JPH065386A - Electronic cyclotron resonance device - Google Patents

Electronic cyclotron resonance device

Info

Publication number
JPH065386A
JPH065386A JP4160599A JP16059992A JPH065386A JP H065386 A JPH065386 A JP H065386A JP 4160599 A JP4160599 A JP 4160599A JP 16059992 A JP16059992 A JP 16059992A JP H065386 A JPH065386 A JP H065386A
Authority
JP
Japan
Prior art keywords
vacuum container
microwave
cyclotron resonance
electron cyclotron
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4160599A
Other languages
Japanese (ja)
Inventor
Takashi Kinoshita
隆 木下
Toshihisa Nozawa
俊久 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4160599A priority Critical patent/JPH065386A/en
Priority to IT93MI1321 priority patent/IT1264852B1/en
Publication of JPH065386A publication Critical patent/JPH065386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To provide an ECR device which irradiates an object with ions produced from plasma by ECR, wherein the density distribution of ions is made uniform by introducing microwaves with uniform power density distribution into a vacuum vessel 1 on which a magnetic field is impressed. CONSTITUTION:In a wave-guide tube 14, microwaves are transmitted having eccentric power density distribution, and upon making the power density distribution uniform by a wave emitting power density unifirming means (phase shifter 15), the waves are cast into a vacuum vessel 1 from a wave incident window 2. Thereby the produced density distribution of plasma particles in the plasma generating region (ECR region 13) is made uniform by the electron cyclotron resonance caused by the electric field due to the cast microwaves, the magnetic field impressed to the inside of the vacuum vessel 1, and the gas to be processed which was introduced into the vacuum vessel 1. Thus a processing such as etching can be done with high quality with no risk of generating eccentric ion irradiation to the object 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,高密度集積回路等の半
導体部品製造等の分野において,エッチング,デポジシ
ョン,スパッタリング,CVD等を行うための電子サイ
クロトロン共鳴装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron cyclotron resonance apparatus for performing etching, deposition, sputtering, CVD, etc. in the field of manufacturing semiconductor parts such as high density integrated circuits.

【0002】[0002]

【従来の技術】電子サイクロトロン共鳴装置は周知の通
り,磁場が印加された真空容器内に電場と,処理ガスと
を導入することにより,磁場と高周波電場と処理ガス原
子中の電子との3要素が引き起こす電子サイクロトロン
共鳴(Electron Cyciotron Resonance, ECR)によっ
て処理ガスをプラズマ化して,そのときに発生するイオ
ン,ラジカルを被照射物に照射することにより,エッチ
ング,デポジション,スパッタリング,CVD等を行う
ことができる。電子サイクロトロン共鳴装置(以下,E
CR装置と呼称する)を利用した従来技術のひとつとし
て,ECR装置によって半導体基板に対してエッチング
を行うECRエッチング装置を例にとって以下に示す。
図14に模式図として示すECRエッチング装置30
は,真空容器1を中心として,該真空容器1内に磁場を
印加するための磁気コイル10a,10bが真空容器1
の中心軸と同心に配置されると共に,真空容器1の中心
軸上の上端にはマイクロ波導入窓2が設けられ,マイク
ロ波発生器5からのマイクロ波を真空容器1内に導入す
る導波管14(導波管を構成する各部6〜9からなる)
が接続されている。真空容器1内に設置された支持台1
1上には,エッチング処理するための基板12が載置さ
れており,真空容器1内は排気ポート4から真空排気さ
れて所定の真空状態に保たれている。上記真空容器1内
に磁場を印加する磁気コイル10aと10bとは同一仕
様に形成されており,同一方向に直流励磁電流が流され
るので,各磁気コイル10a,10bの半径方向に均一
な磁束密度で真空容器1内の中心軸方向に磁場が印加さ
れる。
2. Description of the Related Art As is well known, an electron cyclotron resonance apparatus has three elements, a magnetic field, a high frequency electric field, and electrons in processing gas atoms, which are introduced by introducing an electric field and a processing gas into a vacuum container to which a magnetic field is applied. To perform etching, deposition, sputtering, CVD, etc. by irradiating the irradiated object with the ions and radicals generated at that time by converting the processing gas into plasma by Electron Cyciotron Resonance (ECR) You can Electron cyclotron resonance device (hereinafter, E
As one of the conventional techniques using a CR device), an ECR etching device for etching a semiconductor substrate by an ECR device will be described below as an example.
ECR etching apparatus 30 shown in FIG. 14 as a schematic diagram
Around the vacuum container 1, the magnetic coils 10a and 10b for applying a magnetic field in the vacuum container 1 are
Is arranged concentrically with the central axis of the vacuum container 1, and a microwave introduction window 2 is provided at the upper end on the central axis of the vacuum container 1 to guide the microwave from the microwave generator 5 into the vacuum container 1. Tube 14 (consisting of each section 6 to 9 that constitutes the waveguide)
Are connected. Support base 1 installed in the vacuum container 1
A substrate 12 for etching is placed on the substrate 1. The inside of the vacuum container 1 is evacuated from an exhaust port 4 to maintain a predetermined vacuum state. The magnetic coils 10a and 10b for applying a magnetic field in the vacuum chamber 1 are formed to have the same specifications, and since a DC exciting current is passed in the same direction, a uniform magnetic flux density in the radial direction of each magnetic coil 10a, 10b. Then, a magnetic field is applied in the central axis direction in the vacuum container 1.

【0003】また,真空容器1内に電場を印加するため
のマイクロ波導入窓2には,マイクロ波発生器5からの
マイクロ波を伝送する導波管14が接続されている。導
波管14はマイクロ波発生器5から矩形導波管内を伝播
してきたマイクロ波をコーナー導波路6,ステップ変換
器7,円偏波変換器(ポーラライザ)8,ホーンアンテ
ナ9を通してマイクロ波導入窓2に接続している。導波
管14内を伝播するマイクロ波は,図15に示すよう
に,直線偏波矩形モードのマイクロ波(図15イ)をコ
ーナー導波路6で進行方向を直角方向に変え,ステップ
変換器7によって直線偏波円形モード(図15ロ)に変
換し,さらに円偏波変換器(ポーラライザ)8によって
円偏波円形モード(図15ハ)に変換して,ホーンアン
テナ9からマイクロ波導入窓2を通して真空容器1内に
マイクロ波を放射する。このように磁場と電場とが印加
された真空容器1内にガス導入ポート3から処理ガスを
導入すると,電子サイクロトロン共鳴によって処理ガス
はECR領域13においてプラズマ化し,イオン,ラジ
カル等のプラズマ粒子が生成される。このプラズマ粒子
は磁力線の方向に流れて,支持台11上に載置された基
板12に照射され,基板12に対してエッチング処理を
行うことができる。
A waveguide 14 for transmitting microwaves from a microwave generator 5 is connected to a microwave introduction window 2 for applying an electric field in the vacuum container 1. The waveguide 14 passes through the corner waveguide 6, the step converter 7, the circular polarization converter (polarizer) 8, and the horn antenna 9 to introduce the microwave propagating from the microwave generator 5 into the rectangular waveguide. Connected to 2. As for the microwave propagating in the waveguide 14, as shown in FIG. 15, the linearly polarized rectangular mode microwave (FIG. 15A) is changed in the traveling direction to the right angle direction by the corner waveguide 6, and the step converter 7 is used. Is converted into a linear polarization circular mode (Fig. 15B) by a circular polarization converter (polarizer) 8 and converted into a circular polarization circular mode (Fig. 15C) by the horn antenna 9 and the microwave introduction window 2 A microwave is radiated into the vacuum container 1 through the. When the processing gas is introduced from the gas introduction port 3 into the vacuum container 1 to which the magnetic field and the electric field are applied in this way, the processing gas is turned into plasma in the ECR region 13 by electron cyclotron resonance, and plasma particles such as ions and radicals are generated. To be done. The plasma particles flow in the direction of the lines of magnetic force, irradiate the substrate 12 placed on the support 11, and the substrate 12 can be etched.

