JPH0653450A - Master slice mode semiconductor integrated circuit device - Google Patents

Master slice mode semiconductor integrated circuit device

Info

Publication number
JPH0653450A
JPH0653450A JP5028393A JP5028393A JPH0653450A JP H0653450 A JPH0653450 A JP H0653450A JP 5028393 A JP5028393 A JP 5028393A JP 5028393 A JP5028393 A JP 5028393A JP H0653450 A JPH0653450 A JP H0653450A
Authority
JP
Japan
Prior art keywords
channel mosfet
wiring
cell
well
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5028393A
Other languages
Japanese (ja)
Inventor
繁治 ▲高▼田
Shigeji Takada
一雄 ▲高▼森
Kazuo Takamori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC IC Microcomputer Systems Co Ltd
Original Assignee
NEC IC Microcomputer Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC IC Microcomputer Systems Co Ltd filed Critical NEC IC Microcomputer Systems Co Ltd
Priority to JP5028393A priority Critical patent/JPH0653450A/en
Publication of JPH0653450A publication Critical patent/JPH0653450A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Abstract

PURPOSE:To allow response to a plurality of signal levels without substantially depending on a level conversion circuit by employing unit cells having specific structures. CONSTITUTION:Each of unit cells 101-104 arranged in lattice on a semiconductor substrate comprises a P-well 6 isolated electrically from a substrate and an n-well 2 isolated from the P-well 6. The P-well 6 and the n-well 2 in a unit cell are formed while being isolated from a corresponding well in an adjacent unit cell. A P-channel MOSFET and an n-channel MOSFET are formed in the n-well 2 and the P-well 6 of each of the unit cells 101-104. Power supply wirings 21, 24 and ground potential wirings 22, 23 are formed individually in the direction crossing perpendicularly with the gate electrodes 3, 7 each of the P-channel MOSFET and n-channel MOSFET. This constitution allows driving of each unit cell with a signal having different voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路(IC)
装置に関し、特にNAND回路やNOR回路などの論理
ゲートやSRAM等のメモリセル相当の基本セルを半導
体基板上に水平および垂直両方向に格子状に配列して構
成したマスタースライス方式の大規模IC装置に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor integrated circuit (IC).
More particularly, the present invention relates to a master slice-type large-scale IC device in which basic cells corresponding to memory cells such as NAND gates and NOR circuits and memory cells such as SRAMs are arranged in a grid pattern in both horizontal and vertical directions on a semiconductor substrate. .

【0002】[0002]

【従来の技術】従来のマスタースライス方式の大規模I
C装置においては、上記基本セルの格子状配列と、それ
ら基本セルとの信号授受を行うようにその格子状配列を
取り囲んで配置された入出力(I/O)セルアレイと、
外部回路との間の接続のためにそれらI/Oセルアレイ
を取り囲んで半導体チップの周辺部に配置されたボンデ
ィングパッドアレイとが大量生産ベースで予め形成さ
れ、上記格子状配列の水平・垂直両方向に延び上記基本
セル間の接続を選択的に形成する一層あるいは数層の配
線層が需要に応じて適宜形成される。なお、電源配線や
接地電位配線は基本セルの各各が所望の仕様を満たすよ
うに上記ボンディングパッドアレイと同様に予め大量生
産ベースで形成される。
2. Description of the Related Art Large-scale I of the conventional master slice method
In the C device, a grid-like array of the basic cells, and an input / output (I / O) cell array arranged so as to surround the grid-like array so as to exchange signals with the basic cells,
Bonding pad arrays that surround the I / O cell arrays and are arranged in the peripheral portion of the semiconductor chip for connection with an external circuit are formed in advance on a mass production basis. A single wiring layer or several wiring layers that extend to selectively form the connection between the basic cells are appropriately formed according to demand. The power supply wiring and the ground potential wiring are formed in advance on a mass production basis in the same manner as the bonding pad array so that each of the basic cells satisfies the desired specifications.

