JPH0653010U - Hard-coated half-moon drill - Google Patents

Hard-coated half-moon drill

Info

Publication number
JPH0653010U
JPH0653010U JP9338292U JP9338292U JPH0653010U JP H0653010 U JPH0653010 U JP H0653010U JP 9338292 U JP9338292 U JP 9338292U JP 9338292 U JP9338292 U JP 9338292U JP H0653010 U JPH0653010 U JP H0653010U
Authority
JP
Japan
Prior art keywords
cutting edge
drill
moon
hard
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9338292U
Other languages
Japanese (ja)
Inventor
一隆 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP9338292U priority Critical patent/JPH0653010U/en
Publication of JPH0653010U publication Critical patent/JPH0653010U/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

(57)【要約】 【目的】超硬合金に硬質被膜を被覆したことにより現れ
る耐欠損性低下の問題点を解決し、長寿命かつ高性能な
硬質被膜被覆半月形ドリルを提供する。 【構成】超硬合金製の半月状ドリルを形成する丸棒2に
硬質被膜を被覆し、クラック4の発生を防止するべく、
丸棒2の一端部を半円形断面の切刃部7とする。この切
刃部7の先端1を円錐状または伏鉢状に構成し、他端部
にシャンク2を形成する。切刃表面に硬質被膜を施す。
主切れ刃5の少なくとも一方にすくい面7に対し15゜
乃至45゜の角度で20μm乃至500μmの幅の面取
り9を施し、さらに硬質被膜を施す。
(57) [Summary] [Object] To provide a hard film-coated half-moon drill having a long life and high performance, which solves the problem of reduction in fracture resistance caused by coating a hard film on a cemented carbide. [Structure] A round bar 2 forming a half-moon drill made of cemented carbide is coated with a hard coating to prevent the occurrence of cracks 4.
One end of the round bar 2 is a cutting edge portion 7 having a semicircular cross section. The tip 1 of the cutting blade portion 7 is formed in a conical shape or a bowl shape, and the shank 2 is formed at the other end portion. Apply a hard coating on the surface of the cutting edge.
At least one of the main cutting edges 5 is chamfered with a width of 20 μm to 500 μm on the rake face 7 at an angle of 15 ° to 45 °, and a hard coating is further applied.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は超硬合金に硬質被膜を被覆したことにより現れる耐欠損性低下の問題 点を解決した、長寿命かつ高性能な硬質被膜を被覆した硬質被膜被覆半月形ドリ ルに関する。 The present invention relates to a hard film-coated half-moon drill coated with a hard film having a long life and high performance, which solves the problem of deterioration in fracture resistance caused by coating a hard film on a cemented carbide.

【0002】[0002]

【従来の技術】[Prior art]

半月形ドリルは、真鍮などの穴明けや小さくて比較的深い穴を明けたり、ある いは溝加工あるいは刻印加工にも用いられている。かかる半月状ドリルは、例え ば図3、図4に示すように、切刃が1枚であり円錐状または伏鉢状の先端1を持 つ丸棒2を、その中心線A−Aに垂直な断面が図3ロに示すように半月状になる ように中心線A−Aを通る面の片側を除去することによって切れ刃を形成したも のである。また、従来から切削工具の寿命を伸ばす目的で工具表面に窒化チタン 、炭化チタンなどの硬質セラミックスから最高の硬度をもつダイヤモンドまでの 硬質被膜を被覆することが行われてきた。窒化チタンあるいは炭化チタンはその バルクの硬さとしていずれもビッカース硬度1800kgf/mm2 以上であり、一般 には工具母材よりも硬度が高い。しかし、半月ドリルの寿命を伸ばす目的でこれ らの硬質被膜を被覆した場合、刃先に欠けが生じやすくなることが問題となって いた。Half-moon drills are also used for drilling brass, small and relatively deep holes, or for grooving or engraving. Such a half-moon drill has, for example, as shown in FIG. 3 and FIG. The cutting edge is formed by removing one side of the plane passing through the center line AA so that the cross section becomes a half moon shape as shown in FIG. Further, conventionally, for the purpose of extending the life of the cutting tool, it has been practiced to coat the tool surface with a hard coating from hard ceramics such as titanium nitride and titanium carbide to diamond having the highest hardness. The bulk hardness of titanium nitride or titanium carbide is at least 1800 kgf / mm 2 in Vickers hardness, and is generally higher than the tool base material. However, when these hard coatings were coated for the purpose of extending the life of the half-moon drill, there was a problem that the cutting edge was likely to be chipped.