【0004】[0004]

【発明が解決しようとする課題】上記ECRエッチング
装置30において,ECR領域13に発生したプラズマ
粒子の時間的,空間的粒子分布が均一であることが重要
で,この分布が不均一であると,図16に示すように真
空容器1内に高イオン密度領域と低イオン密度領域とが
生じて,この間に電場勾配が生じ,基板12の処理表面
に対して直角方向の磁力線方向で入射するはずのイオン
が前記電場勾配によって様々な方向性をもって基板12
に到達する結果,磁力線方向以外にもエッチング反応が
促進され,同図に示すような内傾方向にエッチングが進
行する等の加工精度の悪化をきたす。また,粒子分布の
不均一は,図17に示すように基板12上のイオン分布
密度の差に起因する電位差が生じて基板12上に電流が
流れ,基板12上に形成された素子を破壊する。上記は
ECR装置をエッチング装置に利用した場合の問題点で
あるが,ECR装置をCVD(Chemical Vapor Deposit
ion)に利用する場合には成膜厚の偏りなどが生じて,均
一な成膜がなされない等の問題点が生じる。上記プラズ
マ粒子の密度分布の不均一は,ECR領域13における
磁束密度が均一である場合,ECR領域13に導入され
るマイクロ波の電力密度に比例して発生する。従って,
マイクロ波導入窓2から導入されるマイクロ波の電力密
度が均一な電力密度でなければならない。ところが,マ
イクロ波導入窓から真空容器1内に放射されるマイクロ
波の電力密度分布は開口面内で均一ではなく,上記のよ
うな問題点が生じる。即ち,図15(b)に示すよう
に,導波管8内の各部を伝播するマイクロ波の導波管断
面におけるA−B断面,あるいはA′−B′断面におけ
る電力密度分布は,中心軸近傍で大きく管壁に近いほど
小さくなっている。本発明は,上記のごとき真空容器内
へ導入されるマイクロ波の電力密度分布の不均一を解消
してプラズマ粒子生成の密度分布を均一化するため,マ
イクロ波導入窓からのマイクロ波電力密度分布均一化手
段を設けた電子サイクロトロン共鳴装置を提供すること
を目的とする。
In the ECR etching apparatus 30, it is important that the temporal and spatial particle distribution of the plasma particles generated in the ECR region 13 is uniform, and if this distribution is non-uniform, As shown in FIG. 16, a high ion density region and a low ion density region are generated in the vacuum container 1, and an electric field gradient is generated between them, which should be incident on the surface of the substrate 12 in the direction of magnetic force perpendicular to the surface. Ions have various directions according to the electric field gradient and have a substrate 12
As a result, the etching reaction is promoted not only in the direction of the magnetic force lines, but the processing accuracy deteriorates, such as the etching progresses in the inclining direction as shown in the figure. Further, the non-uniformity of the particle distribution causes a potential difference resulting from the difference in the ion distribution density on the substrate 12 as shown in FIG. 17, causing a current to flow on the substrate 12 and destroying the elements formed on the substrate 12. . The above is a problem when the ECR device is used as an etching device. However, the ECR device is used for CVD (Chemical Vapor Deposit).
When it is used for ion), there is a problem in that the film thickness is uneven and uniform film formation is not achieved. When the magnetic flux density in the ECR area 13 is uniform, the nonuniform density distribution of the plasma particles occurs in proportion to the power density of the microwaves introduced into the ECR area 13. Therefore,
The power density of the microwaves introduced through the microwave introduction window 2 must be uniform. However, the power density distribution of microwaves radiated from the microwave introduction window into the vacuum container 1 is not uniform in the opening surface, and the above-mentioned problems occur. That is, as shown in FIG. 15B, the power density distribution in the section A-B or the section A′-B ′ in the waveguide section of the microwave propagating in each part in the waveguide 8 is the central axis. Larger in the vicinity, smaller as it approaches the pipe wall. The present invention eliminates the non-uniformity of the power density distribution of microwaves introduced into the vacuum container as described above and makes the density distribution of plasma particle generation uniform, so that the microwave power density distribution from the microwave introduction window is used. An object of the present invention is to provide an electron cyclotron resonance device provided with a homogenizing means.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する手段は,真空容器内に磁場発生装置
による磁場を印加すると共に,該真空容器に設けたマイ
クロ波導入窓からマイクロ波を導入して真空容器内に電
場を印加し,該真空容器内に導入された処理ガスを前記
磁場と電場とによる電子サイクロトロン共鳴によってプ
ラズマ化し,該プラズマにより発生したイオン,ラジカ
ルを真空容器内に配置した被照射物に照射する電子サイ
クロトロン共鳴装置において,前記マイクロ波導入窓か
ら前記真空容器に導入されるマイクロ波の放射電力密度
分布を均一にするマイクロ波放射電力密度均一手段を設
けたことを特徴とする電子サイクロトロン共鳴装置とし
て構成される。上記マイクロ波放射電力密度均一手段
は,マイクロ波導入窓よりもマイクロ波進行方向の上流
側に設けることができ,これを実現するための第1の手
段は,前記マイクロ波導入窓に接続された導波管内の半
径方向に誘電率を変化させる位相変化手段を設けたこと
を特徴とする電子サイクロトロン共鳴装置として構成さ
れる。
In order to achieve the above-mentioned object, the means adopted by the present invention is to apply a magnetic field by a magnetic field generator in a vacuum container and to use a microwave introduction window provided in the vacuum container to provide a microwave. A wave is introduced to apply an electric field into the vacuum vessel, the processing gas introduced into the vacuum vessel is turned into plasma by electron cyclotron resonance by the magnetic field and the electric field, and the ions and radicals generated by the plasma are put into the vacuum vessel. In the electron cyclotron resonance apparatus for irradiating the object to be irradiated arranged in the above, microwave radiation power density uniform means for uniformizing radiation power density distribution of microwaves introduced into the vacuum container through the microwave introduction window is provided. Is configured as an electron cyclotron resonance device. The microwave radiation power density uniforming means can be provided upstream of the microwave introduction window in the microwave traveling direction, and the first means for realizing this is connected to the microwave introduction window. The electron cyclotron resonance device is characterized in that phase changing means for changing the dielectric constant in the radial direction of the waveguide is provided.

【0006】また,マイクロ波放射電力密度均一手段を
マイクロ波導入窓よりもマイクロ波進行方向の上流側に
設けるための第2の手段は,前記マイクロ波導入窓に接
続された導波管内に複数の同軸導波管を配設したマイク
ロ波放射電力密度均等手段を設けたことを特徴とする電
子サイクロトロン共鳴装置として構成される。また,マ
イクロ波放射電力密度均一手段をマイクロ波導入窓より
もマイクロ波進行方向の上流側に設けるための第3の手
段は,前記マイクロ波導入窓に接続された導波管開口面
の中心位置に,該中心位置からのマイクロ波の直接放射
を遮蔽する遮蔽手段を設けたことを特徴とする電子サイ
クロトロン共鳴装置として構成される。上記第3の手段
は,導波管開口面をホーンアンテナに形成し,該ホーン
アンテナの中心軸にホーンアンテナのテーパー角度に平
行な傾斜面を有する円錐導体を配置した遮蔽手段,ある
いは,導波管開口面の中心位置にマイクロ波に対して全
反射角度を有する円錐空間を形成した誘電体を配置した
遮蔽手段として実現される。また,マイクロ波放射電力
密度均一手段は,マイクロ波導入窓位置に設ける第4の
手段として実現することができ,前記マイクロ波導入窓
に接続された導波管開口面の中心位置に導体円盤を配
し,導波管開口をリング状に形成したことを特徴とする
電子サイクロトロン共鳴装置として構成される。
Further, the second means for providing the means for uniforming the microwave radiation power density on the upstream side of the microwave introduction window in the microwave advancing direction is provided with a plurality of means in the waveguide connected to the microwave introduction window. The microwave radiation power density equalizing means provided with the coaxial waveguide is provided as an electron cyclotron resonance device. The third means for providing the microwave radiation power density uniform means on the upstream side of the microwave introduction window in the microwave traveling direction is the center position of the waveguide opening face connected to the microwave introduction window. The electron cyclotron resonance device is characterized in that a shielding means for shielding the direct radiation of the microwave from the central position is provided. The third means is a shielding means in which a waveguide opening surface is formed on a horn antenna, and a conical conductor having an inclined surface parallel to the taper angle of the horn antenna is arranged on the central axis of the horn antenna, or a waveguide. It is realized as a shielding means in which a dielectric body having a conical space having a total reflection angle with respect to microwaves is arranged at the center position of the tube opening surface. Further, the means for uniformizing the microwave radiation power density can be realized as a fourth means provided at the position of the microwave introduction window, and a conductor disk is provided at the center position of the waveguide opening surface connected to the microwave introduction window. The electron cyclotron resonance device is characterized in that the waveguide openings are arranged in a ring shape.