【0003】上記基本セルの各各にはTTLやCMOS
論理回路又はECL形成用のバイポーラトランジスタや
CMOSFETなどが含まれる。これら能動素子相互間
の接続および基本セル相互間の接続を上記配線層により
選択的に形成して得られる回路(以下、内部回路とい
う)は、一般に半導体チップの外部の回路(以下、外部
回路という)とは異る信号レベルを有する。すなわち、
外部回路からの信号がTTL又はCMOS論理回路の信
号レベル(以下、これらを総称してCMOSレベルとい
う)およびECLの信号レベル(以下、ECLレベルと
いう)の両方であり得るのに対して、内部回路の応答で
きる信号は多くの場合CMOSレベルに限られる。その
場合は外部回路からのECLレベルの信号を半導体チッ
プ内の上記I/Oセル近傍またはI/Oセルの一部とし
て設けたレベル変換回路によりCMOSレベルに変換す
る必要がある。同様に、外部回路への出力信号もCMO
SレベルからECLレベルに逆レベル変換する必要があ
る。
Each of the above basic cells has a TTL or CMOS
It includes a bipolar transistor for forming a logic circuit or ECL, a CMOSFET, and the like. A circuit (hereinafter referred to as an internal circuit) obtained by selectively forming the connection between the active elements and the connection between the basic cells with each other by the wiring layer is generally an external circuit of the semiconductor chip (hereinafter referred to as an external circuit). ) Has a different signal level. That is,
The signal from the external circuit may be both the signal level of the TTL or CMOS logic circuit (hereinafter collectively referred to as CMOS level) and the signal level of ECL (hereinafter referred to as ECL level), whereas the internal circuit In many cases, the signals that can be responded to are limited to the CMOS level. In that case, it is necessary to convert an ECL level signal from an external circuit to a CMOS level by a level conversion circuit provided near the I / O cell in the semiconductor chip or as a part of the I / O cell. Similarly, the output signal to the external circuit is also CMO.
It is necessary to perform the inverse level conversion from the S level to the ECL level.

【0004】半導体技術の進歩に伴い、p型半導体基板
内のp型ウェルに形成したnチャネルMOSFETの基
板からの電気的アイソレーションが可能になり、この技
術による半導体ICでは上記内部回路をECLレベルの
信号で直接に駆動できるようになった(電子情報通信学
会1990年7月20日発行「電子情報通信学会技術研
究報告」61〜67頁参照)。しかし、この場合はEC
Lレベルで動作する外部回路との接続は上記レベル変換
を要しないものの、CMOSレベルで動作する外部回路
との接続においてはレベル変換を要する。
As the semiconductor technology advances, electrical isolation from the substrate of the n-channel MOSFET formed in the p-type well in the p-type semiconductor substrate becomes possible. In a semiconductor IC based on this technique, the above internal circuit is at the ECL level. Can be directly driven by the signal (see Institute of Electronics, Information and Communication Engineers Technical Research Report, pages 61-67, published on July 20, 1990). However, in this case EC
Connection with an external circuit operating at the L level does not require the above level conversion, but connection with an external circuit operating at the CMOS level requires level conversion.

【0005】[0005]

【発明が解決しようとする課題】上述のとおり、従来技
術によるこの種のIC回路はその内部回路の応答できる
信号レベルが限られており、その信号レベル以外で動作
する外部回路からの入力信号はレベル変換しなければな
らない。このレベル変換のためにICチップ上に形成さ
れる上述のレベル変換回路はICチップ表面である面積
を占有しチップ表面程の有効利用を害するだけでなく、
ICチップと外部回路との間の信号授受の所要時間を増
大させ、消費電力を増大させる。一方、マスタースライ
ス方式のIC装置すなわちゲートアレイの高密度化・高
速化に伴い接続相手の外部回路の種類も多くなっている
ので、外部回路との接続についてゲートアレイが備える
べき柔軟性の要求は高まっている。
As described above, in the IC circuit of this type according to the prior art, the signal level to which the internal circuit can respond is limited, and the input signal from the external circuit which operates at a signal level other than the signal level is limited. You have to change the level. The above-mentioned level conversion circuit formed on the IC chip for this level conversion occupies an area which is the surface of the IC chip and impairs the effective use of the surface of the chip.
It increases the time required for signal transmission / reception between the IC chip and the external circuit, and increases power consumption. On the other hand, as the density and speed of master slice type IC devices, that is, gate arrays, are increasing, the types of external circuits to be connected with are also increasing. Therefore, there is a demand for flexibility that the gate array should have in connection with external circuits. It is rising.

