JPH065287B2 - Low speed electronic measuring device - Google Patents

Low speed electronic measuring device

Info

Publication number
JPH065287B2
JPH065287B2 JP60080892A JP8089285A JPH065287B2 JP H065287 B2 JPH065287 B2 JP H065287B2 JP 60080892 A JP60080892 A JP 60080892A JP 8089285 A JP8089285 A JP 8089285A JP H065287 B2 JPH065287 B2 JP H065287B2
Authority
JP
Japan
Prior art keywords
voltage
anode
electrons
low
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60080892A
Other languages
Japanese (ja)
Other versions
JPS61239185A (en
Inventor
応之 宇田
典範 白橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
RIKEN Institute of Physical and Chemical Research
Original Assignee
Riken Keiki KK
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK, RIKEN Institute of Physical and Chemical Research filed Critical Riken Keiki KK
Priority to JP60080892A priority Critical patent/JPH065287B2/en
Priority to US06/819,226 priority patent/US4740730A/en
Publication of JPS61239185A publication Critical patent/JPS61239185A/en
Publication of JPH065287B2 publication Critical patent/JPH065287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は、大気中における気体放電を利用して低速電子
を測定する装置の放電率、つまり基準点を補正する技術
に関する。
Description: TECHNICAL FIELD The present invention relates to a technique for correcting a discharge rate, that is, a reference point, of a device that measures low-speed electrons by utilizing a gas discharge in the atmosphere.

(従来技術) 試料表面から放出された光電子や熱電子、エキソ電子
(以下、低速電子と呼ぶ)の検出には、開口を介して大
気開放された導電性容器からなる陰極の内部に陽極を、
また開口部1aに第一及び第二格子を配設し、陰極と陽
極間に3.4KV程度の電圧を印加し、また第一及び第
二の格子電極にはそれぞれ常時は100V及び80V程
度の電圧が印加されている低速電子測定装置が用いられ
る。
(Prior Art) For detection of photoelectrons, thermoelectrons, and exoelectrons (hereinafter referred to as low-speed electrons) emitted from the surface of a sample, an anode is placed inside a cathode made of a conductive container opened to the atmosphere through an opening,
Further, the first and second grids are arranged in the opening 1a, a voltage of about 3.4 KV is applied between the cathode and the anode, and the first and second grid electrodes are always 100 V and 80 V, respectively. A low speed electronic measuring device with a voltage applied is used.

この装置において、試料表面から放出された低速電子が
空間部を通過して開口部から陰極に侵入すると、この低
速電子をトリガとして陽極に放電が生じ、陽極からパル
ス信号を出力する。このパルス信号により計数手段を作
動させる一方、第一の格子電極の電位を上昇させて放電
の発達を防止し、同時に第二格子電極を負電位まで低下
させて放電中に生じた陽イオンを中和し、以後元の状態
に戻るという過程を繰返しながら低速電子の発生数を測
定する。
In this device, when the low-speed electrons emitted from the sample surface pass through the space and enter the cathode through the opening, the low-speed electrons trigger the discharge in the anode, and the anode outputs a pulse signal. While operating the counting means by this pulse signal, the potential of the first grid electrode is raised to prevent the development of discharge, and at the same time, the second grid electrode is lowered to a negative potential to neutralize the cations generated during the discharge. The number of low-speed electrons generated is measured while repeating the process of summing and returning to the original state.

ところで、この低速電子検出装置は、開口を介して大気
に連通されている関係上、第5図(イ)(ロ)の実線に
よりに示したように大気圧や温度、さらには湿度等の大
気条件の変動を直接受け、このため放電条件が変動して
同一陽極電圧に対する計数率が大幅に変化し、測定結果
に大きな測定誤差を生じるという不都合があった。
By the way, since the low-speed electron detector is connected to the atmosphere through the opening, as shown by the solid line in FIGS. However, there is a disadvantage that the discharge condition is directly changed and the count rate with respect to the same anode voltage is greatly changed, resulting in a large measurement error in the measurement result.