【0007】[0007]

【作用】本発明によれば,導波管内を電力密度分布の偏
りをもって伝送されてきたマイクロ波に対して,マイク
ロ波放射電力密度均一手段により電力密度分布を均一化
した後,マイクロ波導入窓から真空容器内に放射させる
ことにより,該マイクロ波による電場と,真空容器内に
印加された磁場と,真空容器内に導入された処理ガスと
による電子サイクロトロン共鳴によってプラズマ発生領
域(ECR領域)におけるプラズマ粒子の生成密度の分
布が均一化され,被照射物に対するイオン等の照射に偏
りが生じず,エッチング等の処理を高品質で実施するこ
とができる。上記マイクロ波放射電力密度均一手段は,
マイクロ波導入窓よりもマイクロ波進行方向の上流方向
に設ける第1〜3の手段として実現される。第1の手段
によれば,マイクロ波導入窓から真空容器内に放射され
たマイクロ波の一部はプラズマにより反射され,プラズ
マを反射端として導波管内に定常波が形成されるので,
導波管中心位置の領域に誘電体を配置して,電力密度の
高い領域での定常波の位相をずらすことにより,プラズ
マのマイクロ波吸収率を均一化する。即ち,導波管内の
定常波の位相によりプラズマのマイクロ波電力の吸収率
が異なるので,導波管内の中心位置に誘電体を配置する
ことにより,電力密度の高い領域の定常波の位相をマイ
クロ波吸収率の低い位相へずらすことでマイクロ波電力
のプラズマへの吸収率が均一化され,プラズマ粒子の生
成密度も均一化される。また,第2の手段によれば,マ
イクロ波導入窓に接する導波管内に複数の同軸導波管を
配設して,真空容器内へのマイクロ波放射を多重同軸ア
ンテナからの放射とすることにより,均一なマイクロ波
電力密度が得られる。即ち,同一周波数のマイクロ波を
伝送させる導波管の断面径は,円形導波管より同軸導波
管の方が小さいので,導波管開口面の面積に複数の同軸
導波管を配置することができ,同軸導波管の内軸径と同
軸導波管の間隔とを選択することにより,マイクロ波を
導波管開口面で分散放射して,マイクロ波導入窓から真
空容器内へのマイクロ波の導入を均一化する。
According to the present invention, the microwaves transmitted through the waveguide with a biased power density distribution are made uniform by the microwave radiation power density uniforming means, and then the microwave introduction window is provided. In the plasma generation region (ECR region) by electron cyclotron resonance by the electric field by the microwave, the magnetic field applied in the vacuum container, and the processing gas introduced in the vacuum container The distribution of the generation density of the plasma particles is made uniform, the irradiation of the object to be irradiated with ions and the like is not biased, and processing such as etching can be performed with high quality. The microwave radiation power density uniform means is
It is realized as first to third means provided upstream of the microwave introduction window in the microwave traveling direction. According to the first means, a part of the microwave radiated from the microwave introduction window into the vacuum container is reflected by the plasma, and a standing wave is formed in the waveguide with the plasma as a reflection end.
By disposing a dielectric in the region at the center of the waveguide and shifting the phase of the standing wave in the region of high power density, the microwave absorptivity of the plasma is made uniform. That is, since the absorption rate of microwave power of plasma differs depending on the phase of the standing wave in the waveguide, the phase of the standing wave in the high power density region can be absorbed by placing the dielectric in the center of the waveguide. By shifting to a phase with a low rate, the absorption rate of microwave power to plasma is made uniform, and the generation density of plasma particles is also made uniform. Further, according to the second means, a plurality of coaxial waveguides are arranged in the waveguide in contact with the microwave introduction window, and microwave radiation into the vacuum container is emitted from the multiple coaxial antenna. As a result, a uniform microwave power density can be obtained. That is, since the coaxial waveguide has a smaller cross-sectional diameter than the circular waveguide that transmits microwaves of the same frequency, a plurality of coaxial waveguides are arranged in the area of the waveguide opening surface. By selecting the inner diameter of the coaxial waveguide and the spacing between the coaxial waveguides, the microwaves are dispersed and radiated at the opening surface of the waveguide, and the microwaves are introduced from the microwave introduction window into the vacuum container. Make microwave introduction uniform.

【0008】さらに,第3の手段によれば,マイクロ波
導入窓に接する導波管内の電力密度の高い中心位置に遮
蔽手段を設けることにより,導波管の開口面から放射さ
れるマイクロ波は遮蔽手段のない周辺部から直接放射さ
れると共に,遮蔽された中心位置からは周辺部からの回
析によるマイクロ波放射となり,遮蔽手段の直径を選択
することにより全体として電力密度が均一なマイクロ波
放射がなされる。前記遮蔽手段は,導波管開口面をホー
ンアンテナに形成して,該ホーンアンテナの電力密度の
高い中心位置にホーンアンテナのテーパー角度に平行な
傾斜面を形成した円錐導体を配置することで実現され,
あるいは,導波管の開口面の中心位置にマイクロ波に対
して全反射角度を有する円錐空間を形成した誘電体を配
置することにより実現される。また,マイクロ波放射電
力密度均一手段をマイクロ波導入窓位置に設ける第4の
手段によれば,導波管開口面の中心位置に導体円盤を配
し,導波管開口をリング状に形成すると,マイクロ波の
真空容器内への放射は,導波管中心位置からの直接放射
が遮蔽され,周辺部から直接放射されると共に,遮蔽さ
れた中心位置からは周辺部からの回析によるマイクロ波
放射となり,導体円盤の直径を選択することにより全体
として電力密度が均一なマイクロ波放射がなされる。
Further, according to the third means, the microwave radiated from the opening surface of the waveguide is provided by providing the shielding means at the central position where the power density is high in the waveguide which is in contact with the microwave introduction window. The microwave is radiated directly from the peripheral part without the shielding means, and the microwave is radiated from the peripheral part from the shielded center position. By selecting the diameter of the shielding means, a microwave with a uniform power density can be obtained. Radiation is emitted. The shielding means is realized by forming an opening surface of a waveguide in a horn antenna and arranging a conical conductor having an inclined surface parallel to the taper angle of the horn antenna at a center position where the power density of the horn antenna is high. And
Alternatively, it is realized by disposing a dielectric body having a conical space having a total reflection angle with respect to microwaves at the center position of the opening surface of the waveguide. According to the fourth means for providing the microwave radiation power density uniforming means at the microwave introduction window position, the conductor disk is arranged at the center position of the waveguide opening surface, and the waveguide opening is formed in a ring shape. As for the microwave radiation into the vacuum chamber, the direct radiation from the center position of the waveguide is shielded and is directly radiated from the peripheral portion, and the microwave from the peripheral portion is diffracted from the shielded central position. Radiation, and by selecting the diameter of the conductor disk, microwave radiation with uniform power density as a whole is achieved.