【0006】したがって、この発明の目的は、レベル変
換回路に実質的に依存することなく複数の信号レベルに
応答できるマスタースライス方式の大規模IC装置を提
供することである。
Therefore, an object of the present invention is to provide a large-scale master-slice IC device capable of responding to a plurality of signal levels without substantially depending on the level conversion circuit.

【0007】この発明の他の目的は信号レベルの互いに
異る複数の外部回路との接続に柔軟に対応できるマスタ
ースライス方式の大規模IC装置を提供することであ
る。
Another object of the present invention is to provide a master slice type large-scale IC device capable of flexibly coping with connection with a plurality of external circuits having different signal levels.

【0008】[0008]

【課題を解決するための手段】本発明によるマスタース
ライス方式の大規模IC装置においては、半導体基板上
に格子状に配置された基本セルの各各が基板から電気的
にアイソレートされた状態で形成されたp型ウェルとこ
のp型ウェルから分離して形成されたn型ウェルとを備
える。一つの基本セルのそれらp型ウェルおよびn型ウ
ェルはそのセルに隣接する基本セルの対応ウェルから分
離して形成される。それら基本セルの各各のn型ウェル
およびp型ウェルにはpチャネルMOSFETおよびn
チャネルMOSFETがそれぞれ形成される。それらp
チャネルMOSFETおよびnチャネルMOSFETの
各各のゲート電極と垂直に交わる方向に電源配線および
接地電位配線がそれぞれ別個に形成される。また基本セ
ルの各各にはバイポーラトランジスタも併せ形成され
る。上述の構成により、基本セルの各各は互いに異なる
電圧の信号で駆動できるので内部回路の駆動信号の信号
レベルを、I/Oインターフェイス回路や上述のレベル
変換回路に依存することなく基本セルごとに選択でき
る。
In a master slice type large-scale IC device according to the present invention, each of the basic cells arranged in a grid on a semiconductor substrate is electrically isolated from the substrate. It has a formed p-type well and an n-type well formed separately from the p-type well. The p-type well and the n-type well of one basic cell are formed separately from the corresponding wells of the basic cells adjacent to that cell. Each of the n-type well and p-type well of the basic cells has a p-channel MOSFET and an n-type well.
Channel MOSFETs are respectively formed. Those p
A power supply wiring and a ground potential wiring are separately formed in a direction perpendicular to the respective gate electrodes of the channel MOSFET and the n-channel MOSFET. A bipolar transistor is also formed in each of the basic cells. With the above configuration, each of the basic cells can be driven by signals having different voltages, so that the signal level of the drive signal of the internal circuit does not depend on the I / O interface circuit or the level conversion circuit described above. You can choose.

【0009】[0009]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0010】図1は本発明の第1の実施例を説明するた
めの半導体チップのレイアウト図、図2は図1の破線X
−Yにおける概略的断面図である。
FIG. 1 is a layout diagram of a semiconductor chip for explaining a first embodiment of the present invention, and FIG. 2 is a broken line X in FIG.
It is a schematic sectional drawing in -Y.