もとより、このような問題は、気圧センサや温度セン
サ、湿度センサ等を用いて大気条件を検出し、この検出
結果に基づいて陽極電圧を調整することにより解消され
るが、各種のセンサを必要するばかりでなく、大気条件
を支配する各パラメータが放電条件に及ぼす影響度の相
違や、これらの相互関連性を勘案して制御量を決定せね
ばならず、特別な演算手段が必要になるといった新たな
問題を招く。
Needless to say, such a problem is solved by detecting atmospheric conditions using a pressure sensor, a temperature sensor, a humidity sensor, etc., and adjusting the anode voltage based on the detection result, but various sensors are required. Not only that, the control amount must be determined in consideration of the difference in the degree of influence that each parameter that governs atmospheric conditions has on discharge conditions and the interrelationship between these parameters, which requires a special calculation means. Cause problems.

このような問題を解消するために、物理量検出器と同様
な検出器を用いて補正する手法も特開昭51-131379号公
報に見られるごとく常套手段ではあるが、同等な物理量
検出器を2つ必要としてコストが掛かるという問題があ
る。
In order to solve such a problem, a method of correcting using a detector similar to the physical quantity detector is also a conventional means as seen in JP-A-51-131379, but an equivalent physical quantity detector is used. There is a problem that it is necessary and costly.

(目的) 本発明はこのような問題に鑑みてなされたものであっ
て、その目的とするところは可及的に安価な補正用検出
器を用いて、複数の事象により変動をきたす低速電子検
出器の基準点を補正することができる低速電子検出器を
提供することである。
(Purpose) The present invention has been made in view of such a problem, and its object is to use a correction detector that is as inexpensive as possible to detect low-speed electronic signals that fluctuate due to a plurality of events. It is an object of the present invention to provide a slow electron detector capable of correcting the reference point of the detector.

(構成) そこで、以下に本発明の詳細を図示した実施例に基づい
て説明する。
(Structure) Therefore, details of the present invention will be described below based on illustrated embodiments.

第1図は、本発明の一実施例を示すものであって、図中
符号1は、下部に形成された開口1aを介して大気に開
放された容器状の陰極で、内部空間に不平等電界を形成
する陽極2、及び放電を制御する第一格子電極3、第二
極子電極4が上下関係となるように配設して低速電子検
出器が構成されている。この陽極2は、第一電圧可変型
高電圧発生装置5に接続して低速電子が流入したときに
放電を生じるに足る電界を発生させるように構成され、
また直流阻止用コンデンサ6を介して増幅器7に接続さ
れている。
FIG. 1 shows an embodiment of the present invention, in which reference numeral 1 denotes a container-shaped cathode which is opened to the atmosphere through an opening 1a formed in the lower portion, and which is unequal in the internal space. A low-speed electron detector is configured by arranging an anode 2 that forms an electric field, a first grid electrode 3 that controls discharge, and a second pole electrode 4 in a vertical relationship. The anode 2 is connected to the first voltage variable high voltage generator 5 and is configured to generate an electric field sufficient to generate a discharge when low-speed electrons flow.
It is also connected to an amplifier 7 via a DC blocking capacitor 6.