【0009】[0009]

【実施例】以下,添付図面を参照して,本発明をECR
エッチング装置として具体化した実施例につき説明し,
本発明の理解に供する。尚,以下の実施例は本発明を具
体化した一例であって,本発明の技術的範囲を限定する
ものではない。また,以下に示す各実施例において,従
来例と同一の要素には同一の符号を付して,その詳細な
説明は省略する。ここに,図1は本発明の第1実施例に
係るECRエッチング装置の模式図,図2は第1実施例
に係る定常波位相を変化させる作用を説明する説明図,
図3は第1実施例に係るマイクロ波のプラズマからの反
射波位相と反射率との関係を示すグラフである。図1に
示すECRエッチング装置31は,先に従来例において
示した構成とマイクロ波導入のための構成を除いて同様
に構成されている。即ち,従来例構成の問題点であった
真空容器6内に導入されるマイクロ波の電力密度分布の
不均一によるプラズマ粒子生成密度の偏りを解消すべ
く,マイクロ波導入窓2に接続された導波管8にマイク
ロ波放射電力密度均一手段が設けられている。本実施例
によるマイクロ波放射電力密度均一手段は,図1に示す
ように,マイクロ波導入窓2に接続される導波管14が
マイクロ波導入窓2方向に口径を拡げたホーンアンテナ
9内の中心位置に,誘電体を柱状に形成した位相シフタ
ー15が配置されている。この位相シフター15は,導
波管14内を伝送されてくるマイクロ波の電力密度分布
が中心位置と管壁付近とで不均一である状態を,均一な
電力密度分布にしてマイクロ波導入窓2から真空容器1
内に放射させる作用をなす。この位相シフター15の作
用について以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings.
An embodiment embodied as an etching apparatus will be described.
The present invention is provided for understanding. The following embodiments are examples of embodying the present invention and do not limit the technical scope of the present invention. Further, in each of the following embodiments, the same elements as those of the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted. 1 is a schematic view of an ECR etching apparatus according to the first embodiment of the present invention, and FIG. 2 is an explanatory view for explaining the action of changing the standing wave phase according to the first embodiment,
FIG. 3 is a graph showing the relationship between the phase of the reflected wave from the microwave plasma and the reflectance according to the first example. The ECR etching apparatus 31 shown in FIG. 1 has the same structure as the structure shown in the conventional example except for the structure for introducing microwaves. That is, in order to eliminate the bias of the plasma particle generation density due to the non-uniformity of the power density distribution of the microwaves introduced into the vacuum vessel 6 which is a problem of the conventional configuration, the induction connected to the microwave introduction window 2 is eliminated. The wave tube 8 is provided with a microwave radiation power density uniforming means. As shown in FIG. 1, the microwave radiation power density uniforming means according to the present embodiment has a horn antenna 9 in which a waveguide 14 connected to the microwave introduction window 2 has a diameter expanded toward the microwave introduction window 2. A phase shifter 15 in which a dielectric is formed in a columnar shape is arranged at the center position. The phase shifter 15 creates a uniform power density distribution in a state where the power density distribution of microwaves transmitted in the waveguide 14 is not uniform between the center position and the vicinity of the tube wall. From vacuum container 1
It acts to radiate inside. The operation of the phase shifter 15 will be described below.

【0010】マイクロ波導入窓2から真空容器1内に放
射されるマイクロ波の一部はプラズマによって反射さ
れ,プラズマを反射端として導波管14内に定常波を形
成する。このときの反射波の位相とプラズマへのマイク
ロ波の吸収率とは相関関係があり,図3に示すように反
射率が最小になるところでマイクロ波は最も効率よく吸
収される。即ち,導波管14内の定常波の位相により,
プラズマのマイクロ波電力の吸収率が異なることにな
る。従って,定常波の位相を導波管14の中心位置と周
辺位置とで変化させることにより,プラズマへのマイク
ロ波電力の吸収率を均一化することができる。そこで,
導波管14内の電力密度の高い中心位置に誘電体を配置
すると,図2に示すように定常波の位相をマイクロ波吸
収率の低い位相へずらすことができ,マイクロ波導入窓
2から放射されるマイクロ波の電力密度を全体として均
一にすることができる。上記位相シフター15によるマ
イクロ波放射電力均一化手段は,図1に示すように,ホ
ーンアンテナ9の開口面からマイクロ波進行方向の上流
側の中心位置に,誘電体を柱状に形成した位相シフター
15を配置して,導波管14内の定常波の位相を中心領
域aにおいてずらすことによってなされる。位相ずれの
大きさは,位相シフター15の長さLに比例するので,
位相シフター15の直径a及び長さLを最適に選択する
ことにより,ECR領域13において基板12に平行な
面内で均一なプラズマ密度分布が得られる。
A part of the microwave radiated from the microwave introduction window 2 into the vacuum chamber 1 is reflected by the plasma, and a standing wave is formed in the waveguide 14 with the plasma as a reflection end. At this time, there is a correlation between the phase of the reflected wave and the absorption rate of the microwave into the plasma, and the microwave is most efficiently absorbed where the reflectance becomes minimum as shown in FIG. That is, depending on the phase of the standing wave in the waveguide 14,
The microwave power of plasma will be differently absorbed. Therefore, by changing the phase of the standing wave between the central position and the peripheral position of the waveguide 14, the absorption rate of the microwave power to the plasma can be made uniform. Therefore,
If a dielectric is placed in the center of the waveguide 14 where the power density is high, the phase of the standing wave can be shifted to a phase with a low microwave absorptance as shown in FIG. The microwave power density can be made uniform as a whole. As shown in FIG. 1, the microwave radiating power equalizing means using the phase shifter 15 has a phase shifter 15 in which a dielectric is formed in a columnar shape at a central position on the upstream side in the microwave traveling direction from the opening surface of the horn antenna 9. Are arranged and the phase of the standing wave in the waveguide 14 is shifted in the central region a. Since the magnitude of the phase shift is proportional to the length L of the phase shifter 15,
By optimally selecting the diameter a and the length L of the phase shifter 15, a uniform plasma density distribution can be obtained in the plane parallel to the substrate 12 in the ECR region 13.

【0011】次に,本発明の第2実施例について,図
4,図5を用いて説明する。図4は図1に示したECR
エッチング装置31と構成の異なるマイクロ波導入窓2
の周辺部分を抽出したもので,ホーンアンテナ9内に複
数の同軸導波管を配設した構成を示す模式図,図5はマ
イクロ波導入窓に接する開口面の平面図である。図4,
図5において,導波管14をマイクロ波導入窓2に接続
する位置に形成されたホーンアンテナ9内に複数の同軸
導波管16,16──が配設されて,多重同軸アンテナ
が構成されている。一般に同じ周波数のマイクロ波を伝
播させる導波管の断面の大きさは,円形導波管より同軸
導波管の方が小さいので,ホーンアンテナ9内に複数の
同軸導波管16を配置することができる。上記のように
ホーンアンテナ9内に配設された複数の同軸導波管16
から放射されるマイクロ波は,各内軸導体16aと外側
導体16bとの間の空間から放射されると共に,内軸導
体16a部分には放射空間部からの回析波が回り込むの
で,導波管14内を不均一な電力密度分布で伝播してき
たマイクロ波は,内軸導体16aの直径を最適化するこ
とにより,各同軸導波管16毎に均一化された電力密度
分布で放射される。従って,複数の同軸導波管16の間
隔cを適宜選択して配置することにより,各同軸導波管
16で均一化されたマイクロ波がマイクロ波導入窓2か
ら真空容器1内に全体として均一化されて放射され,E
CR領域13において基板12に平行な面内で均一なプ
ラズマ密度分布が得られる。
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 4 shows the ECR shown in FIG.
Microwave introduction window 2 having a different configuration from the etching device 31
FIG. 5 is a schematic view showing a configuration in which a plurality of coaxial waveguides are arranged in the horn antenna 9 by extracting the peripheral portion of the above, and FIG. 5 is a plan view of an opening surface in contact with the microwave introduction window. Figure 4,
In FIG. 5, a plurality of coaxial waveguides 16 and 16 are arranged in a horn antenna 9 formed at a position where the waveguide 14 is connected to the microwave introduction window 2 to form a multiple coaxial antenna. ing. Generally, the size of the cross section of a waveguide that propagates microwaves of the same frequency is smaller in a coaxial waveguide than in a circular waveguide. Therefore, a plurality of coaxial waveguides 16 should be arranged in the horn antenna 9. You can A plurality of coaxial waveguides 16 arranged in the horn antenna 9 as described above
The microwave radiated from the waveguide is radiated from the space between each inner shaft conductor 16a and the outer conductor 16b, and the diffracted wave from the radiation space part wraps around the inner shaft conductor 16a. Microwaves propagating in 14 with a non-uniform power density distribution are radiated with a uniform power density distribution for each coaxial waveguide 16 by optimizing the diameter of the inner shaft conductor 16a. Therefore, by appropriately selecting and arranging the intervals c between the plurality of coaxial waveguides 16, the microwaves homogenized by the respective coaxial waveguides 16 are uniformly distributed in the vacuum container 1 through the microwave introduction window 2. Emitted after being converted to E
In the CR region 13, a uniform plasma density distribution can be obtained in the plane parallel to the substrate 12.