【0003】 しかし、硬質被膜を被覆しない場合には、通常は刃先の欠けは大きな問題とは ならないが、耐摩耗性が問題となる。かかる課題を解決しようとして、本考案と は対象を異にするツイストドリルではあるが、実開昭60−175513号公報 に開示されるように、すくい面と逃げ面の交叉する部分に面取りを施し、かつ面 取り角3をドリル軸線に対して10°〜45°の範囲にとり、さらに面取り幅を 0.03〜0.3mmの大きさにして、耐摩耗性を向上させた超硬合金製のツイ ストドリルも開示されている。However, when the hard coating is not applied, chipping of the cutting edge is usually not a big problem, but wear resistance is a problem. In order to solve such a problem, a twist drill, which is different from the present invention, is chamfered at the intersection of the rake face and the flank face as disclosed in Japanese Utility Model Laid-Open No. 60-175513. And, the chamfering angle 3 is set in the range of 10 ° to 45 ° with respect to the axis of the drill, and the chamfering width is set to 0.03 to 0.3 mm to improve wear resistance. Twist drills are also disclosed.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかし、基材にその素材より靭性の低い材料を被覆すると被覆処理を施さない 基材よりもその抗折強度が低下することが知られており、被膜の厚さが増すほど その低下の度合が大きくなる。このため、切削工具の種類あるいは用途によって は硬質セラミックスなどの被膜を被覆したことによりチッピングあるいは欠けが 生じやすくなり、かえって性能が低下することがある。半月ドリルの場合には切 れ刃の先端の強度が通常のドリルよりも低いため、硬質被膜を被覆したことによ る強度低下の影響を大きく受ける。このため、従来の半月ドリルの場合には硬質 被膜を厚く被覆することはできなかった。 However, it is known that when a base material is coated with a material having a lower toughness than that of the base material, the bending strength of the base material is lower than that of a base material that is not subjected to a coating treatment. growing. Therefore, depending on the type or application of the cutting tool, coating with a coating such as hard ceramics easily causes chipping or chipping, which may reduce the performance. In the case of a half-moon drill, the strength of the tip of the cutting edge is lower than that of a normal drill, so the strength is greatly affected by coating with a hard coating. Therefore, the conventional hard coating cannot be thickly coated with the half-moon drill.

【0005】 半月ドリルは右または左回転しながらワークを加工するのであるが、加工時に は主切れ刃はそのすくい面3に垂直な方向の力を受けるとともに、図5に示され る矢印aの方向からも力を受ける。この方向の力はドリルの先端の外周面(すく い面3の裏側)に引張り応力を生じ、これが材料強度の限界を越えると刃先には 図5に示されるような方向にクラック4が入り、貝殻状の欠けを生じる。超硬合 金などのようにセラミックスを主成分とする材料は引張り応力に対する強度が低 いため特に欠けを生じやすい。また、半月ドリルの先端角θが小さいほど欠けが 入りやすくなる。さらに、半月ドリルに硬質被膜を被覆した場合にはその抗折強 度が低下するため、この影響がより顕著に現れ、膜厚の増加と共に使用限界が下 がる。The half-moon drill rotates a work piece clockwise or counterclockwise, and the main cutting edge receives a force in a direction perpendicular to the rake face 3 of the work piece, and at the same time, the main cutting edge moves in the direction of arrow a shown in FIG. It also receives power from the direction. The force in this direction causes tensile stress on the outer peripheral surface of the tip of the drill (the backside of the rake face 3), and if this exceeds the limit of material strength, cracks 4 will enter the cutting edge in the direction as shown in FIG. Causes shell-shaped chips. Materials such as cemented carbide, which are mainly composed of ceramics, have a low strength against tensile stress, and are therefore particularly prone to chipping. In addition, the smaller the tip angle θ of the half-moon drill, the more likely it is that chips will enter. Furthermore, when a half-moon drill is coated with a hard coating, its bending strength decreases, so this effect becomes more pronounced, and the use limit decreases with increasing film thickness.