第一格子電極3は、第一パルス発生器8に接続され、常
時には100V程度の電圧を、また増幅器7からのパル
ス信号の出力により一定時間Te継続する400V程度の
電圧が印加され、第二格子電極4は、第二パルス発生器
9に接続され、常時は80V程度の電圧を、また増幅器
7からのパルス信号の出力により一定時間Te継続するマ
イナス30V程度の電圧が印加されるように構成されて
いる。10は、大気状態を検出する大気状態検出器で、
図中符号11は、開口部11aを介して大気に連通した
容器状の陰極で、空間中央部には陽極12を配設する一
方、開口部11aの近傍に陰極に導電的に接続した格子
電極14を配設して外部からの電子の流入を阻止するよ
うに構成されている。15は、第二電圧可変型高電圧発
生装置で、出力電圧を走査して第二カウンタ16からの
出力が予め設定された計数率になった時点で電圧走査を
中止し、この走査が中止されたときの電圧Vdを後述す
る制御回路17に出力するように構成されている。17
は、前述の制御回路で第二電圧可変型高電圧発生装置1
5の電圧Vdをパラメータとして陽極2に一定レベルの
放電を生じさせる電圧を第一可変型高電圧発生装置5か
ら出力させるように構成されている。なお、図中符号1
8は、低速電子検出器からのパルス信号を計数する第一
カウンタを、19はカウンタ18からの出力を処理して
計数率等に変換して表示するディスプレイ装置を、20
は、直流阻止用コンデンサをそれぞれ示す。
The first grid electrode 3 is connected to the first pulse generator 8 and is constantly applied with a voltage of about 100 V, and with the output of the pulse signal from the amplifier 7, a voltage of about 400 V that continues Te for a certain time. The grid electrode 4 is connected to the second pulse generator 9 so that a voltage of about 80 V is normally applied, and a voltage of about −30 V for maintaining Te for a certain period of time is applied by the pulse signal output from the amplifier 7. Has been done. 10 is an atmospheric condition detector for detecting the atmospheric condition,
Reference numeral 11 in the figure is a container-shaped cathode communicating with the atmosphere through an opening 11a, and an anode 12 is arranged in the center of the space, while a grid electrode is conductively connected to the cathode near the opening 11a. 14 is provided to block the inflow of electrons from the outside. A second variable voltage high voltage generator 15 scans the output voltage and stops the voltage scanning when the output from the second counter 16 reaches a preset count rate. The scanning is stopped. The output voltage Vd is output to the control circuit 17 described later. 17
Is the second voltage variable high voltage generator 1 in the control circuit described above.
The voltage Vd of 5 is used as a parameter to cause the first variable high voltage generator 5 to output a voltage for causing the anode 2 to generate a constant level of discharge. In addition, reference numeral 1 in the drawing
Reference numeral 8 denotes a first counter that counts pulse signals from the low-speed electron detector, and 19 denotes a display device that processes the output from the counter 18 and converts it into a count rate or the like for display.
Indicate respective DC blocking capacitors.

つぎに、このように構成した装置の動作を第2図に示し
た波形図に基づいて説明する。
Next, the operation of the apparatus configured as described above will be described based on the waveform diagram shown in FIG.

現在の大気状態は、第5図のIIで示される状態にあると
する。
It is assumed that the current atmospheric conditions are those shown by II in FIG.

陰極開口部1aの下方に試料Sを配置して装置を作動す
ると、試料Sの表面から放出された低速電子は、低速電
子検出器の陽極2により形成された電界を受けて第二格
子電極4及び第一格子電極3を順次通り抜けて陽極2に
引き寄せられて行く。このようにして低速電子が陽極2
の近傍に到達すると、この電子は、陽極2近傍に分布し
ている強電界の作用を受けて急激に加速され、周囲の大
気を電離させて放電を引き起す。これにより陽極2は、
急激な電位降下を引き起す。この電位降下は、直流阻止
用コンデンサ6を介してパルス信号となって増幅器7に
より増幅されてカウンタ18に入力し、低速電子の発生
頻度や個数としてディスプレイ装置19に表示される。
When the sample S is placed below the cathode opening 1a and the apparatus is operated, the slow electrons emitted from the surface of the sample S receive the electric field formed by the anode 2 of the slow electron detector and the second grid electrode 4 Then, it passes through the first grid electrode 3 sequentially and is attracted to the anode 2. In this way, low-speed electrons
When reaching the vicinity of, the electrons are rapidly accelerated by the action of the strong electric field distributed in the vicinity of the anode 2, and ionize the surrounding atmosphere to cause discharge. As a result, the anode 2 becomes
Causes a sudden drop in potential. This potential drop becomes a pulse signal through the DC blocking capacitor 6, is amplified by the amplifier 7, is input to the counter 18, and is displayed on the display device 19 as the generation frequency and number of low-speed electrons.

一方、このパルス信号は、第一及び第二パルス発生器
8、9に入力して第一パルス発生器8から電圧が例えば
300Vで時間幅Teのパルスを重畳出力させて第一格
子電極3の電位を400Vに引き上げて放電を消滅させ
る。また第二パルス発生器9からパルスを出力させて、
第二格子電極4の電位を陰極1に対して−30Vまで下
げ、上記放電により陰極1内に発生した陽イオンを消滅
させる。時間Teが経過すると、第一及び第二パルス発
生器8、9からのパルス出力が停止し、測定装置は初期
の状態に戻ってつぎの低速電子の流入を待つ。
On the other hand, this pulse signal is input to the first and second pulse generators 8 and 9, and the first pulse generator 8 superimposes and outputs a pulse having a voltage of, for example, 300 V and a time width Te to output the first grid electrode 3 The potential is raised to 400 V to extinguish the discharge. Also, by outputting a pulse from the second pulse generator 9,
The potential of the second grid electrode 4 is lowered to −30 V with respect to the cathode 1, and the cations generated in the cathode 1 by the above discharge are extinguished. When the time Te has elapsed, the pulse output from the first and second pulse generators 8 and 9 is stopped, and the measuring device returns to the initial state and waits for the next inflow of low-speed electrons.