【0012】次いで,本発明の第3実施例及び第4実施
例について,図6,図7及び図8,図9を用いて説明す
る。この第3実施例及び第4実施例による構成は,真空
容器1内に導入するマイクロ波の電力密度分布を均一化
するために,マイクロ波導入窓2に接続された導波管1
4内にマイクロ波放射電力密度均一手段を設けたもの
で,導波管14の開口面に形成されたホーンアンテナ9
から放射されるマイクロ波の電力密度分布が大きい中心
位置に遮蔽手段を配して,中心位置からの直接放射を遮
蔽し,周辺部からの直接放射と遮蔽された中心位置への
回析波により放射されるマイクロ波の電力密度を均一化
するものである。まず,第3実施例について説明する。
図6は図1に示したECRエッチング装置31と構成の
異なるマイクロ波導入窓2の周辺部分を抽出した模式図
で,ホーンアンテナ9部分を断面で示している。図7は
ホーンアンテナ開口面の平面図,図8は電力密度分布の
均一化を示す説明図である。図6において,ホーンアン
テナ9の中心位置に円錐導体17を設置して,これをホ
ーンアンテナ9の中心位置からのマイクロ波の直接放射
を遮蔽する遮蔽手段としている。円錐導体17はホーン
アンテナ9の傾斜面と平行な円錐傾斜面に形成されてい
るので,ホーンアンテナ9のテーパー上に広がった同軸
導波管とみなすことができ,前段の円形導波管モードか
ら円形同軸導波管モードに整合して変換されるので,反
射波の発生が低く押さえることができる。この同軸導波
管に形成されたホーンアンテナ9内のマイクロ波は,円
錐導体17とホーンアンテナ9の壁面との間にリング状
に形成された空間を伝播して,マイクロ波導入窓2に接
する開口面から真空容器1内に放射される。前記開口面
は図7に示すように形成されるので,マイクロ波の放射
は円錐導体17のある中心位置では遮蔽されるが,この
中心位置には周囲からの回析波が回り込むので,図8
(a)に示すような電力密度分布で導波管14内を伝播
してきたマイクロ波は,円錐導体17で電力密度の高い
中心位置が遮蔽された結果,図8(b)に示すように電
力密度の分布は開口面でほぼ均一化されることになる。
Next, a third embodiment and a fourth embodiment of the present invention will be described with reference to FIGS. 6, 7 and 8 and 9. The configurations according to the third embodiment and the fourth embodiment have the waveguide 1 connected to the microwave introduction window 2 in order to make the power density distribution of the microwave introduced into the vacuum container 1 uniform.
A horn antenna 9 formed in the opening surface of the waveguide 14 is provided with a means for uniforming the microwave radiation power density in 4
The shielding means is placed at the center position where the power density distribution of the microwave radiated from the center is large, and the direct radiation from the center position is shielded by the direct radiation from the peripheral part and the diffracted wave to the shielded center position. The electric power density of the radiated microwaves is made uniform. First, the third embodiment will be described.
FIG. 6 is a schematic diagram in which the peripheral portion of the microwave introduction window 2 having a different configuration from the ECR etching apparatus 31 shown in FIG. 1 is extracted, and the horn antenna 9 portion is shown in cross section. FIG. 7 is a plan view of the opening surface of the horn antenna, and FIG. 8 is an explanatory view showing the uniformization of the power density distribution. In FIG. 6, a conical conductor 17 is installed at the center of the horn antenna 9, and this serves as a shielding means for shielding the direct radiation of microwaves from the center of the horn antenna 9. Since the conical conductor 17 is formed on the conical inclined surface parallel to the inclined surface of the horn antenna 9, it can be regarded as a coaxial waveguide that spreads on the taper of the horn antenna 9, and the circular waveguide mode of the previous stage can be considered. Since it is converted to match the circular coaxial waveguide mode, the generation of reflected waves can be suppressed low. The microwave in the horn antenna 9 formed in the coaxial waveguide propagates in the space formed in the ring shape between the conical conductor 17 and the wall surface of the horn antenna 9, and contacts the microwave introduction window 2. It is radiated from the opening surface into the vacuum container 1. Since the opening surface is formed as shown in FIG. 7, the microwave radiation is shielded at the center position where the conical conductor 17 is present, but since the diffraction wave from the surroundings wraps around this center position, FIG.
The microwaves propagating in the waveguide 14 with the power density distribution as shown in (a) are shielded by the conical conductor 17 at the center position where the power density is high, and as a result, as shown in FIG. The density distribution is almost uniform on the opening surface.

【0013】次に,第4実施例について説明する。図9
は図1に示したECRエッチング装置31と構成の異な
るマイクロ波導入窓2の周辺部分を抽出した模式図で,
ホーンアンテナ9部分を断面で示している。図10はホ
ーンアンテナ開口面の平面図,図11はマイクロ波の誘
電体面への入射角度による反射をしめす説明図である。
図6において,マイクロ波導入窓2のホーンアンテナ9
の開口面との接続位置に,円錐空間18が形成された誘
電体19が設置されている。誘電体19は石英で構成さ
れており,マイクロ波導入窓2側の中心位置にマイクロ
波の進行方向を頂部とした円錐形でくり抜かれた円錐空
間18が形成されているので,この円錐空間18位置に
伝播してきたマイクロ波は,誘電体19と円錐空間18
との境界面で反射されるので,マイクロ波の中心位置か
らの放射が遮蔽される。上記円錐空間18によるマイク
ロ波の反射作用について,図11を用いて説明する。本
構成はマイクロ波の光学的性質を利用したもので,屈折
率の大きい部分N1(屈折率n1 )内を伝播してきたマ
イクロ波が屈折率の小さい部分N2(屈折率n2 )に伝
播しようとするとき,このN1とN2との境界面の法線
に対する入射角が,図11(a)のように臨界角θc
りも大きいと,マイクロ波は境界面で反射される。入射
角が臨界角θc より小さい場合には,図11(b)に示
すようにマイクロ波は屈折率の大きい部分N1から小さ
い部分N2内に屈折して入射する。前記臨界角θc は下
記(1)式のように示される。 θc =sin-1(n2 /n1 )……(1)
Next, a fourth embodiment will be described. Figure 9
Is a schematic diagram in which the peripheral portion of the microwave introduction window 2 having a different configuration from the ECR etching device 31 shown in FIG. 1 is extracted,
The horn antenna 9 portion is shown in cross section. FIG. 10 is a plan view of the opening surface of the horn antenna, and FIG. 11 is an explanatory view showing reflection of microwaves depending on the incident angle on the dielectric surface.
In FIG. 6, the horn antenna 9 of the microwave introduction window 2
A dielectric 19 in which a conical space 18 is formed is installed at a position where it is connected to the opening surface of the. The dielectric 19 is made of quartz, and a conical space 18, which is hollowed out in a conical shape with the traveling direction of the microwave at the top, is formed at the center position on the microwave introduction window 2 side. The microwave that has propagated to the position has a dielectric 19 and a conical space 18
The radiation from the center position of the microwave is blocked because it is reflected at the boundary surface of and. The microwave reflecting action of the conical space 18 will be described with reference to FIG. This configuration utilizes the optical properties of microwaves, and the microwaves that have propagated in the high refractive index portion N1 (refractive index n 1 ) will propagate to the low refractive index portion N2 (refractive index n 2 ). Then, if the incident angle with respect to the normal line of the interface between N1 and N2 is larger than the critical angle θ c as shown in FIG. 11A, the microwave is reflected at the interface. When the incident angle is smaller than the critical angle θ c , as shown in FIG. 11B, the microwave is refracted and enters the portion N1 having a large refractive index and the portion N2 having a small refractive index. The critical angle θ c is expressed by the following equation (1). θ c = sin −1 (n 2 / n 1 ) ... (1)

【0014】本実施例において,前記屈折率の大きい部
分N1は誘電体19であり,屈折率の小さい部分N2は
円錐空間18である。誘電体19は前述の通り石英で形
成され,円錐空間18は大気であるので,石英の屈折率
は1.94,大気の屈折率は1のため,図9に示すよう
に円錐空間18の中心軸からの円錐角度θを下記(2)
式を満たすように形成すれば,誘電体19の中心位置に
入射したマイクロ波は円錐空間18で反射される。 θ>90−θc (θc =59°)……(2) 従って,円錐空間18はマイクロ波の遮蔽手段となっ
て,導波管14から伝播してきたマイクロ波の中心位置
で周囲に反射するので,図10に示すホーンアンテナ9
の開口部にリング状に形成されたマイクロ波透過部分か
ら放射され,中心位置の円錐空間18部分には周囲から
の回析波が回り込む。円錐空間18の直径を最適に選択
することにより,図8(a)に示したように導波管14
内を中心位置の電力密度が大きく伝播してきたマイクロ
波は,図8(b)に示すように中心位置の電力密度の大
きい部分が抑えられて均一化された電力密度分布とする
ことができる。
In this embodiment, the high refractive index portion N1 is the dielectric 19 and the low refractive index portion N2 is the conical space 18. The dielectric 19 is formed of quartz as described above, and the conical space 18 is the atmosphere. Therefore, since the refractive index of quartz is 1.94 and the refractive index of the atmosphere is 1, the center of the conical space 18 is shown in FIG. The cone angle θ from the axis is (2) below
If formed so as to satisfy the formula, the microwave incident on the central position of the dielectric 19 is reflected by the conical space 18. [theta]> 90- [theta] c ([theta] c = 59 [deg.]) (2) Therefore, the conical space 18 serves as a microwave shielding means and is reflected to the surroundings at the center position of the microwave propagated from the waveguide 14. Therefore, the horn antenna 9 shown in FIG.
The microwave is transmitted from the microwave transmitting portion formed in a ring shape in the opening of the, and the diffraction wave from the surroundings wraps around the conical space 18 portion at the center position. By optimally selecting the diameter of the conical space 18, as shown in FIG.
The microwave having a large power density propagating in the inside of the inside can have a uniform power density distribution by suppressing the part of the central position where the power density is large as shown in FIG. 8B.

【0015】次いで,本発明の第5実施例図12,図1
3を用いて説明する。この第5実施例による構成は,真
空容器1内に導入するマイクロ波の電力密度分布を均一
化するために,導波管14の開口面にマイクロ波放射電
力密度均一手段を設けたもので,導波管14の開口面に
形成されたホーンアンテナ9から放射されるマイクロ波
の電力密度分布が大きい中心位置に遮蔽手段を配して,
中心位置からの直接放射を遮蔽し,周辺部からの直接放
射と遮蔽された中心位置への回析波とにより放射される
マイクロ波の電力密度を均一化するものである。図12
は図1に示したECRエッチング装置31と構成の異な
るマイクロ波導入窓2の周辺部分を抽出した模式図で,
ホーンアンテナ9部分を断面で示している。図13はホ
ーンアンテナ開口面の平面図である。図12,図13に
おいて,ホーンアンテナ9の開口面の中心位置に導体円
盤20が配置されているので,マイクロ波導入窓2には
マイクロ波を透過させるリング状の開口が形成される。
真空容器1内へのマイクロ波の導入は,前記リング状開
口からの直接波と,該リング状開口から導体円盤20に
遮蔽された中心位置への回析波とによりなされるので,
図8(a)に示したように導波管14内を中心位置の電
力密度が大きい状態で伝播してきたマイクロ波は,電力
密度の大きい中心位置が導体円盤20で遮蔽されている
結果,図8(b)に示すように中心位置の電力密度が抑
えられて均一化されて導入させることができる。
Next, a fifth embodiment of the present invention will be described with reference to FIGS.
3 will be used for the explanation. In the structure according to the fifth embodiment, in order to make the power density distribution of microwaves introduced into the vacuum container 1 uniform, microwave radiation power density uniform means is provided on the opening surface of the waveguide 14. The shielding means is arranged at the center position where the power density distribution of microwaves radiated from the horn antenna 9 formed in the opening surface of the waveguide 14 is large,
The direct radiation from the central position is shielded, and the power density of the microwaves radiated by the direct radiation from the peripheral part and the diffracted wave to the central position that is shielded is made uniform. 12
Is a schematic diagram in which the peripheral portion of the microwave introduction window 2 having a different configuration from the ECR etching device 31 shown in FIG. 1 is extracted,
The horn antenna 9 portion is shown in cross section. FIG. 13 is a plan view of the opening surface of the horn antenna. In FIG. 12 and FIG. 13, since the conductor disk 20 is arranged at the center position of the opening surface of the horn antenna 9, the microwave introduction window 2 has a ring-shaped opening for transmitting microwaves.
Since the microwave is introduced into the vacuum chamber 1 by the direct wave from the ring-shaped opening and the diffracted wave from the ring-shaped opening to the central position shielded by the conductor disk 20,
As shown in FIG. 8A, the microwave propagating in the waveguide 14 in the state where the power density at the center position is large has the result that the center position where the power density is large is shielded by the conductor disk 20. As shown in FIG. 8 (b), the power density at the center position can be suppressed and uniformized for introduction.

【0016】[0016]

【発明の効果】以上の説明の通り本発明によれば,導波
管内を電力密度分布の偏りをもつモードで伝送されてき
たマイクロ波に対して,マイクロ波放射電力密度均一手
段により電力密度分布を均一化した後,マイクロ波導入
窓から真空容器内に放射させることにより,電力密度分
布が均一化された該マイクロ波による電場と,真空容器
内に印加された磁場と,真空容器内に導入された処理ガ
スとによる電子サイクロトロン共鳴によってプラズマ発
生領域(ECR領域)におけるプラズマ粒子の生成密度
の分布が均一化され,被照射物に対するイオン等の照射
に偏りが生じず,エッチング等の処理を高品質で実施す
ることができる。
As described above, according to the present invention, a microwave radiated power density uniforming means is used for a microwave transmitted in a mode having a bias of the power density distribution in the waveguide. After being homogenized, the electric field due to the microwave with a uniform power density distribution, the magnetic field applied in the vacuum container, and the introduction into the vacuum container are radiated from the microwave introduction window into the vacuum container. The distribution of the generation density of plasma particles in the plasma generation region (ECR region) is made uniform by electron cyclotron resonance due to the treated gas, and the irradiation of the object is not biased in the irradiation of ions and the like, and the processing such as etching is enhanced. It can be carried out with quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例に係るECRエッチング
装置の構成を示す模式図。
FIG. 1 is a schematic diagram showing the configuration of an ECR etching apparatus according to a first embodiment of the present invention.

【図2】 第1実施例に係る定常波の位相を変化させる
作用を示す説明図。
FIG. 2 is an explanatory diagram showing an operation of changing the phase of a standing wave according to the first embodiment.

【図3】 第1実施例に係る定常波の位相とプラズマか
らの反射率の関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the phase of a standing wave and the reflectance from plasma according to the first example.

【図4】 本発明の第2実施例に係るECRエッチング
装置のマイクロ波導入窓付近の構成を示す模式図。
FIG. 4 is a schematic diagram showing a configuration near a microwave introduction window of an ECR etching apparatus according to a second embodiment of the present invention.

【図5】 図4に示す構成における開口面の平面図。5 is a plan view of an opening surface in the configuration shown in FIG.