【0011】図1および図2に示すように、半導体基板
1上に水平・垂直両方向に形成された基本セル101,
102,103および104を備える。これら基本セル
は実際の大規模ICチップ表面では水平方向および垂直
方向にそれぞれ多数配列されるが、図示の便宜のために
それらのうちの4つのセルだけが示してある。これらの
セル101,102,103および104の各各は、p
型シリコン基板1の表面にそれぞれ形成されたn型ウェ
ル2とp型ウェル6とを備える。p型ウェル6はn型埋
込層5および隣接のn型ウェル2によりp型シリコン基
板1から電気的にアイソレートされている。n型ウェル
2にはp+ 型不純物拡散によりソース・ドレイン領域4
が形成され、これら領域4の間にはゲート絶縁膜を介し
てゲート電極3が形成されpチャネルMOSFET20
1を構成する。また、p型ウェル6には、n+ 型不純物
拡散によりソース・ドレイン領域8が形成され、これら
領域8の間にはゲート絶縁膜を介してゲート電極7が形
成され、nチャネルMOSFET202を構成する。一
方、同じセル内のn+ 型埋込層9により分離された領域
にはn型不純物拡散によるコレクタ領域10、p型不純
物拡散によるベース領域11、およびn+ 型不純物拡散
によるエミッタ領域12が形成されバイポーラnpnト
ランジスタ203を構成する。これら領域10,11,
および12はコレクタ電極13,ベース電極14,およ
びエミッタ電極15にそれぞれ接続される。
As shown in FIGS. 1 and 2, basic cells 101 formed on a semiconductor substrate 1 in both horizontal and vertical directions,
102, 103 and 104 are provided. Although many of these basic cells are arranged in the horizontal and vertical directions on the surface of an actual large-scale IC chip, only four of them are shown for convenience of illustration. Each of these cells 101, 102, 103 and 104 has p
An n-type well 2 and a p-type well 6 are formed respectively on the surface of the type silicon substrate 1. The p-type well 6 is electrically isolated from the p-type silicon substrate 1 by the n-type buried layer 5 and the adjacent n-type well 2. A source / drain region 4 is formed in the n-type well 2 by p + -type impurity diffusion.
And a gate electrode 3 is formed between these regions 4 via a gate insulating film, and the p-channel MOSFET 20 is formed.
Make up 1. Source / drain regions 8 are formed in the p-type well 6 by n + -type impurity diffusion, and a gate electrode 7 is formed between these regions 8 via a gate insulating film to form an n-channel MOSFET 202. . On the other hand, a collector region 10 formed by n-type impurity diffusion, a base region 11 formed by p-type impurity diffusion, and an emitter region 12 formed by n + -type impurity diffusion are formed in regions separated by the n + -type buried layer 9 in the same cell. And a bipolar npn transistor 203 is formed. These areas 10, 11,
And 12 are connected to the collector electrode 13, the base electrode 14, and the emitter electrode 15, respectively.

【0012】上述のとおり、上記セル101〜104の
各各がbipolar−CMOS回路から成り、これら
セル全体としてbiCMOSゲートアレイを構成する。
セル101および102の上記n型ウェル2の配列と平
行に前記pチャネルMOSFET201のゲート電極3
を非接触的に横切る第1の配線21が形成され、上記p
型ウェル6の配列と平行に前記nチャネルMOSFET
202のゲート電極7を非接触的に横切る第2の配線2
2が形成される。同様に、セル103および104のn
型ウェル2内のpチャネルMOSFET201のゲート
電極3を非接触的に横切る第3の配線23とp型ウェル
6内のnチャネルMOSFET202のゲート電極7を
非接触的に横切る第4の配線24が形成される。
As described above, each of the cells 101 to 104 is composed of a bipolar-CMOS circuit, and these cells as a whole constitute a biCMOS gate array.
The gate electrode 3 of the p-channel MOSFET 201 is arranged in parallel with the arrangement of the n-type wells 2 of the cells 101 and 102.
A first wiring 21 is formed that crosses the contactlessly.
The n-channel MOSFET parallel to the arrangement of the wells 6.
Second wiring 2 that crosses the gate electrode 7 of 202 in a non-contact manner
2 is formed. Similarly, n in cells 103 and 104
A third wiring 23 that crosses the gate electrode 3 of the p-channel MOSFET 201 in the type well 2 in a non-contact manner and a fourth wiring 24 that crosses the gate electrode 7 of the n-channel MOSFET 202 in the p-type well 6 in a non-contact manner are formed. To be done.

【0013】上記第2および第3の配線22および23
は接地電位点(図示してない)に、第1および第4の配
線21および24は電圧VCC(正極性の電圧)および電
圧VEE(負極性電圧)の電源(図示してない)にそれぞ
れ接続され、セル101,102のn型ウェル2のpチ
ャネルMOSFET201はコンタクトホール16およ
び第1の配線21を通じて電圧VCCの供給を受ける。同
様にp型ウェル6のnチャネルMOSFET202はコ
ンタクトホール17および第2の配線22を通じて接地
電位点に接続される。したがって、これらセル101お
よび102の各各のこれらMOSFETは上記CMOS
レベルの駆動電圧で動作する内部回路を構成する。
The above-mentioned second and third wirings 22 and 23
Is a ground potential point (not shown), and the first and fourth wirings 21 and 24 are a power supply (not shown) of the voltage V CC (positive voltage) and the voltage V EE (negative voltage). The p-channel MOSFETs 201 of the n-type wells 2 of the cells 101 and 102, which are respectively connected, are supplied with the voltage V CC through the contact hole 16 and the first wiring 21. Similarly, the n-channel MOSFET 202 of the p-type well 6 is connected to the ground potential point through the contact hole 17 and the second wiring 22. Therefore, these MOSFETs in each of these cells 101 and 102 are
An internal circuit that operates at a level drive voltage is configured.

【0014】一方、セル103および104の各各のn
型ウェル2のpチャネルMOSFET201はコンタク
トホール18および配線23を通じて接地電位点(図示
しない)に接続され、p型ウェル6のnチャネルMOS
FET202はコンタクトホール19および配線24を
通じて電圧VEEの電源に接続される。したがって、これ
らセル103および104の各各のこれらMOSFET
は上記ECLレベルの駆動電圧で動作する内部回路を構
成する。
On the other hand, n of each of the cells 103 and 104
The p-channel MOSFET 201 of the p-type well 2 is connected to the ground potential point (not shown) through the contact hole 18 and the wiring 23, and the n-channel MOS of the p-type well 6 is formed.
The FET 202 is connected to the power source of the voltage V EE through the contact hole 19 and the wiring 24. Therefore, these MOSFETs in each of these cells 103 and 104, respectively.
Constitutes an internal circuit that operates at the ECL level drive voltage.

【0015】この実施例において配線21および22の
接続先を接地電位点および電圧VEEの電源に逆転する
と、セル101および102はECLレベルの内部回路
に、セル103および104はCMOSレベルの内部回
路にそれぞれ転換される。
In this embodiment, when the connection destinations of the wirings 21 and 22 are reversed to the ground potential point and the power source of the voltage V EE , the cells 101 and 102 are an ECL level internal circuit, and the cells 103 and 104 are a CMOS level internal circuit. Are converted into

【0016】上述のとおり、この実施例におけるセル1
01〜104の各各のウェル2および6は各セル内で上
記電気的アイソレーションにより互いに独立しているだ
けでなく隣接セルの対応ウェルからも互いに独立してい
るので、配線21/22および23/24による電源電
圧VCC/VEEの供給を外部回路の信号レベルに応じて柔
軟に選択でき、それによって、これらセルの各各の内部
回路をCMOSレベルおよびECLレベルのいずれの信
号レベルにも柔軟に適合させることができる。また、外
部回路の信号レベルが予め既知であれば配線21/22
と電圧VCC/VEEの一対の外部電源との接続関係はIC
ユーザ側で柔軟に選べるのでICチップ上のI/Oセル
を単純化でき、またレベル変換回路を不要にできる。
As mentioned above, cell 1 in this embodiment
Each of the wells 2 and 6 of 01 to 104 are not only independent of each other in each cell due to the above electrical isolation but also independent of the corresponding wells of the adjacent cells. The supply of the power supply voltage V CC / V EE by / 24 can be flexibly selected according to the signal level of the external circuit, whereby the internal circuit of each of these cells can be set to either the CMOS level or the ECL level. Can be flexibly adapted. If the signal level of the external circuit is known in advance, the wiring 21/22
IC is connected to a pair of external power supply of voltage V CC / V EE
Since the user can flexibly select the I / O cell on the IC chip, the level conversion circuit can be eliminated.

【0017】図3は本発明の第2の実施例を説明するた
めの半導体チップのレイアウト図である。
FIG. 3 is a layout diagram of a semiconductor chip for explaining the second embodiment of the present invention.

【0018】図3に示すように、第1の実施例と同様に
構成したセル101および102のn型ウェル2の配列
と平行にpチャネルMOSFETのゲート電極3を非接
触的に横切る第1の配線21と、この配線21に沿って
平行な第3の配線23と形成される。同様に、セル10
1および102のp型ウェル6の配列と平行にnチャネ
ルMOSFETのゲート電極7を非接触的に横切る第2
の配線22と、この配線22に沿って平行に第4の配線
24が形成される。上記第1および第4の配線21およ
び24は電圧VCCおよびVEEの外部電源(図示してな
い)に、第2および第3の配線22および23はともに
接地電位点(図示しない)にそれぞれ接続される。
As shown in FIG. 3, the first electrode which crosses the gate electrode 3 of the p-channel MOSFET in a contactless manner in parallel with the arrangement of the n-type wells 2 of the cells 101 and 102 having the same structure as the first embodiment. The wiring 21 and the third wiring 23 parallel to the wiring 21 are formed. Similarly, cell 10
A second contactless crossing of the gate electrode 7 of the n-channel MOSFET in parallel with the arrangement of the p-type wells 1 and 102.
The wiring 22 and the fourth wiring 24 are formed in parallel with the wiring 22. The first and fourth wirings 21 and 24 are connected to an external power source (not shown) of the voltages V CC and V EE , and the second and third wirings 22 and 23 are connected to a ground potential point (not shown), respectively. Connected.

【0019】セル101のn型ウェル2のpチャネルF
ETはコンタクトホール16および配線21を通じて電
圧VCCの供給を受け、同じセル101のp型ウェル6の
nチャネルFETはコンタクトホール17および配線2
2を通じて接地電位を受ける。配線21および22との
これらの接続によってセル101の内部回路の信号レベ
ルをCMOSレベルにすることができる。
P channel F of n-type well 2 of cell 101
ET is supplied with the voltage V CC through the contact hole 16 and the wiring 21, and the n-channel FET of the p-type well 6 of the same cell 101 has the contact hole 17 and the wiring 2.
2 receives the ground potential. By connecting these with the wirings 21 and 22, the signal level of the internal circuit of the cell 101 can be set to the CMOS level.

【0020】一方、セル102のn型ウェル2のpチャ
ネルMOSFETはコンタクトホール18および配線2
3を通じて接地電位を受け、同じセル102のp型ウェ
ル6のnチャネルMOSFETはコンタクトホール19
および配線24を通じてVEEの供給を受ける。配線23
および24と上記接続によって、セル102の内部回路
の信号レベルをECLレベルにすることができる。
On the other hand, the p-channel MOSFET of the n-type well 2 of the cell 102 has the contact hole 18 and the wiring 2.
3, the n-channel MOSFET of the p-type well 6 of the same cell 102 receives the ground potential, and the contact hole 19
Also, V EE is supplied through the wiring 24. Wiring 23
The signal level of the internal circuit of the cell 102 can be set to the ECL level by the above-described connection with 24 and 24.

【0021】上述のとおり、この第2の実施例において
は、互いに隣接するセル101および102を互いに異
る信号レベルの入力信号で動作させることができ、外部
回路の信号レベルに伴う内部回路の信号レベル選択の柔
軟性を上述の第1の実施例よりもさらに高めることがで
きる。
As described above, in the second embodiment, the cells 101 and 102 adjacent to each other can be operated by the input signals having different signal levels, and the signal of the internal circuit according to the signal level of the external circuit can be operated. The flexibility of level selection can be further increased as compared with the first embodiment described above.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、基
本セルの各各のp型ウェルを基板から電気的に互いにア
イソレートされた状態でn型ウェルとは独立にしかも隣
接セルの対応ウェルと分離してそれぞれ形成し、それら
n型/p型ウェル内部のpチャネル/nチャネルMOS
FETのゲート電極を非接触的に横切る方向に複数の配
線層を形成し、上記MOSFETとそれら配線層との接
続およびこれら配線層と電圧VCC/VEEおよび接地電位
点との接続関係を外部回路の信号レベルに応じて柔軟に
選択できるので、そのICチップ上のI/Oセルまたは
レベル変換回路に依存ることなく内部回路の信号レベル
を外部回路のそれに適合させることができる。
As described above, according to the present invention, each p-type well of the basic cell is electrically isolated from the substrate, independently of the n-type well, and corresponding to the adjacent cell. P-channel / n-channel MOS formed inside the n-type / p-type well separately from the well
A plurality of wiring layers are formed in a direction that crosses the gate electrode of the FET in a non-contact manner, and the connection between the MOSFET and the wiring layers and the connection relationship between these wiring layers and the voltage V CC / V EE and the ground potential point are external. Since the flexibility can be selected according to the signal level of the circuit, the signal level of the internal circuit can be adapted to that of the external circuit without depending on the I / O cell on the IC chip or the level conversion circuit.

【0023】したがって、半導体チップ上のI/Oセル
は単純化できるだけでなく、従来技術によるこの種IC
装置に不可欠であった上述のレベル変換回路をICチッ
プから除去できる。すなわち、半導体チップ表面積の有
効利用を可能にするだけでなく上記レベル変換に伴う信
号処理時間の増大や消費電力の増大を回避できるという
効果を有する。
Therefore, not only the I / O cell on the semiconductor chip can be simplified, but also this type of IC of the prior art can be used.
The above-mentioned level conversion circuit which is indispensable for the device can be removed from the IC chip. That is, not only the effective use of the surface area of the semiconductor chip is enabled, but also an increase in signal processing time and an increase in power consumption due to the level conversion can be avoided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明するための半導体
チップのレイアウト図。
FIG. 1 is a layout diagram of a semiconductor chip for explaining a first embodiment of the present invention.

【図2】図2の破線XYにおける概略的断面図。FIG. 2 is a schematic sectional view taken along a broken line XY in FIG.

【図3】本発明の第2の実施例を説明するための半導体
チップのレイアウト図。
FIG. 3 is a layout diagram of a semiconductor chip for explaining a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 n型ウェル 3,7 ゲート電極 4,8 ソース・ドレイン領域 5 n型埋込層 6 p型ウェル 9 n+ 型埋込層 10 コレクタ領域 11 ベース領域 12 エミッタ領域 13 コレクタ電極 14 ベース電極 15 エミッタ電極 16,17,18,19 コンタクトホール 21,22,23,24 配線 101,102,103,104 セル 201 pチャネルMOSFET 202 nチャネルMOSFET 203 バイポーラトランジスタ1 semiconductor substrate 2 n-type well 3,7 gate electrode 4,8 source / drain region 5 n-type buried layer 6 p-type well 9 n + type buried layer 10 collector region 11 base region 12 emitter region 13 collector electrode 14 base Electrode 15 Emitter electrode 16, 17, 18, 19 Contact hole 21, 22, 23, 24 Wiring 101, 102, 103, 104 Cell 201 p-channel MOSFET 202 n-channel MOSFET 203 Bipolar transistor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体基板の表面に水平およ
び垂直の両方向に互いに隣接して格子状に配置され各各
が複数のMOSFETと少なくとも1個のバイポーラト
ランジスタを含む多数のセルと、これらセルを所定の電
圧の電源と基準電位点とに接続する配線手段とを含むマ
スタースライス方式の半導体装置において、前記セルの
各各が、前記半導体基板の表面に形成された逆導電型の
第1のウェルと、前記半導体基板の表面に形成され逆導
電型埋込層により前記半導体基板から電気的にアイソレ
ートされ前記第1のウェルから分離して形成された前記
一導電型の第2のウェルと、前記第1および第2のウェ
ルの各各の内部にそれぞれ形成された少なくとも1対の
pチャネルMOSFETおよびnチャネルMOSFET
と、前記第1および第2のウェルと分離して形成された
少なくとも1つのバイポーラトランジスタとを含むこと
と、前記pチャネルMOSFETおよびnチャネルMO
SFETに前記所定の電圧を供給できるようにこれらM
OSFETのゲート電極を非接触的に横切る方向に互い
に平行に延びこれらMOSFETの所望の電極とコンタ
クトホールを通じて選択的に接続される複数の配線手段
をさらに含むことを特徴とするマスタースライス方式の
半導体集積回路装置。
1. A large number of cells, each of which is arranged adjacent to each other in a horizontal and vertical direction in a grid pattern on a surface of a semiconductor substrate of one conductivity type, each cell including a plurality of MOSFETs and at least one bipolar transistor. In a master slice type semiconductor device including a wiring means for connecting a cell to a power source of a predetermined voltage and a reference potential point, each of the cells has a first opposite conductivity type formed on a surface of the semiconductor substrate. And a second well of one conductivity type that is electrically isolated from the semiconductor substrate by a buried layer of opposite conductivity type formed on the surface of the semiconductor substrate and separated from the first well. And at least one pair of p-channel MOSFET and n-channel MOSFET formed inside each of the first and second wells, respectively.
And at least one bipolar transistor formed separately from the first and second wells, the p-channel MOSFET and the n-channel MO
In order to supply the predetermined voltage to the SFET, these M
A master-slice semiconductor integrated circuit further comprising a plurality of wiring means extending in parallel to each other across the gate electrode of the OSFET in a non-contact manner and selectively connected to desired electrodes of these MOSFETs through contact holes. Circuit device.
【請求項2】 前記複数の配線手段が、前記セル内に形
成された前記pチャネルMOSFETのゲート電極を非
接触的に横切って配置され第1の外部電圧の電源に接続
される第1の配線部材と、前記セル内に形成された前記
nチャネルMOSFETのゲート電極を非接触的に横切
って配置され第2の電圧の外部電源に接続される第2の
配線部材とを含む請求項1記載のマスタースライス方式
の半導体集積回路装置。
2. A first wiring, wherein the plurality of wiring means are arranged across the gate electrode of the p-channel MOSFET formed in the cell in a non-contact manner and connected to a power supply of a first external voltage. 2. The member according to claim 1, further comprising: a member and a second wiring member that is arranged so as to cross the gate electrode of the n-channel MOSFET formed in the cell in a non-contact manner and is connected to an external power source having a second voltage. Master slice type semiconductor integrated circuit device.
【請求項3】 前記複数の配線手段が、前記セル内に形
成された前記pチャネルMOSFETのゲート電極を非
接触的に横切って互いに隣接して平行に配置され第1の
電圧の外部電源および基準電位点にそれぞれ接続された
第1および第3の配線部材と、前記セル内に形成された
前記nチャネルMOSFETのゲート電極を非接触的に
横切って配置され第2の電圧の外部電源および基準電位
点にそれぞれ接続された第2および第4の配線部材とを
含む請求項1記載のマスタースライス方式の半導体集積
回路装置。
3. The plurality of wiring means are arranged in parallel adjacent to each other across the gate electrode of the p-channel MOSFET formed in the cell in a contactless manner, and an external power source of a first voltage and a reference. The first and third wiring members respectively connected to the potential point and the external power source and the reference potential of the second voltage arranged across the gate electrode of the n-channel MOSFET formed in the cell in a non-contact manner. The master slice semiconductor integrated circuit device according to claim 1, further comprising second and fourth wiring members connected to the respective points.
JP5028393A 1992-04-08 1993-03-11 Master slice mode semiconductor integrated circuit device Withdrawn JPH0653450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5028393A JPH0653450A (en) 1992-04-08 1993-03-11 Master slice mode semiconductor integrated circuit device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8678392 1992-04-08
JP4-86783 1992-04-08
JP5028393A JPH0653450A (en) 1992-04-08 1993-03-11 Master slice mode semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0653450A true JPH0653450A (en) 1994-02-25

Family

ID=26390739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5028393A Withdrawn JPH0653450A (en) 1992-04-08 1993-03-11 Master slice mode semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0653450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060942A (en) * 2009-09-09 2011-03-24 Oki Semiconductor Co Ltd Semiconductor device, method of fabricating the same, and semiconductor device layout method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060942A (en) * 2009-09-09 2011-03-24 Oki Semiconductor Co Ltd Semiconductor device, method of fabricating the same, and semiconductor device layout method

Similar Documents

Publication Publication Date Title
KR890002966B1 (en) Master slice integrated circuit device
JP2912174B2 (en) Library group and semiconductor integrated circuit using the same
US6359472B2 (en) Semiconductor integrated circuit and its fabrication method
US5376816A (en) Bi-cmos integrated circuit device having buried region use in common for bipolar and mos transistors
EP0177336B1 (en) Gate array integrated device
JPS61182244A (en) Semiconductor device
JP2845869B2 (en) Semiconductor integrated circuit device
EP0290672B1 (en) A semiconductor integrated circuit device
JPH0434309B2 (en)
JP2632420B2 (en) Semiconductor integrated circuit
US4825273A (en) Semiconductor integrated circuit device
US5001487A (en) Semiconductor integrated circuit device
US4725745A (en) Bi-MOS PLA
JPH08330552A (en) Gate array driven by a plurality of power supply voltages and electronic apparatus using the same
JPH1065146A (en) Semiconductor integrated circuit device
JPH0653450A (en) Master slice mode semiconductor integrated circuit device
US6483131B1 (en) High density and high speed cell array architecture
JP2714996B2 (en) Semiconductor integrated circuit device
JPH0787240B2 (en) Semiconductor integrated circuit
JPH0815209B2 (en) Semiconductor integrated circuit device
EP0498567A1 (en) Mixed CMOS/BiCMOS device
JP3038896B2 (en) Semiconductor device
JPH10150175A (en) Semiconductor integrated circuit and its manufacture
JPH0262063A (en) Semiconductor integrated circuit
JPH03116867A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530