【0006】 主切れ刃5の先端部にクラック4が入るのは、切削により先端部が応力を受け て変形し、このときの母材の伸びの最大値がその材料の引張り強度の限界値を越 えるためである。硬質被膜を母材に施した場合に、一層クラックが入りやすくな るのは、応力を受けたときの刃先の変形量が母材の強度で決まるのであり、さら にその表面に施された硬質被膜は母材の表層と同じだけ変形するのであるから、 弾性定数の大きい硬質被膜の方がより大きな引張り応力を受けることになり、母 材より先に破壊しこれが母材にまで進行するためである。The crack 4 enters the tip of the main cutting edge 5 because the tip is deformed by receiving stress due to cutting, and the maximum value of the elongation of the base material at this time is the limit value of the tensile strength of the material. This is because they can cross. When a hard coating is applied to the base material, cracks are more likely to occur because the amount of deformation of the cutting edge when stress is applied is determined by the strength of the base material. Since the coating deforms as much as the surface layer of the base metal, a hard coating with a large elastic constant is subject to a larger tensile stress, and it fractures before the base metal and progresses to the base metal. is there.

【0007】 一般に切削工具に適用される硬質被膜は硬度は高いが弾性定数が大きく靭性は 低いので、切削工具母材と同じ量だけ伸ばされた場合には硬質被膜には母材より 大きな引張り応力がかかっており、母材の伸びの限界値に達する前に硬質被膜の 方が破壊する。したがって、この影響は弾性定数の大きなcBN膜あるいはダイ ヤモンド膜でより顕著になる。また、膜厚の増加とともに硬質被膜被覆工具には 、より一層クラックが入りやすくなり、強度が低下する原因としては、膜厚が厚 いほど膜に生じるクラックの深さが増大し、これが硬質被膜中に生じたクラック の母材への伝搬をより容易にするためであろうと考えられている。Generally, a hard coating applied to a cutting tool has a high hardness but a large elastic constant and a low toughness. Therefore, when stretched by the same amount as the base material of the cutting tool, the hard coating has a higher tensile stress than the base material. The hard coating breaks before the elongation limit of the base metal is reached. Therefore, this effect becomes more remarkable in the cBN film or the diamond film having a large elastic constant. Further, as the film thickness increases, cracks are more likely to occur in the hard coating tool, and the reason for the decrease in strength is that as the film thickness increases, the depth of cracks generated in the film increases, which is due to the hard coating. It is thought that this is because it is easier to propagate cracks generated in the base material to the base material.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

そこで、工具母材に硬質被膜を被覆すると共に、クラックの発生を防止するた めの対策として、半月ドリルの主切れ刃に面取りを施すことを考案した。即ち、 この考案は一端部を半円形断面の切刃部となし、かつ該切刃部の先端を円錐状ま たは伏鉢状に構成すると共に、他端部にシャンクを形成し、切刃表面に硬質被膜 を施した超硬合金製の半月状ドリルであって、主切れ刃の少なくとも一方にすく い面に対し15゜乃至45゜の角度で20μm乃至500μmの幅の面取りを施 し、さらに硬質被膜を施した半月ドリルに関する。 Therefore, we devised to coat the tool base material with a hard coating and chamfer the main cutting edge of the half-moon drill as a measure to prevent the occurrence of cracks. That is, according to this invention, one end is formed as a cutting blade having a semicircular cross section, and the tip of the cutting blade is formed in a conical shape or a bowl shape, and a shank is formed at the other end. A cemented carbide half-moon drill with a hard coating on the surface, chamfering a width of 20 μm to 500 μm at an angle of 15 ° to 45 ° to the rake face on at least one of the main cutting edges, Further, it relates to a half-moon drill having a hard coating.

