発明の一実施例装置における第2段階の軸合わせ動作を
説明するための図、第2図は第1図における第2の分配
回路16の働きを説明するための図である。 1:エミッターチップ 2:引き出し電極、3:アノード 3a:アパーチャ、4,5:偏向コイル 6:集束レンズ、7:対物レンズ 8:試料、9:走査コイル 10:二次電子検出器 11,12:増幅器、13,14:加算回路 15,16:分配回路 17,18:偏向信号発生回路 Z:光軸、EB,EB1 ,EB2 ,EB3 ,EB4 ,E
B5 :電子線 R,Q:電子線の延長線 O,O′:レンズ中心 θ,θ:電子線偏向角
FIG. 1 (a) is a diagram for explaining the first-stage axial alignment operation in the apparatus of one embodiment of the present invention, and FIG. 1 (b) is the second-stage axial alignment operation in the apparatus of one embodiment of the present invention. FIG. 2 is a diagram for explaining the operation, and FIG. 2 is a diagram for explaining the operation of the second distribution circuit 16 in FIG. 1: Emitter chip 2: Extraction electrode, 3: Anode 3a: Aperture, 4,5: Deflection coil 6: Focusing lens, 7: Objective lens 8: Sample, 9: Scanning coil 10: Secondary electron detector 11, 12: Amplifiers 13, 14: Adder circuit 15, 16: Distribution circuit 17, 18: Deflection signal generation circuit Z: Optical axis, EB, EB1, EB2, EB3, EB4, E
B5: electron beam R, Q: extension line of electron beam O, O ': lens center θ 1 , θ 2 : electron beam deflection angle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】微小開口を通過した荷電粒子線源よりの荷
電粒子線を集束するための第1のレンズと、該第1のレ
ンズにより集束された荷電粒子線を集束するための第2
のレンズと、偏向信号を発生する第1,第2の偏向信号
発生手段と、前記微小開口と前記第1のレンズとの間に
配置された軸合わせ用の第1,第2の偏向手段と、前記
荷電粒子線源と前記第1の偏向手段との距離をa、前記
第1,第2の偏向手段間の距離をb、前記第2の偏向手
段と前記第1のレンズとの距離をc、前記第1,第2の
偏向手段による偏向角をθ,θとするとき、前記第
1の偏向信号発生手段よりの信号をθ/θ=(a+
b)/aなる関係に基づいて2つの信号に変換するため
の第1の分配手段と、前記第2の偏向信号発生手段より
の信号をθ/θ=c/(b+c)なる関係に基づい
て2つの信号に変換するための第2の分配手段と、前記
第1の分配手段よりの2つの信号の一方と前記第2の分
配手段よりの2つの信号の一方とを加算しその加算信号
を前記第1の偏向手段に供給するための手段と、前記第
1の分配手段よりの他方の信号と前記第2の分配手段よ
りの他方の信号とを加算しその加算信号を前記第2の偏
向手段に供給するための手段とを備えた荷電粒子線装置
における軸合わせ装置。
1. A first lens for focusing a charged particle beam from a charged particle beam source that has passed through a minute aperture, and a second lens for focusing the charged particle beam focused by the first lens.
Lens, first and second deflection signal generation means for generating a deflection signal, and first and second deflection means for axis alignment arranged between the minute aperture and the first lens. , A is a distance between the charged particle beam source and the first deflecting means, b is a distance between the first and second deflecting means, and a distance between the second deflecting means and the first lens. c, when the deflection angles by the first and second deflecting means are θ 1 and θ 2 , the signal from the first deflecting signal generating means is θ 1 / θ 2 = (a +
b) / a, the first distribution means for converting into two signals based on the relationship and the signal from the second deflection signal generation means have a relationship of θ 1 / θ 2 = c / (b + c). Second dividing means for converting into two signals based on the above, one of the two signals from the first dividing means and one of the two signals from the second dividing means are added, and the addition is performed. A means for supplying a signal to the first deflection means, the other signal from the first distribution means and the other signal from the second distribution means are added, and the added signal is added to the second signal. Aligning device in a charged particle beam device, comprising:
JP61174882A 1986-07-25 1986-07-25 Alignment device for charged particle beam device Expired - Fee Related JPH0654638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61174882A JPH0654638B2 (en) 1986-07-25 1986-07-25 Alignment device for charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61174882A JPH0654638B2 (en) 1986-07-25 1986-07-25 Alignment device for charged particle beam device

Publications (2)

Publication Number Publication Date
JPS6332845A JPS6332845A (en) 1988-02-12
JPH0654638B2 true JPH0654638B2 (en) 1994-07-20

Family

ID=15986312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61174882A Expired - Fee Related JPH0654638B2 (en) 1986-07-25 1986-07-25 Alignment device for charged particle beam device

Country Status (1)

Country Link
JP (1) JPH0654638B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766769B2 (en) * 1989-05-17 1995-07-19 株式会社日立製作所 Electron beam equipment
JP5531515B2 (en) * 2009-09-02 2014-06-25 株式会社島津製作所 Charged particle beam irradiation apparatus and method for adjusting axis alignment of the apparatus

Also Published As

Publication number Publication date
JPS6332845A (en) 1988-02-12

Similar Documents

Publication Publication Date Title
JP4759113B2 (en) Charged particle beam column
JPH11148905A (en) Electron beam inspection method and apparatus therefor
US6765217B1 (en) Charged-particle-beam mapping projection-optical systems and methods for adjusting same
US3717761A (en) Scanning electron microscope
US3585382A (en) Stereo-scanning electron microscope
JPH11195396A (en) Corpuscular beam device having energy filter
US4044254A (en) Scanning corpuscular-beam transmission type microscope including a beam energy analyzer
JPH0313700B2 (en)
US20160013012A1 (en) Charged Particle Beam System
US3896331A (en) Electron optical system
JPS614144A (en) Diffraction pattern display method by electron microscope
JPH0654638B2 (en) Alignment device for charged particle beam device
JPS5854784Y2 (en) Stereo scanning electron microscope
US6717141B1 (en) Reduction of aberrations produced by Wien filter in a scanning electron microscope and the like
US3986027A (en) Stereo scanning microprobe
US4097739A (en) Beam deflection and focusing system for a scanning corpuscular-beam microscope
JPS5832347A (en) Transmission-type electron microscope
US5347366A (en) Fixation structure of deflection yoke and focus magnet for projection cathode ray tube
JPS63216256A (en) Charged particle beam device
JPS6364255A (en) Particle beam radiating device
US6717143B2 (en) Beam alignment in a lower column of a scanning electron microscope or the like
US4251790A (en) Magnetic focusing and deflection system for electron beam tubes
JPH0431728Y2 (en)
JPH0320942A (en) Scanning electron microscope
EP0778605A3 (en) An electron gun assembly for a color cathode ray tube apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees