JPH0653132A - Manufacture of organic thin film and manufacturing device thereof - Google Patents

Manufacture of organic thin film and manufacturing device thereof

Info

Publication number
JPH0653132A
JPH0653132A JP22354892A JP22354892A JPH0653132A JP H0653132 A JPH0653132 A JP H0653132A JP 22354892 A JP22354892 A JP 22354892A JP 22354892 A JP22354892 A JP 22354892A JP H0653132 A JPH0653132 A JP H0653132A
Authority
JP
Japan
Prior art keywords
thin film
organic thin
spin coating
heating
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22354892A
Other languages
Japanese (ja)
Inventor
Takashi Kurihara
栗原  隆
Akira Tomaru
暁 都丸
Haruki Ozawaguchi
治樹 小澤口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22354892A priority Critical patent/JPH0653132A/en
Publication of JPH0653132A publication Critical patent/JPH0653132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To provide a manufacturing method of a new functional organic thin film and a manufacturing device of the organic thin film for acquiring a uniform and flat good thin film by spin coating. CONSTITUTION:The title manufacturing method is that of an organic thin film wherein infrared ray is used as heating source in a manufacturing method of an organic thin film wherein a substrate and a film itself under manufacturing are heated when a thin film is manufactured by spin coating of organic compound which is dissolved in high boiling point solvent. The title device is a manufacturing device of an organic thin film which is used for manufacturing of an organic thin film wherein an infrared ray heating device is communicated to a spin coating device. In this method, it is desirable to completely remove solvent molecule by discontinuing heating in the first half of spin coating and by starting it again in the latter half thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機化合物の薄膜作製
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic compound thin film forming technique.

【0002】[0002]

【従来の技術】現在の固体デバイスにおいて、薄膜材料
は中心的地位を占めている。構成要素としてはもちろん
のこと、途中の製造プロセスにおいて不可欠のものとな
っている。そうした流れのなかで有機材料の占める割合
も大きく、レジストとして製造プロセスに重要な役割を
果しているのみならず、導電性、光導電性、光非線形
性、光起電力、情報記憶性などを有するデバイス構成材
料としても具体的な利用が展開されつつある。すなわ
ち、有機材料あるいは高分子材料の高付加価値化を目指
した機能性有機薄膜の開発が、今後ますます拡大してい
くものと予想される。機能性有機薄膜の作製法には、C
VD、プラズマ重合、真空蒸着、ICB、MBE、電解
重合、ラングミュアブロジェット法、スクリーン印刷
法、そしてスピンコート法などがある。中でも、スピン
コート法は、機能性有機材料の大半を占める高分子材料
の最も普及した薄膜化技術であるばかりでなく、簡便、
プロセスへの導入が容易、量産可能などの多くの利点を
もつ。しかしながら、導電性、光導電性、光非線形性、
光起電力、情報記憶性などの機能発現に必要とされるユ
ニットは、必ずしもスピンコーティングに有利な分子構
造であるとはいえない。むしろ、機能向上のためにこれ
らユニットを高効率化・高濃度化すればするほど溶剤へ
の溶解性は低下する傾向を示し、その結果、スピンコー
ト法による薄膜作製は困難になることの方が多い。一般
に、機能性有機材料は、機能発現のためにπ共役ユニッ
トや電子供与性あるいは吸引性ユニットなどを多く持つ
ため、加工性の高い高分子として知られるポリメタクリ
ル酸メチルやポリスチレンの製膜に使用されるメチルイ
ソブチルケトン(MIBK)・酢酸セロソルブ・クロロ
ベンゼンなどには、充分に溶解しない場合が多い。これ
ら機能性有機材料をスピンコート可能な濃度に溶解させ
るためには、例えば、ジメチルアセトアミド(DMA
c)・ジメチルホルムアミド(DMF)・ジメチルスル
ホキシド(DMSO)・N−メチルピロリドン(NM
P)のような極性溶剤を用いなければならない。しかし
ながら、これらの極性溶剤は、一般に沸点が高く容易に
は蒸散しないため、スピンコーティング用溶剤としての
使用は極めて難しかった。以上の理由から、機能性有機
材料をスピンコート法によって、薄膜化することには大
きな困難が伴った。
2. Description of the Related Art Thin film materials occupy a central position in current solid state devices. Not only as a constituent element, but also indispensable in the intermediate manufacturing process. In such a trend, the proportion of organic materials is large, and not only plays an important role in the manufacturing process as a resist, but also has conductivity, photoconductivity, optical non-linearity, photovoltaic power, and information storage ability. Specific use is being developed as a constituent material. That is, it is expected that the development of functional organic thin films aiming at high added value of organic materials or polymer materials will continue to expand in the future. The method for producing the functional organic thin film includes C
Examples include VD, plasma polymerization, vacuum deposition, ICB, MBE, electrolytic polymerization, Langmuir Blodgett method, screen printing method, and spin coating method. Among them, the spin coating method is not only the most popular thin film forming technology for polymer materials that occupy the majority of functional organic materials, but also simple and easy.
It has many advantages such as easy introduction into the process and mass production. However, conductivity, photoconductivity, optical non-linearity,
The unit required for expression of functions such as photovoltaic power and information storage ability is not necessarily a molecular structure advantageous for spin coating. Rather, the higher the efficiency and concentration of these units to improve the function, the lower the solubility in the solvent tends to be, and as a result, it is more difficult to form a thin film by spin coating. Many. In general, functional organic materials have many π-conjugated units and electron-donating or attracting units for expressing their functions, so they are used for forming films of polymethylmethacrylate and polystyrene, which are known as highly processable polymers. In many cases, it is not sufficiently dissolved in methyl isobutyl ketone (MIBK), cellosolve acetate, chlorobenzene and the like. In order to dissolve these functional organic materials in a concentration capable of spin coating, for example, dimethylacetamide (DMA
c) -Dimethylformamide (DMF) -Dimethylsulfoxide (DMSO) -N-methylpyrrolidone (NM)
A polar solvent such as P) must be used. However, since these polar solvents generally have high boiling points and do not easily evaporate, their use as spin-coating solvents has been extremely difficult. For the above reasons, it has been very difficult to make the functional organic material into a thin film by the spin coating method.

【0003】[0003]

【発明が解決しようとする課題】本発明は、通常のスピ
ンコート法では薄膜作製が困難な有機化合物に関して、
スピンコーティングにより均一かつ平坦な良質薄膜を得
るために必要な新しい有機薄膜作製技術及び有機薄膜作
製装置を提供するものである。
DISCLOSURE OF THE INVENTION The present invention relates to an organic compound for which it is difficult to form a thin film by a usual spin coating method.
It is intended to provide a new organic thin film production technique and an organic thin film production apparatus necessary for obtaining a uniform and flat good quality thin film by spin coating.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は有機薄膜の製造方法に関する発明で
あって、高沸点溶剤に溶かした有機化合物のスピンコー
ティングにより薄膜を作製する場合に、基板及び作製中
の膜自身を加熱する有機薄膜の製造方法において、加熱
源として赤外線を用いることを特徴とする。また、本発
明の第2の発明は有機薄膜の他の製造方法に関する発明
であって、第1の発明の有機薄膜の製造方法において、
膜中溶剤量の多いスピンコーティング前半は加熱を中断
し、後半に加熱を再開することにより膜中にトラップさ
れた溶剤分子を完全に除去することを特徴とする。そし
て、本発明の第3の発明は、第1の発明の有機薄膜の製
造に用いられる有機薄膜の製造装置に関する発明であっ
て、スピンコーティング装置に赤外線加熱装置を連動さ
せたことを特徴とする。
The present invention will be described in brief. The first invention of the present invention relates to a method for producing an organic thin film, wherein the thin film is produced by spin coating of an organic compound dissolved in a high boiling point solvent. In that case, infrared rays are used as a heating source in the method for producing an organic thin film in which the substrate and the film itself being produced are heated. A second invention of the present invention is an invention relating to another method for producing an organic thin film, comprising:
The first half of spin coating, in which the amount of solvent in the film is large, is characterized by interrupting heating and restarting heating in the latter half to completely remove solvent molecules trapped in the film. A third invention of the present invention relates to an organic thin film manufacturing apparatus used for manufacturing the organic thin film of the first invention, wherein an infrared heating device is interlocked with the spin coating device. .