【0009】[0009]

【作用】[Action]

この考案によれば、上記のように主切れ刃に面取りを施すことにより刃先に変 形量の大きい肉薄の部分がなくなり、これにより硬質被膜の変形も小さくなり、 硬質被膜の変形も小さくなり、硬質被膜にクラックが入るのを防止することがで きる。さらに、主切れ刃に面取りを施したことにより、切削時には面取りを施し た面に垂直な方向の力が働くようになるので刃先の変形がさらに小さくなり、ク ラックの発生を防止する効果を高めることができる。 According to this invention, by chamfering the main cutting edge as described above, there is no thin portion with a large deformation amount on the cutting edge, which reduces the deformation of the hard coating and also reduces the deformation of the hard coating. It is possible to prevent the hard coating from cracking. Furthermore, by chamfering the main cutting edge, the force in the direction perpendicular to the chamfered surface is applied during cutting, which further reduces the deformation of the cutting edge and enhances the effect of preventing cracking. be able to.

【0010】[0010]

【実施例】【Example】

次に本考案の実施例を図面について説明する。なお、硬質被膜を施していない 半月ドリルでは、刃先の欠けは大きな問題とならないが、母材よりも硬い材料を 被覆した場合には、これが大きな問題となり、窒化チタンあるいは炭化チタン、 さらに最高の硬度をもつダイヤモンドまで多くの硬質被覆を施した場合が本考案 の対象となる。これらの被覆はそのバルクの硬さとしていずれもビッカース硬度 1800kgf/mm2 以上を有していることは、上述した通りである。Next, an embodiment of the present invention will be described with reference to the drawings. With a half-moon drill that does not have a hard coating, chipping of the cutting edge is not a major problem, but when a material harder than the base material is coated, this becomes a major problem, and titanium nitride or titanium carbide, or even the highest hardness. The present invention is applicable to the case where many hard coatings are applied up to a diamond having a diamond. As described above, these coatings all have a Vickers hardness of 1800 kgf / mm 2 or more as the bulk hardness.

【0011】 本考案に係わる半月ドリルの構造は、図3と図4に示したものと概略の構造を 同じくするものである。即ち、超硬合金製の丸棒2の全長の略半分を中心線A− Aに沿って長手方向に切除し、円形断面を有するシャンク6と半円形断面を有す る切刃部7を構成する。切刃部7は先端角θをもつ一対の主切刃5、5と該主切 刃に続きシャンク側に平行に延びる外周切刃8とから形成されている。The structure of the meniscus drill according to the present invention has the same general structure as that shown in FIGS. 3 and 4. That is, approximately half of the entire length of the round bar 2 made of cemented carbide is cut in the longitudinal direction along the center line AA to form a shank 6 having a circular cross section and a cutting edge portion 7 having a semicircular cross section. To do. The cutting edge portion 7 is formed of a pair of main cutting edges 5 and 5 having a tip angle θ and an outer peripheral cutting edge 8 which extends parallel to the shank side following the main cutting edges.

【0012】 切刃部7の主切刃5と外周切刃8に面取り9が施されている。該面取り9の幅 は半月ドリルの切削抵抗に影響するので、折損しやすい小径の半月ドリルでは狭 くし、大径の半月ドリルでは広い値まで選ぶことができるが、その範囲としては 20〜500μmが適切である。また、面取り9の幅wは、図1に示すのは、主 切れ刃5全体に渡って一定である。しかし、面取り9の幅wは必ずしも一定であ る必要はなく、図2に示すように主切れ刃5と外周切刃8の交点付近は欠けを生 じにくいのでこの部分の面取り幅を狭くし、先端に向かってその幅を広げていき 、外周切刃8に面取りを施さないものでもよい。The main cutting edge 5 and the outer peripheral cutting edge 8 of the cutting edge portion 7 are chamfered 9. Since the width of the chamfer 9 affects the cutting resistance of the half-moon drill, it can be narrowed with a small-diameter half-moon drill, which is easily broken, and can be selected up to a wide value with a large-diameter half-moon drill, but the range is 20 to 500 μm. Appropriate. The width w of the chamfer 9 is constant over the entire main cutting edge 5 as shown in FIG. However, the width w of the chamfer 9 does not necessarily have to be constant, and as shown in FIG. 2, the chamfer width of this portion is narrowed because chipping is unlikely to occur near the intersection of the main cutting edge 5 and the outer peripheral cutting edge 8. The outer peripheral cutting edge 8 may be chamfered by widening its width toward the tip.