【図6】 本発明の第3実施例に係るECRエッチング
装置のマイクロ波導入窓付近の構成を示す模式図。
FIG. 6 is a schematic diagram showing a configuration near a microwave introduction window of an ECR etching apparatus according to a third embodiment of the present invention.

【図7】 図6に示す構成における開口面の平面図。FIG. 7 is a plan view of an opening surface in the configuration shown in FIG.

【図8】 導波管内の電力密度分布(a)と開口面での
電力密度分布(b)とを示すグラフ。
FIG. 8 is a graph showing a power density distribution (a) in the waveguide and a power density distribution (b) at the opening surface.

【図9】 本発明の第4実施例に係るECRエッチング
装置のマイクロ波導入窓付近の構成を示す模式図。
FIG. 9 is a schematic diagram showing a configuration near a microwave introduction window of an ECR etching apparatus according to a fourth embodiment of the present invention.

【図10】 図9に示す構成における開口面の平面図。FIG. 10 is a plan view of an opening surface in the configuration shown in FIG.

【図11】 図9に示す構成の作用を説明する説明図。FIG. 11 is an explanatory diagram illustrating an operation of the configuration shown in FIG. 9.

【図12】 本発明の第4実施例に係るECRエッチン
グ装置のマイクロ波導入窓付近の構成を示す模式図。
FIG. 12 is a schematic diagram showing a configuration near a microwave introduction window of an ECR etching apparatus according to a fourth embodiment of the present invention.

【図13】 図12に示す構成における開口面の平面
図。
13 is a plan view of an opening surface in the configuration shown in FIG.

【図14】 従来例に係るECRエッチング装置の構成
を示す模式図。
FIG. 14 is a schematic diagram showing a configuration of an ECR etching apparatus according to a conventional example.

【図15】 導波管内の各部におけるモード(a)と各
部の電力密度分布を示すグラフ。
FIG. 15 is a graph showing a mode (a) in each part in the waveguide and a power density distribution of each part.

【図16】 マイクロ波の電力密度分布の偏りによる加
工精度の悪化を示す説明図。
FIG. 16 is an explanatory view showing deterioration of processing accuracy due to bias of microwave power density distribution.

【図17】 マイクロ波の電力密度分布の偏りによる被
照射物の破壊を示す説明図。
FIG. 17 is an explanatory diagram showing destruction of an object to be irradiated due to biased distribution of microwave power density.

【符号の説明】[Explanation of symbols]

1…真空容器 2…マイクロ波導入窓 3…処理ガス導入ポート 9…ホーンアンテナ 10a,10b…磁気コイル 12…基板(被照射物) 14…導波管 15…位相シフター(誘電率変化手段) 16…同軸導波管 17…円錐導体(遮蔽手段) 18…円錐空間(遮蔽手段) 19…誘電体 20…導体円盤 DESCRIPTION OF SYMBOLS 1 ... Vacuum container 2 ... Microwave introduction window 3 ... Processing gas introduction port 9 ... Horn antenna 10a, 10b ... Magnetic coil 12 ... Substrate (object to be irradiated) 14 ... Waveguide 15 ... Phase shifter (dielectric constant changing means) 16 ... coaxial waveguide 17 ... conical conductor (shielding means) 18 ... conical space (shielding means) 19 ... dielectric 20 ... conductor disk

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G01R 33/64 H01L 21/302 B 8518−4M Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G01R 33/64 H01L 21/302 B 8518-4M

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内に磁場発生装置による磁場を
印加すると共に,該真空容器に設けたマイクロ波導入窓
からマイクロ波を導入して真空容器内に電場を印加し,
該真空容器内に導入された処理ガスを前記磁場と電場と
による電子サイクロトロン共鳴によってプラズマ化し,
該プラズマにより発生したイオン,ラジカルを真空容器
内に配置した被照射物に照射する電子サイクロトロン共
鳴装置において,前記マイクロ波導入窓から前記真空容
器に導入されるマイクロ波の放射電力密度分布を均一に
するマイクロ波放射電力密度均一手段を設けたことを特
徴とする電子サイクロトロン共鳴装置。
1. A magnetic field generated by a magnetic field generator is applied to the vacuum container, and a microwave is introduced through a microwave introduction window provided in the vacuum container to apply an electric field to the vacuum container.
The processing gas introduced into the vacuum container is turned into plasma by electron cyclotron resonance by the magnetic field and electric field,
In an electron cyclotron resonance device for irradiating an object to be irradiated arranged in a vacuum container with ions and radicals generated by the plasma, a radiation power density distribution of microwaves introduced into the vacuum container through the microwave introduction window is made uniform. An electron cyclotron resonance device comprising means for uniforming microwave radiation power density.
【請求項2】 上記マイクロ波放射電力密度均一手段
を,マイクロ波導入窓よりもマイクロ波進行方向の上流
側に設けた請求項1記載の電子サイクロトロン共鳴装
置。
2. The electron cyclotron resonance device according to claim 1, wherein the means for uniformizing the microwave radiation power density is provided upstream of the microwave introduction window in the microwave traveling direction.
【請求項3】 真空容器内に磁場発生装置による磁場を
印加すると共に,該真空容器に設けたマイクロ波導入窓
からマイクロ波を導入して真空容器内に電場を印加し,
該真空容器内に導入された処理ガスを前記磁場と電場と
による電子サイクロトロン共鳴によってプラズマ化し,
該プラズマにより発生したイオン,ラジカルを真空容器
内に配置した被照射物に照射する電子サイクロトロン共
鳴装置において,前記マイクロ波導入窓に接続された導
波管内の半径方向に誘電率を変化させる位相変化手段を
設けたことを特徴とする電子サイクロトロン共鳴装置。
3. A magnetic field generated by a magnetic field generator is applied to the vacuum container, and a microwave is introduced through a microwave introduction window provided in the vacuum container to apply an electric field to the vacuum container.
The processing gas introduced into the vacuum container is turned into plasma by electron cyclotron resonance by the magnetic field and electric field,
In an electron cyclotron resonance apparatus for irradiating an object to be irradiated, which is arranged in a vacuum container, with ions and radicals generated by the plasma, a phase change that changes the dielectric constant in a radial direction inside a waveguide connected to the microwave introduction window. An electron cyclotron resonance device comprising means.
【請求項4】 真空容器内に磁場発生装置による磁場を
印加すると共に,該真空容器に設けたマイクロ波導入窓
からマイクロ波を導入して真空容器内に電場を印加し,
該真空容器内に導入された処理ガスを前記磁場と電場と
による電子サイクロトロン共鳴によってプラズマ化し,
該プラズマにより発生したイオン,ラジカルを真空容器
内に配置した被照射物に照射する電子サイクロトロン共
鳴装置において,前記マイクロ波導入窓に接続された導
波管内に複数の同軸導波管を配設したマイクロ波放射電
力密度均等手段を設けたことを特徴とする電子サイクロ
トロン共鳴装置。
4. A magnetic field generated by a magnetic field generator is applied to the vacuum container, and a microwave is introduced from a microwave introduction window provided in the vacuum container to apply an electric field to the vacuum container.
The processing gas introduced into the vacuum container is turned into plasma by electron cyclotron resonance by the magnetic field and electric field,
In an electron cyclotron resonance device for irradiating an object to be irradiated arranged in a vacuum container with ions and radicals generated by the plasma, a plurality of coaxial waveguides are arranged in a waveguide connected to the microwave introduction window. An electron cyclotron resonance device comprising microwave radiation power density equalizing means.
【請求項5】 真空容器内に磁場発生装置による磁場を
印加すると共に,該真空容器に設けたマイクロ波導入窓
からマイクロ波を導入して真空容器内に電場を印加し
て,該真空容器内に導入された処理ガスを前記磁場と電
場とによる電子サイクロトロン共鳴によってプラズマ化
し,該プラズマにより発生したイオン,ラジカルを真空
容器内に配置した被照射物に照射する電子サイクロトロ
ン共鳴装置において,前記マイクロ波導入窓に接続され
た導波管の開口面の中心位置に,該中心位置からのマイ
クロ波の直接放射を遮蔽する遮蔽手段を設けたことを特
徴とする電子サイクロトロン共鳴装置。
5. Inside the vacuum container, a magnetic field is applied to the inside of the vacuum container, and a microwave is introduced through a microwave introduction window provided in the vacuum container to apply an electric field into the vacuum container. In the electron cyclotron resonance apparatus, the process gas introduced into the plasma is converted into plasma by electron cyclotron resonance due to the magnetic field and the electric field, and the ions and radicals generated by the plasma are irradiated to an object to be irradiated arranged in a vacuum container. An electron cyclotron resonance device, characterized in that a shielding means for shielding direct radiation of microwaves from the center position is provided at the center position of the opening surface of the waveguide connected to the introduction window.
【請求項6】 上記導波管開口面をホーンアンテナに形
成し,該ホーンアンテナの中心軸にホーンアンテナのテ
ーパー角度に平行な傾斜面を有する円錐導体を配置した
遮蔽手段である請求項5記載の電子サイクロトロン共鳴
装置。
6. The shielding means according to claim 5, wherein the waveguide opening surface is formed on a horn antenna, and a conical conductor having an inclined surface parallel to a taper angle of the horn antenna is arranged on a central axis of the horn antenna. Electron cyclotron resonance device.
【請求項7】 上記導波管開口面の中心位置にマイクロ
波に対して全反射角度を有する円錐空間を形成した誘電
体を配置した遮蔽手段である請求項5記載の電子サイク
ロトロン共鳴装置。
7. The electron cyclotron resonance apparatus according to claim 5, wherein the shielding means has a dielectric member arranged at the center of the opening surface of the waveguide and having a conical space having a total reflection angle with respect to microwaves.
【請求項8】 真空容器内に磁場発生装置による磁場を
印加すると共に,該真空容器に設けたマイクロ波導入窓
からマイクロ波を導入して真空容器内に電場を印加し
て,該真空容器内に導入された処理ガスを前記磁場と電
場とによる電子サイクロトロン共鳴によってプラズマ化
し,該プラズマにより発生したイオン,ラジカルを真空
容器内に配置した被照射物に照射する電子サイクロトロ
ン共鳴装置において,前記マイクロ波導入窓に接続され
た導波管開口面の中心位置に導体円盤を配し,導波管開
口をリング状に形成したことを特徴とする電子サイクロ
トロン共鳴装置。
8. A magnetic field generated by a magnetic field generator is applied to the inside of the vacuum container, and a microwave is introduced through a microwave introduction window provided in the vacuum container to apply an electric field to the inside of the vacuum container. In the electron cyclotron resonance apparatus, the process gas introduced into the plasma is converted into plasma by electron cyclotron resonance due to the magnetic field and the electric field, and the ions and radicals generated by the plasma are irradiated to an object to be irradiated arranged in a vacuum container. An electron cyclotron resonance device characterized in that a conductor disk is arranged in the center position of the waveguide opening surface connected to the introduction window, and the waveguide opening is formed in a ring shape.
JP4160599A 1992-06-19 1992-06-19 Electronic cyclotron resonance device Pending JPH065386A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4160599A JPH065386A (en) 1992-06-19 1992-06-19 Electronic cyclotron resonance device
IT93MI1321 IT1264852B1 (en) 1992-06-19 1993-06-18 Plasma processing device for precision etching or sputtering or CVD - incorporates circularly polarised wave converter with angle regulation of circular polarisation converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4160599A JPH065386A (en) 1992-06-19 1992-06-19 Electronic cyclotron resonance device