この低速電子の計測に並行して、大気状態検出器10
は、第二電圧可変型高電圧発生装置15の電圧走査を受
け、第6図(イ)(ロ)のIIに示した状態、つまりに現
在の大気状態に相当する計数率で自続放電を行なう。今
の場合、大気状態に変化がないので、電圧Vdに到達す
る度に設定された計数率に到達する。このため、制御回
路17は第一可電圧変型高電圧発生装置5からの出力電
圧V0を維持する。
At the same time as the measurement of the low-speed electrons, the atmospheric condition detector 10
Receives the voltage scan of the second voltage variable high voltage generator 15, and performs self-sustaining discharge at the count rate corresponding to the state shown in II of FIG. 6 (a) and (b), that is, the current atmospheric state. To do. In this case, since the atmospheric state does not change, the count rate set is reached every time the voltage Vd is reached. Therefore, the control circuit 17 maintains the output voltage V 0 from the first variable voltage high voltage generator 5.

このような状態において、大気圧や気温、湿度等の大気
状態が変化して陽極2付近における電子移動度等の放電
に関わる条件に変動を来たし、放電条件が第5図(イ)
(ロ)のIIIに示された状態、つまり計数率が低下した
とする。
In such a state, atmospheric conditions such as atmospheric pressure, temperature, and humidity change, and conditions related to discharge such as electron mobility near the anode 2 change, and the discharge condition changes as shown in FIG.
It is assumed that the state shown in III of (b), that is, the count rate has decreased.

大気状態検出器10は、第二電圧可変型高電圧発生装置
15により電圧走査を受けるが、第6図(イ)(ロ)の
IIIにより示された状態となり、前回の電圧Vdでは前
回の計数率と同等の自続放電を起すことができず、これ
よりの高い電圧まで走査が行なわれた時点で、第二カウ
ンタ16からの計数率が設定レベルに到達する。この時
点で、第二電圧可変型高電圧発生装置15は、電圧走査
を中止し、この電圧Vd′を制御回路17に出力する。
言うまでもなく、この電圧Vd′は、変動後の大気状態
を表わすものである。制御回路10は、この電圧Vd′
を受けて第一電圧可変型高電圧発生装置5の出力電圧を
ΔVだけ高電圧側にシフトさせて放電条件を調整する。
これにより、放電条件は、大気状態変動以前の状態、つ
まり第5図(イ)(ロ)に示すIIと同一の条件に引戻さ
れ、以後、低速電子1個に対する計数率、つまり検出感
度に変化を来たすことなく低速電子を検出する。
The atmospheric condition detector 10 is subjected to voltage scanning by the second voltage variable type high voltage generator 15, and is shown in FIG. 6 (a) (b).
The state indicated by III is reached, and the previous voltage Vd cannot cause self-sustaining discharge equivalent to the previous count rate, and at the time when scanning is performed to a voltage higher than this, the second counter 16 outputs The counting rate reaches the set level. At this point, the second variable voltage high voltage generator 15 stops the voltage scanning and outputs the voltage Vd ′ to the control circuit 17.
Needless to say, this voltage Vd 'represents the atmospheric condition after the fluctuation. The control circuit 10 controls the voltage Vd '.
In response to this, the output voltage of the first voltage variable high voltage generator 5 is shifted to the high voltage side by ΔV to adjust the discharge condition.
As a result, the discharge condition is returned to the condition before the atmospheric condition change, that is, the same condition as II shown in FIGS. 5 (a) and 5 (b), and thereafter, the counting rate for one low-speed electron, that is, the detection sensitivity. Detects slow electrons without causing a change.