【0013】 また、面取り9の角度も刃先のクラック発生および切削抵抗に大きく影響を及 ぼし、すくい面3に対する角度が大きくなるほど切れ味は低下するが、欠けは発 生しにくくなる。面取り角度の好ましい範囲はすくい面に対し15〜45である 。半月ドリルは2枚の切れ刃のうち一方が切削に作用するが、回転方向を反対に することによって反対側の刃も用いることができる。したがって、一方向回転の みで使う場合には面取りは片側の刃のみでよく、両方向回転のできる機械で使う 場合には両側の切れ刃に面取りを施すことができる。Further, the angle of the chamfer 9 also has a great influence on the generation of cracks on the cutting edge and the cutting resistance, and the sharpness is reduced as the angle with respect to the rake face 3 is increased, but chipping is less likely to occur. The preferable range of the chamfer angle is 15 to 45 with respect to the rake face. In the half-moon drill, one of the two cutting edges acts on the cutting, but the blades on the opposite side can be used by reversing the rotation direction. Therefore, chamfering is only required on one side when used for unidirectional rotation only, and chamfering can be performed on both cutting edges when used on machines that can rotate in both directions.

【0014】[0014]

【実施例】 以下に本考案の実施例について示す。第1の実施例は直径5mm、全長50m m、作用部長が15mm、先端角θが120゜の半月ドリルの両側の主切れ刃5 に幅50μm、すくい面3に対する角度20゜の面取り9を施し、さらに該面取 り9に厚さ8μmの炭化チタン膜を被覆した半月ドリルを作製した。図2にはそ の作用部を示す。また、比較品として、本考案のドリルと同寸法であるが、面取 りを行わずに炭窒化チタン膜の被覆処理を行った半月ドリルを作製した。これ らの半月ドリルを用いて鉄鋼材料の刻印加工を行った。加工条件は以下の通り である。EXAMPLES Examples of the present invention will be shown below. In the first embodiment, a diameter of 5 mm, a total length of 50 mm, a working portion length of 15 mm, and a half-moon drill with a tip angle θ of 120 ° are chamfered 9 on both sides of the main cutting edge 5 with a width of 50 μm and an angle of 20 ° to the rake face 3. Further, a half-moon drill in which the chamfer 9 was coated with a titanium carbide film having a thickness of 8 μm was produced. FIG. 2 shows the action part. In addition, as a comparative product, a half-moon drill having the same dimensions as the drill of the present invention but having a titanium carbonitride film coating treatment without chamfering was manufactured. Using these half-moon drills, stamping of steel materials was performed. The processing conditions are as follows.

【0015】 被削材 SKH51熱処理前 回転速度 8000rpm 移動速度 3000mm/min 文字深さ 0.5mm その結果、面取りを施した本考案の半月ドリルが200個のワークに刻印加工 後も欠けがなく摩耗が小さかったのに対し、面取りを施さなかった比較用ドリル は1個目のワーク刻印加工中に先端に欠けが入った。Work Material SKH51 Before Heat Treatment Rotational Speed 8000 rpm Movement Speed 3000 mm / min Character Depth 0.5 mm As a result, the chamfered half-moon drill of the present invention shows no wear and tear after cutting 200 workpieces. The comparative drill which was not chamfered, on the other hand, had a chip at the tip during the first work marking process.