【0005】高沸点溶剤を用いたスピンコーティングに
よって、均一かつ平坦な有機薄膜を得るためには、高沸
点溶剤の蒸散を適度にアシストする工夫が必要である。
その方法として考えられるのは、加熱及び減圧である。
減圧の場合は、大掛りな真空系の設置が必要なのに対し
て、加熱法は従来のスピンコーティング装置に熱源とそ
の制御系さえ追加設置すればよく、プロセスへの導入に
際してもなんら障害とはならない。
In order to obtain a uniform and flat organic thin film by spin coating using a high-boiling point solvent, it is necessary to devise a suitable assist for evaporation of the high-boiling point solvent.
Possible methods are heating and depressurization.
In the case of depressurization, a large-scale vacuum system needs to be installed, whereas in the heating method, it is sufficient to additionally install a heat source and its control system in the conventional spin coating device, and there is no obstacle when introducing it into the process. .

【0006】そこで、高沸点溶剤を用いたスピンコーテ
ィングによって、均一かつ平坦な有機薄膜を得るための
加熱条件を鋭意検討した。その結果、以下のような項目
が重要であることを見出した。
Therefore, the heating conditions for obtaining a uniform and flat organic thin film by spin coating using a high boiling point solvent have been studied earnestly. As a result, they found that the following items were important.

【0007】〔1〕熱源:赤外線ランプ、制御:熱電対
とフィードバック回路。 〔2〕基板加熱:機能性有機材料溶液滴下前にあらかじ
め基板を加熱。 〔3〕スピンコーティング前半の加熱中断:膜の平坦性
を損わないため。 〔4〕スピンコーティング後半の加熱再開:膜中にトラ
ップされた溶剤分子の除去。
[1] Heat source: infrared lamp, control: thermocouple and feedback circuit. [2] Substrate heating: The substrate is heated in advance before dropping the functional organic material solution. [3] Interruption of heating in the first half of spin coating: In order not to impair the flatness of the film. [4] Resuming heating in the latter half of spin coating: Removal of solvent molecules trapped in the film.

【0008】赤外線ランプ〔1〕を用いた基板加熱
〔2〕により溶剤の蒸散に必要な熱が供給される。した
がって〔3〕に示されるようにスピンコーティング前半
には、あえて加熱する必要はない。この時点における必
要以上の加熱は膜の平坦性を損う原因となる。膜中にト
ラップされたわずかな溶剤分子の除去は、スピンコーテ
ィング後半の加熱再開〔4〕により行う。〔3〕と
〔4〕の工程の間に時間を置くよりも、このように連続
して行ったほうが溶剤は完全に除去される。加熱温度は
機能性有機材料・溶剤・基板の種類に依存する。これら
の依存性は、それぞれの熱容量や、相互の親和性が原因
となっている。
The substrate heating [2] using the infrared lamp [1] supplies the heat necessary for the evaporation of the solvent. Therefore, as shown in [3], it is not necessary to intentionally heat the first half of spin coating. Excessive heating at this point causes the flatness of the film to be impaired. The removal of a few solvent molecules trapped in the film is performed by restarting heating [4] in the latter half of spin coating. The solvent is completely removed in this continuous manner, rather than in the time between the steps [3] and [4]. The heating temperature depends on the type of functional organic material, solvent, and substrate. These dependencies are due to their heat capacities and mutual affinity.

【0009】図1に、本発明による有機薄膜の製造装置
の好適な1例の概略図を示す。図1において符号1はス
ピンコート装置、2は回転数、回転時間制御部、3は赤
外線ランプ、4は温度制御部、5は熱電対、6は赤外線
照射タイミング制御部を示す。この装置は、スピンコー
ティング装置に赤外線加熱装置を連動させ、加熱温度、
加熱のタイミングとその時間、回転数を任意に組合すこ
とができるように設計されている。
FIG. 1 shows a schematic view of a preferred example of the apparatus for producing an organic thin film according to the present invention. In FIG. 1, reference numeral 1 is a spin coater, 2 is a rotation speed and rotation time control unit, 3 is an infrared lamp, 4 is a temperature control unit, 5 is a thermocouple, and 6 is an infrared irradiation timing control unit. In this device, an infrared heating device is linked to the spin coating device,
It is designed so that the timing of heating, its time, and the number of revolutions can be arbitrarily combined.

【0010】本発明の有機薄膜の製造方法及び有機薄膜
の製造装置を用いれば、従来法では均一かつ平坦な薄膜
を得ることのできなかった機能性有機材料を容易に薄膜
化することができる。また、本方法で薄膜作製に供せら
れる機能性有機材料は、必ずしも高分子である必要はな
い。本方法は、結晶性の低いアゾ色素や長鎖アルキル基
を有する機能性低分子などにも適用可能である。
By using the method for producing an organic thin film and the apparatus for producing an organic thin film of the present invention, it is possible to easily form a thin film of a functional organic material which could not be obtained by the conventional method. Further, the functional organic material used for thin film production by this method does not necessarily need to be a polymer. The present method can also be applied to azo dyes having low crystallinity and functional small molecules having a long-chain alkyl group.

【0011】[0011]

【実施例】以下、本発明の赤外線加熱スピンコーティン
グによる有機薄膜の製造方法及び有機薄膜の製造装置を
実施例に基づき詳細に説明するが、本発明は、これら実
施例に限定されず、広く用いることができる。
EXAMPLES Hereinafter, the method for producing an organic thin film by infrared heating spin coating and the apparatus for producing an organic thin film of the present invention will be described in detail based on examples, but the present invention is not limited to these examples and is widely used. be able to.

【0012】実施例1 図1の有機薄膜製造装置の加熱温度、加熱のタイミング
とその時間、回転数を以下の薄膜作製手順で示されるよ
うに設定し、高沸点溶剤に溶解させた高分子材料の薄膜
作製に用いた。あらかじめ60℃に赤外線加熱したガラ
ス基板(直径3インチ)に5μm径のテフロンフィルタ
でろ過した下記構造式(化1)で表される主鎖型高分子
の25wt%−DMAc溶液(3ml)を滴下し、赤外線加
熱を一時停止し、毎分1000回転で100秒間、次に
赤外線加熱(60℃)を再開し、毎分2000回転で3
00秒間、回転させ、厚さ5.2μmの均一かつ平坦な
薄膜を得た。
Example 1 Polymer material dissolved in a high-boiling-point solvent by setting the heating temperature, the heating timing, the heating time, and the number of revolutions of the organic thin-film manufacturing apparatus shown in FIG. It was used to prepare a thin film of. A 25 wt% DMAc solution (3 ml) of a main chain type polymer represented by the following structural formula (Chemical Formula 1) filtered through a Teflon filter having a diameter of 5 μm onto a glass substrate (diameter: 3 inches) that has been heated by infrared rays to 60 ° C. in advance is added dropwise. Then, the infrared heating is temporarily stopped, 1000 rpm for 100 seconds, then the infrared heating (60 ° C) is restarted, and 2000 rpm for 3 minutes.
It was rotated for 00 seconds to obtain a uniform and flat thin film having a thickness of 5.2 μm.

【0013】[0013]

【化1】 [Chemical 1]

【0014】実施例2 酸化膜付きSi基板(直径3インチ)にポリイミド系耐
熱樹脂を塗布し、200℃で4時間加熱し基板とした。
この基板を45℃に赤外線加熱し、実施例1に記載の高
分子溶液(3ml)を滴下し、赤外線加熱を一時停止し、
毎分1000回転で100秒間、次に赤外線加熱(45
℃)を再開し、毎分2000回転で300秒間、回転さ
せ、厚さ5.2μmの均一かつ平坦な薄膜を得た。
Example 2 A polyimide-based heat-resistant resin was applied to a Si substrate (diameter: 3 inches) with an oxide film, and the substrate was heated at 200 ° C. for 4 hours.
This substrate was infrared-heated to 45 ° C., the polymer solution (3 ml) described in Example 1 was dropped, and the infrared heating was temporarily stopped.
Infrared heating (45
C.) was restarted, and the film was rotated at 2000 rpm for 300 seconds to obtain a uniform and flat thin film having a thickness of 5.2 μm.

【0015】実施例3 あらかじめ60℃に赤外線加熱したガラス基板(直径3
インチ)に5μm径のテフロンフィルタでろ過した下記
構造式(化2)で表されるアゾ色素の15wt%−DMA
c溶液(3ml)を滴下し、赤外線加熱を一時停止し、毎
分1000回転で100秒間、次に赤外線加熱(60
℃)を再開し、毎分2000回転で300秒間、回転さ
せ、厚さ1.6μmの均一かつ平坦な薄膜を得た。
Example 3 A glass substrate (diameter 3
15% by weight of the azo dye represented by the following structural formula (Chemical Formula 2), which is obtained by filtering with a Teflon filter having a diameter of 5 μm.
c solution (3 ml) was added dropwise, infrared heating was temporarily stopped, 1000 rpm for 100 seconds, and then infrared heating (60
(° C.) and restarted at 2000 rpm for 300 seconds to obtain a uniform and flat thin film having a thickness of 1.6 μm.

【0016】[0016]

【化2】 [Chemical 2]

【0017】実施例4 あらかじめ60℃に赤外線加熱したガラス基板(直径3
インチ)に1μm径のテフロンフィルタでろ過した下記
構造式(化3)で表される共重合体(モル比1:1)の
17wt%−DMAc溶液(3ml)を滴下し、赤外線加熱
を一時停止し、毎分1000回転で100秒間、次に赤
外線加熱(60℃)を再開し、毎分2000回転で30
0秒間、回転させ、厚さ3μmの均一かつ平坦な膜を得
た。〔なお、ディスパース・レッド1(DR1)を有す
るメタクリル酸メチル系モノマーの分率の低い共重合体
については、松元ら、アプライド・フィジックス・レタ
ーズ( Appl. Phy. Lett. )、第51巻、第1頁(198
7)に詳しい〕
Example 4 A glass substrate (diameter 3
17 wt% -DMAc solution (3 ml) of the copolymer (molar ratio 1: 1) represented by the following structural formula (Chemical Formula 3) filtered through a Teflon filter having a diameter of 1 μm is dripped into the inch), and infrared heating is temporarily stopped. Then, restart the infrared heating (60 ° C) at 1000 rpm for 100 seconds and then at 2000 rpm for 30 seconds.
It was rotated for 0 seconds to obtain a uniform and flat film having a thickness of 3 μm. [Note that for copolymers having a low fraction of a methyl methacrylate monomer having Disperse Red 1 (DR1), Matsumoto et al., Applied Phys. Letters (Appl. Phy. Lett.), Vol. 51, Page 1 (198
Details on 7)]

【0018】[0018]

【化3】 [Chemical 3]

【0019】実施例5 あらかじめ60℃に赤外線加熱したガラス基板(直径3
インチ)に1μm径のテフロンフィルタでろ過した下記
構造式(化4)で表される共重合体(モル比2:3)の
15wt%−DMAc溶液(5ml)を滴下し、赤外線加熱
を一時停止し、毎分1000回転で100秒間、次に赤
外線加熱(60℃)を再開し、毎分2000回転で30
0秒間、回転させ、厚さ2.8μmの均一かつ平坦な膜
を得た。〔なお、トリシアノビニルカルバゾールを有す
るメタクリル酸メチル系モノマーの分率の低い共重合体
については、田村ら、アプライド・フィジックス・レタ
ーズ、第60巻、第1803頁(1987)に詳しい〕
Example 5 A glass substrate (diameter 3
Inch), a 15 wt% DMAc solution (5 ml) of a copolymer (molar ratio 2: 3) represented by the following structural formula (Chemical Formula 4) filtered with a 1 μm diameter Teflon filter is dropped, and infrared heating is temporarily stopped. Then, restart the infrared heating (60 ° C) at 1000 rpm for 100 seconds and then at 2000 rpm for 30 seconds.
By rotating for 0 seconds, a uniform and flat film having a thickness of 2.8 μm was obtained. [Note that the copolymer having a low fraction of a methyl methacrylate monomer having tricyanovinylcarbazole is detailed in Tamura et al., Applied Physics Letters, Vol. 60, p. 1803 (1987)].

【0020】[0020]

【化4】 [Chemical 4]

【0021】比較例1 ガラス基板(直径3インチ)に、実施例1に記載の高分
子溶液(3ml)を滴下し、毎分1000回転で100秒
間、次に毎分2000回転で300秒間、回転させた
が、高分子が基板にほとんど付着することなく、薄膜を
得ることはできなかった。
Comparative Example 1 The polymer solution (3 ml) described in Example 1 was dropped on a glass substrate (3 inches in diameter) and spun at 1000 rpm for 100 seconds and then at 2000 rpm for 300 seconds. However, the polymer was hardly attached to the substrate and a thin film could not be obtained.

【0022】実施例6 あらかじめ60℃に赤外線加熱したポリイミド基板(直
径3インチ)に実施例1に記載の高分子溶液(3ml)を
滴下し、赤外線加熱を停止せず、毎分1000回転で1
00秒間、毎分2000回転で300秒間、回転させ、
厚さ4.8μmの薄膜を得た。
Example 6 The polymer solution (3 ml) described in Example 1 was dropped on a polyimide substrate (3 inches in diameter) which was previously heated to 60 ° C. with infrared rays, and the infrared heating was stopped at 1000 rpm for 1 minute.
Rotate at 2000 rpm for 300 seconds for 00 seconds,
A thin film with a thickness of 4.8 μm was obtained.

【0023】[0023]

【発明の効果】本発明の有機薄膜の製造方法及び有機薄
膜の製造装置を用いれば、高分子、低分子を問わず、均
一かつ平坦な機能性有機薄膜を得ることができる。本方
法により、作製した機能性有機薄膜は、導電性、光導電
性、光非線形性、光起電力、情報記憶性などの機能を有
する有機固体デバイスの構成材料として用いることがで
きる。
By using the method for producing an organic thin film and the apparatus for producing an organic thin film of the present invention, a uniform and flat functional organic thin film can be obtained regardless of whether it is a polymer or a low molecule. The functional organic thin film produced by this method can be used as a constituent material of an organic solid-state device having functions such as conductivity, photoconductivity, optical nonlinearity, photoelectromotive force, and information storage property.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による有機薄膜の製造装置の1例の構成
図である。
FIG. 1 is a configuration diagram of an example of an apparatus for manufacturing an organic thin film according to the present invention.