以後、大気状態が変動するたびにこのような電圧調整を
行なって低速電子1個に対する計数率を一定に維持す
る。
Thereafter, such voltage adjustment is performed every time the atmospheric condition changes to maintain a constant count rate for one low-speed electron.

第3図は、本発明の第二実施例を示すものであって、図
中符号21は、容器状の陰極1の内部に配設された陽極
で、導線をループ状に形成し、後述する陽極温度制御回
路22からの電力を受けてジュール熱により昇温するよ
うに構成されている。この陽極21は、高電圧発生装置
23に接続して低速電子が流入したときに放電を生じる
に足る電界を発生させるように構成され、また直流阻止
用コンデンサ6を介して増幅器7に接続されている。2
2は、前述の陽極温度制御回路で、大気状態検出器10
に接続する第二カウンタ16の計数率が予め設定された
値になる電圧をパラメータとして、陽極21が一定レベ
ルの放電を生じる温度となるように加熱電力を供給する
ように構成されている。
FIG. 3 shows a second embodiment of the present invention, in which reference numeral 21 is an anode arranged inside a container-shaped cathode 1, and a conductor wire is formed in a loop shape, which will be described later. It is configured to receive electric power from the anode temperature control circuit 22 and raise the temperature by Joule heat. This anode 21 is connected to a high voltage generator 23 so as to generate an electric field sufficient to generate a discharge when low-speed electrons flow in, and is also connected to an amplifier 7 via a DC blocking capacitor 6. There is. Two
2 is the above-mentioned anode temperature control circuit, which is the atmospheric condition detector 10
It is configured to supply heating power so that the anode 21 reaches a temperature at which a constant level of discharge is generated, with the voltage having a count rate of the second counter 16 connected to the parameter set to a preset value as a parameter.

つぎに、このように構成した装置の動作を第4図に示し
た波形図に基づいて説明する。
Next, the operation of the apparatus thus configured will be described based on the waveform chart shown in FIG.

大気圧や気温、湿度等の大気状態が変化して陽極21の
付近における電子移動度等の放電に関わる条件に変動を
来たし、放電条件が第5図(イ)(ロ)のIIにより示さ
れる状態から同図IIIに示された状態、つまり計数率が
低下する状態に変化したとする。
The atmospheric conditions such as atmospheric pressure, temperature, and humidity change, and the conditions related to the discharge such as the electron mobility near the anode 21 change, and the discharge condition is indicated by II in FIG. 5 (a) (b). It is assumed that the state has changed to the state shown in FIG. 3, that is, the state in which the count rate decreases.

大気状態検出器10は、電圧可変型高電圧発生装置24
により電圧走査を受けるが、第6図(イ)(ロ)のIII
により示された状態となって前回の電圧Vdでは前回と
同等の計数率の自続放電を起すことができず、したがっ
て高い電圧Vd’まで走査が行なわれた時点で、第二カ
ウンタ16からの計数率が設定レベルに到達する。この
時点で、電圧可変型高電圧発生装置24は、電圧走査を
中止し、この電圧Vd’を陽極温度制御回路22に出力
する。言うまでもなく、この電圧Vd’は、変動後の大
気状態を表わすものである。陽極温度制御回路22は、
この電圧Vd’をパラメータとして低速電子検出器の陽
極21への加熱電力を増加させ、陽極21の温度をΔT
だけ高温側にシフトさせる。これにより陽極21近傍の
気体の温度が上昇して電子の移動度が大きくなり、放電
条件は、大気状態変動以前の状態、つまり第5図(イ)
(ロ)においてIIで示された条件に引戻され、以後、低
速電子1個に対する計数率、つまり検出感度に変化を来
たすことなく低速電子を検出する。
The atmospheric condition detector 10 includes a variable voltage high voltage generator 24.
It is subjected to voltage scanning by, but III in Fig. 6 (a) (b).
In the state shown by, the previous voltage Vd cannot cause self-sustaining discharge with the same count rate as the previous time, and therefore, when the scanning is performed up to the high voltage Vd ', the second counter 16 outputs The counting rate reaches the set level. At this point, the variable voltage high voltage generator 24 stops the voltage scanning and outputs this voltage Vd ′ to the anode temperature control circuit 22. Needless to say, this voltage Vd 'represents the atmospheric condition after the fluctuation. The anode temperature control circuit 22 is
The heating power to the anode 21 of the low-speed electron detector is increased by using this voltage Vd 'as a parameter to increase the temperature of the anode 21 by ΔT.
Only shift to the high temperature side. As a result, the temperature of the gas near the anode 21 rises and the mobility of electrons increases, and the discharge condition is the state before the atmospheric condition change, that is, FIG.
The condition is returned to the condition indicated by II in (b), and thereafter, low-speed electrons are detected without changing the count rate for one low-speed electron, that is, the detection sensitivity.