【0016】 本考案の第2の実施例として、直径6mm、全長80mm、作用部長25mm 、先端角140゜の半月ドリルの両側の切れ刃に主切れ刃5と外周部の交点から 先端部にかけて、幅wを0から150μmまで連続的に変化させた面取り9を施 した。その作用部の概略を図1に示す。この半月ドリルの先端から10mmの範 囲にプラズマCVD法にて12μmの厚さのダイヤモンド膜を被覆し、本考案の ドリルを作製した。また、本考案の半月ドリルと同じ寸法の半月ドリルに面取り を施さずに同様にダイヤモンド膜を被覆し比較用のドリルとした。また、その他 の比較用半月ドリルとして、面取り9もダイヤモンド膜被覆も行わない半月ドリ ルも準備した。これらのドリルを用いてアルミ合金の穴加工を行った。切削条件 は以下の通りである。 被削材 ADC12 回転速度 10000rpm 送り速度 0.1mm/rev 穴深さ 12mmAs a second embodiment of the present invention, a diameter of 6 mm, a total length of 80 mm, a working portion length of 25 mm, and a cutting angle on both sides of a half-moon drill having a tip angle of 140 ° from the intersection of the main cutting edge 5 and the outer peripheral portion to the tip. Chamfering 9 was performed in which the width w was continuously changed from 0 to 150 μm. The outline of the action part is shown in FIG. A diamond film having a thickness of 12 μm was coated by plasma CVD within a range of 10 mm from the tip of the half-moon drill to manufacture the drill of the present invention. Further, a half-moon drill having the same dimensions as the half-moon drill of the present invention was coated with a diamond film in the same manner without chamfering, to obtain a comparative drill. In addition, as another half-moon drill for comparison, a half-moon drill without chamfering 9 or diamond film coating was prepared. Drilling of aluminum alloy was performed using these drills. The cutting conditions are as follows. Work material ADC12 Rotation speed 10000 rpm Feed rate 0.1 mm / rev Hole depth 12 mm

【0017】 その結果を表1に示す。この結果からわかるように面取り9を施した本発明の 被覆半月ドリルでは、10000穴加工後も刃先はほとんど摩耗しておらず、穴 寸法も安定しており、性能が優れていることがわかった。The results are shown in Table 1. As can be seen from the results, it was found that the coated half-moon drill of the present invention, which was chamfered 9, showed almost no wear on the cutting edge even after machining 10,000 holes, the hole dimensions were stable, and the performance was excellent. .

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【考案の効果】[Effect of device]

本考案の被覆半月ドリルは、その切れ刃に面取りを施すと共に、該面取りに炭 化チタン膜、ダイヤモンドなどの硬質被膜を施したので、被覆処理により生じや すくなるクラックの発生を抑え、刃先の変形量を小さくする。また、安定した穴 加工性能を発揮する。このために、従来の半月ドリルに比して寿命を著しく改善 することができた。 In the coated half-moon drill of the present invention, the cutting edge is chamfered, and the chamfer is coated with a hard coating such as titanium carbide film or diamond. Reduce the amount of deformation. It also exhibits stable drilling performance. As a result, the service life was significantly improved compared to the conventional half-moon drill.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の第1の実施例に用いた半月形ドリルの
切刃部の平面図である。
FIG. 1 is a plan view of a cutting edge portion of a half-moon drill used in a first embodiment of the present invention.

【図2】本考案の第2の実施例に用いた半月形ドリルの
切刃部の平面図である。
FIG. 2 is a plan view of a cutting edge portion of a half-moon drill used in a second embodiment of the present invention.

【図3】イは従来の半月形ドリルの平面図、ロは同側面
図である。
3A is a plan view of a conventional half-moon drill, and FIG. 3B is a side view of the same.

【図4】図3に示す従来の半月形ドリルの側面図であ
る。
FIG. 4 is a side view of the conventional half-moon drill shown in FIG.

【図5】図4に示す従来の半月形ドリルの切刃部の側面
図であって、クラックの入る部位を示す。
FIG. 5 is a side view of a cutting edge portion of the conventional half-moon drill shown in FIG. 4, showing a portion where a crack enters.