【符号の説明】[Explanation of symbols]

1:スピンコート装置、2:回転数、回転時間制御部、
3:赤外線ランプ、4:温度制御部、5:熱電対、6:
赤外線照射タイミング制御部
1: spin coater, 2: rotation speed, rotation time control unit,
3: infrared lamp, 4: temperature controller, 5: thermocouple, 6:
Infrared irradiation timing controller

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B05D 1/40 A 8720−4D G03C 1/74 351 8910−2H G03F 7/16 502 H01L 21/31 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location B05D 1/40 A 8720-4D G03C 1/74 351 8910-2H G03F 7/16 502 H01L 21/31 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高沸点溶剤に溶かした有機化合物のスピ
ンコーティングにより薄膜を作製する場合に、基板及び
作製中の膜自身を加熱する有機薄膜の製造方法におい
て、加熱源として赤外線を用いることを特徴とする有機
薄膜の製造方法。
1. An infrared ray is used as a heating source in a method for producing an organic thin film in which a substrate and a film itself being produced are heated when a thin film is produced by spin coating of an organic compound dissolved in a high boiling point solvent. And a method for producing an organic thin film.
【請求項2】 請求項1に記載の有機薄膜の製造方法に
おいて、膜中溶剤量の多いスピンコーティング前半は加
熱を中断し、後半に加熱を再開することにより膜中にト
ラップされた溶剤分子を完全に除去することを特徴とす
る有機薄膜の製造方法。
2. The method for producing an organic thin film according to claim 1, wherein heating is interrupted in the first half of spin coating in which the amount of solvent in the film is large, and heating is restarted in the latter half so that solvent molecules trapped in the film are removed. A method for producing an organic thin film, which comprises completely removing.
【請求項3】 スピンコーティング装置に赤外線加熱装
置を連動させたことを特徴とする請求項1に記載の有機
薄膜の製造に用いられる有機薄膜の製造装置。
3. The apparatus for producing an organic thin film used in the production of an organic thin film according to claim 1, wherein an infrared heating device is interlocked with the spin coating device.
JP22354892A 1992-07-31 1992-07-31 Manufacture of organic thin film and manufacturing device thereof Pending JPH0653132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22354892A JPH0653132A (en) 1992-07-31 1992-07-31 Manufacture of organic thin film and manufacturing device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22354892A JPH0653132A (en) 1992-07-31 1992-07-31 Manufacture of organic thin film and manufacturing device thereof

Publications (1)

Publication Number Publication Date
JPH0653132A true JPH0653132A (en) 1994-02-25

Family

ID=16799886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22354892A Pending JPH0653132A (en) 1992-07-31 1992-07-31 Manufacture of organic thin film and manufacturing device thereof

Country Status (1)

Country Link
JP (1) JPH0653132A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594539A (en) * 1994-06-30 1997-01-14 Ricoh Company, Ltd. Paper guide device for image forming apparatus
WO2002013285A1 (en) 2000-08-09 2002-02-14 Advanced Photonics Technologies Ag Method and device for the production of a semiconducting and/or electroluminescence-displaying organic layered structure
WO2003038923A1 (en) * 2001-10-30 2003-05-08 Covion Organic Semiconductors Gmbh Method for drying layers of organic semiconductors, conductors or color filters using ir and nir radiation
JP2005161245A (en) * 2003-12-04 2005-06-23 Hitachi Ltd Film forming method, film forming apparatus, and element
JPWO2021161965A1 (en) * 2020-02-13 2021-08-19