Publications (1)

Publication Number Publication Date
JPH065386A true JPH065386A (en) 1994-01-14

Family

ID=15718429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4160599A Pending JPH065386A (en) 1992-06-19 1992-06-19 Electronic cyclotron resonance device

Country Status (1)

Country Link
JP (1) JPH065386A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501173B2 (en) 2000-03-03 2002-12-31 Hitachi, Ltd. Semiconductor device
EP1276356A1 (en) * 2000-03-30 2003-01-15 Tokyo Electron Limited Apparatus for plasma processing
JP2003110315A (en) * 2001-09-27 2003-04-11 Tokyo Electron Ltd Electromagnetic field feed device and plasma processing device
JP2003109797A (en) * 2001-09-28 2003-04-11 Tokyo Electron Ltd Electromagnetic field supply device and plasma treatment apparatus
JP2006179477A (en) * 2000-03-30 2006-07-06 Tokyo Electron Ltd Plasma processing apparatus
US7485827B2 (en) 2006-07-21 2009-02-03 Alter S.R.L. Plasma generator
JP2012044035A (en) * 2010-08-20 2012-03-01 Hitachi High-Technologies Corp Semiconductor manufacturing apparatus
JP2014220041A (en) * 2013-05-01 2014-11-20 株式会社テクノ菱和 Ionizer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501173B2 (en) 2000-03-03 2002-12-31 Hitachi, Ltd. Semiconductor device
JP2006179477A (en) * 2000-03-30 2006-07-06 Tokyo Electron Ltd Plasma processing apparatus
EP1276356A1 (en) * 2000-03-30 2003-01-15 Tokyo Electron Limited Apparatus for plasma processing
JP4522356B2 (en) * 2000-03-30 2010-08-11 東京エレクトロン株式会社 Plasma processing equipment
US6910440B2 (en) 2000-03-30 2005-06-28 Tokyo Electron Ltd. Apparatus for plasma processing
EP1276356A4 (en) * 2000-03-30 2006-01-04 Tokyo Electron Ltd Apparatus for plasma processing
JP4499323B2 (en) * 2001-09-27 2010-07-07 東京エレクトロン株式会社 Electromagnetic field supply apparatus and plasma processing apparatus
JP2003110315A (en) * 2001-09-27 2003-04-11 Tokyo Electron Ltd Electromagnetic field feed device and plasma processing device
JP4481538B2 (en) * 2001-09-28 2010-06-16 東京エレクトロン株式会社 Electromagnetic field supply apparatus and plasma processing apparatus
JP2003109797A (en) * 2001-09-28 2003-04-11 Tokyo Electron Ltd Electromagnetic field supply device and plasma treatment apparatus
US7485827B2 (en) 2006-07-21 2009-02-03 Alter S.R.L. Plasma generator
JP2012044035A (en) * 2010-08-20 2012-03-01 Hitachi High-Technologies Corp Semiconductor manufacturing apparatus
JP2014220041A (en) * 2013-05-01 2014-11-20 株式会社テクノ菱和 Ionizer

Similar Documents

Publication Publication Date Title
JP3233575B2 (en) Plasma processing equipment
US6622650B2 (en) Plasma processing apparatus
US5034086A (en) Plasma processing apparatus for etching, ashing and film-formation
US6325018B1 (en) Flat antenna having openings provided with conductive materials accommodated therein and plasma processing apparatus using the flat antenna
JP3355926B2 (en) Plasma processing equipment
JPH1074733A (en) Surface wave plasma treating device
JP2570090B2 (en) Dry etching equipment
EP0472045B1 (en) Method and apparatus for controlling plasma processing
JP3430053B2 (en) Plasma processing equipment
JP7139528B2 (en) Plasma processing equipment
JP2000260747A (en) Planar antenna, plasma treating apparatus and method using the same
JP7001456B2 (en) Plasma processing equipment
JP2722070B2 (en) Plasma processing apparatus and plasma processing method
JP2001223098A (en) Microwave plasma processing equipment
JPH065386A (en) Electronic cyclotron resonance device
JP3640204B2 (en) Plasma processing apparatus and plasma processing method
US5292395A (en) ECR plasma reaction apparatus having uniform magnetic field gradient
JP2951797B2 (en) Plasma generator
JPH01184922A (en) Plasma processor useful for etching, ashing, film formation and the like
JP2001035695A (en) Plasma treating device
KR100785960B1 (en) Plasma processing apparatus
JPH0917598A (en) Ecr plasma working device and ecr plasma generating method
JP2779997B2 (en) Plasma processing equipment
JP2000173797A (en) Microwave plasma treating device
JPH06333848A (en) Plasma generating device