【符号の説明】[Explanation of symbols]

1 先端 2 丸棒 3 すくい面 4 クラック 5 主切刃 6 シャンク 7 切刃部 8 外周切刃 9 面取り 1 Tip 2 Round bar 3 Rake face 4 Crack 5 Main cutting edge 6 Shank 7 Cutting edge part 8 Peripheral cutting edge 9 Chamfer

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 一端部を半円形断面の切刃部となし、か
つ該切刃部の先端を円錐状または伏鉢状に構成すると共
に、他端部にシャンクを形成し、かつ切刃表面に硬質被
膜を施した超硬合金製の半月状ドリルにおいて、主切れ
刃の少なくとも一方に、すくい面に対し15゜乃至45
゜の角度で20μm乃至500μmの幅の面取りを施
し、さらに該面取りに硬質被膜を施したことを特徴とす
る硬質被膜被覆半月形ドリル。
1. A cutting edge portion having one end formed as a cutting edge portion having a semicircular cross section, a tip end of the cutting edge portion formed in a conical shape or a bowl shape, and a shank formed at the other end, and a cutting edge surface. Cemented carbide half-moon drill with hard coating on at least one of the main cutting edges, 15 ° to 45 ° to the rake face
A hard film-coated half-moon drill characterized by chamfering a width of 20 μm to 500 μm at an angle of ° and further coating a hard film on the chamfer.
【請求項2】 前記硬質被膜のビッカース硬度が1800kg
f/mm2 以上である請求項1記載の硬質被膜被覆半月形ド
リル。
2. The Vickers hardness of the hard coating is 1800 kg.
The hard coating half-moon drill according to claim 1, which has a f / mm 2 or more.
JP9338292U 1992-12-28 1992-12-28 Hard-coated half-moon drill Withdrawn JPH0653010U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9338292U JPH0653010U (en) 1992-12-28 1992-12-28 Hard-coated half-moon drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9338292U JPH0653010U (en) 1992-12-28 1992-12-28 Hard-coated half-moon drill

Publications (1)

Publication Number Publication Date
JPH0653010U true JPH0653010U (en) 1994-07-19

Family

ID=14080767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9338292U Withdrawn JPH0653010U (en) 1992-12-28 1992-12-28 Hard-coated half-moon drill

Country Status (1)

Country Link
JP (1) JPH0653010U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030079306A (en) * 2002-04-03 2003-10-10 한국항공우주산업 주식회사 Kevlar drill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030079306A (en) * 2002-04-03 2003-10-10 한국항공우주산업 주식회사 Kevlar drill

Similar Documents

Publication Publication Date Title
CA2361633C (en) Method for producing a cutting tool and a cutting tool
US6923602B2 (en) Drill having construction for reducing thrust load in drilling operation, and method of manufacturing the drill
US6953310B2 (en) Cemented carbide ball end mill
JP4418408B2 (en) Step drill
EP3444059B1 (en) Small-diameter drill bit
US5322394A (en) Highly stiff end mill
EP2698219A1 (en) Drill
JPWO2016043098A1 (en) drill
JP2006055965A (en) Cemented carbide drill causing low work hardening
JP4975395B2 (en) Ball end mill
WO2017043129A1 (en) Drill
JP2006281407A (en) Machining drill for nonferrous metal
JP6923854B1 (en) Cutting insert
JP7137107B2 (en) ball end mill
JP3988659B2 (en) Drill
JP2674124B2 (en) Twist drill
JP2017080864A (en) Cutting edge exchange-type reamer and reamer insert
JP5914446B2 (en) Cutting tool and workpiece machining method using the same
JPH02124207A (en) Twist drill
EP3733334A1 (en) Drill
JPH0653010U (en) Hard-coated half-moon drill
JP2001328016A (en) Twist drill
JP4725369B2 (en) Drill
JPH0720211U (en) Ball end mill
JP4053295B2 (en) Drilling tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19970306