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594539A (en) * 1994-06-30 1997-01-14 Ricoh Company, Ltd. Paper guide device for image forming apparatus
DE10038895B4 (en) * 2000-08-09 2006-04-06 Advanced Photonics Technologies Ag Method and use of a device for producing a semiconductive and / or electroluminescent organic layer structure
WO2002013285A1 (en) 2000-08-09 2002-02-14 Advanced Photonics Technologies Ag Method and device for the production of a semiconducting and/or electroluminescence-displaying organic layered structure
DE10038895A1 (en) * 2000-08-09 2002-02-28 Advanced Photonics Tech Ag Semi conducting and or electro luminescent device using a sheet construction of an organic type
EP1307932A1 (en) * 2000-08-09 2003-05-07 Advanced Photonics Technologies AG Method and device for the production of a semiconducting and/or electroluminescence-displaying organic layered structure
US7087453B2 (en) 2000-08-09 2006-08-08 Advanced Photonics Technologies Ag Method and device for the production of a semiconducting and/or electroluminescence-displaying organic layered structure
KR100907208B1 (en) * 2001-10-30 2009-07-10 메르크 파텐트 게엠베하 Method for drying layers of organic semiconductors, conductors or color filters using ir and nir radiation
JP2005508515A (en) * 2001-10-30 2005-03-31 コヴィオン・オーガニック・セミコンダクターズ・ゲーエムベーハー Method for drying layers of organic semiconductors, organic conductors or organic color filters using IR / NIR radiation
WO2003038923A1 (en) * 2001-10-30 2003-05-08 Covion Organic Semiconductors Gmbh Method for drying layers of organic semiconductors, conductors or color filters using ir and nir radiation
JP2005161245A (en) * 2003-12-04 2005-06-23 Hitachi Ltd Film forming method, film forming apparatus, and element
JP4495955B2 (en) * 2003-12-04 2010-07-07 株式会社 日立ディスプレイズ Film forming method, film forming apparatus and element
JPWO2021161965A1 (en) * 2020-02-13 2021-08-19
WO2021161965A1 (en) * 2020-02-13 2021-08-19 富士フイルム株式会社 Photosensitive film and photosensitive-film manufacturing method

Similar Documents

Publication Publication Date Title
US5278683A (en) Electrode plate structure for liquid crystal color display device
JP3739396B2 (en) FILM CONTAINING ORIENTED DYE, ITS MANUFACTURING METHOD, AND POLARIZING PLATE AND LIQUID CRYSTAL DISPLAY UNIT USING THE SAME
JP2962473B2 (en) Photoalignable polymer and photoalignable composition containing the same
JP2003502874A (en) Arrayed polymer for organic TFT
CN101971102A (en) On-track process for patterning hardmask by multiple dark field exposures
KR101732687B1 (en) Composition for forming dye type polarizer and dye type polarizer
EP2270560B1 (en) Fabrication method for an optical device
JPH05279492A (en) Anisotropic liquid crystal polymer film, its production and information storage element, holography material and optical component comprising the film
JPH0653132A (en) Manufacture of organic thin film and manufacturing device thereof
US4965017A (en) Liquid crystal devices
JP2002229039A (en) Photo-alignment material, and method for manufacturing photo-alignment layer using the same
JPH11326638A (en) Liquid crystal alignment layer, production of the liquid crystal alignment layer and optical element using the same
US5207862A (en) Technique for epitaxial growth of oriented thin films of polydiacetylenes
JP2798072B2 (en) Amorphous calixarene composition and film production method using the same
CN1248017C (en) High-luminousness optical lens and making method thereof
KR100230436B1 (en) Optical alignment composition, aligment layer formed therefrom, liquid crystal device employing the alignment layer
JPS5837621A (en) Liquid crystal display element
JPS62227122A (en) Method for orientating high polymer liquid crystal
Wei et al. Room‐temperature processing of π‐conjugated oligomers into uniaxially oriented monodomain films on coumarin‐based photoalignment layers
Jen et al. High performance chromophores and polymers for EO applications
CN108292065A (en) Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
WO2014190673A1 (en) Alignment layer and preparation method thereof and liquid crystal display device comprising same
JPS5868722A (en) Liquid crystal display element
JPH08334622A (en) Uniaxially orientated conjugated high polymer thin film and its production and polarizing element and liquid crystal display device
JPH0973015A (en) Oriented dye-containing film, its production, polarizing element and liquid crystal display device