なお、上述した実施例においては、大気状態検出器の電
圧走査を低電圧側から行なうようにしているが、高電圧
側から走査して計数率が設定値まで低下した時点の陽極
電圧に基づいて低速電子検出器の放電条件を制御しても
よい。また上述した実施例においては、大気状態検出器
における放電状態の検知を計数率の変化に基づいて行な
っているが、増幅器7からのパルス信号の波高値や陽極
負荷電流の大きさから検出できることは言うまでもな
い。さらに、上述した実施例においては、陽極に直接通
電して陽極温度の制御を行なっているが、陽極近傍にヒ
ータを配設して間接的に加熱するようにしても同様の作
用を奏する。
In the embodiment described above, the voltage scanning of the atmospheric condition detector is performed from the low voltage side, but based on the anode voltage at the time when the counting rate is reduced to the set value by scanning from the high voltage side. The discharge condition of the low speed electron detector may be controlled. Further, in the above-mentioned embodiment, the detection of the discharge state in the atmospheric state detector is performed based on the change of the count rate, but it can be detected from the peak value of the pulse signal from the amplifier 7 or the magnitude of the anode load current. Needless to say. Further, in the above-described embodiment, the anode temperature is controlled by directly energizing the anode, but the same effect can be obtained even if a heater is arranged near the anode to indirectly heat.

また、上述の実施例においては、低速電子の侵入を阻止
した状態、つまり低速電子が零の状態を校正基準として
いるが、電子線等のエネルギー線を既知量放出する物体
を用い、このエネルギー線に基づく計数率が一定となる
ように調整しても同様の作用を奏することは云うまでも
ない。
Further, in the above-described embodiment, the state in which the intrusion of low-speed electrons is blocked, that is, the state in which the low-speed electrons are zero is used as the calibration reference, but an object that emits a known amount of energy rays such as electron beams is used, and this energy ray is used. Needless to say, even if the counting rate based on is adjusted so as to be constant, the same effect is obtained.

(効果) 以上、説明したように特に大気状態を検出するために、
大気に連通する流入口が形成された容器状の陰極と、陰
極の内部に配設された陽極と、流入口に配設されて電子
の侵入を阻止する格子電極と、陽極に対して少なくとも
放電を生じさせるに足る電圧を出力する第二の電圧可変
型高電圧発生手段を備えた大気状態検出器を用い、これ
により低速電子検出器の陽極の電圧や温度を制御するよ
うにしたので、温度や湿度、さらには大気圧等の複数の
事象により影響を受ける放電状態を1つの検出器からの
信号により的確に制御することができる。
(Effect) As described above, in order to detect the atmospheric condition,
A container-shaped cathode having an inflow port communicating with the atmosphere, an anode disposed inside the cathode, a grid electrode disposed at the inflow port to prevent electrons from entering, and at least a discharge to the anode Is used to control the voltage and temperature of the anode of the low-speed electron detector by using an atmospheric condition detector equipped with a second voltage variable type high voltage generating means for outputting a voltage sufficient to generate It is possible to accurately control the discharge state affected by a plurality of events such as humidity, humidity, and atmospheric pressure by a signal from one detector.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例を示す装置の構成図、第2
図は、同上装置の動作を示す波形図、第3図は、本発明
の他の実施例を示す装置の構成図、第4図は、第3図装
置の動作を示す波形図、第5図は低速電子検出器におけ
る大気状態と計数率の関係を示す特性図、及び第6図
は、大気状態検出器における大気状態と計数率の関係を
示す特性図である。 1‥‥陰極 2、21‥‥陽極 3、4‥‥格子電極 10‥‥大気状態検出器 11‥‥陰極 12‥‥陽極 14‥‥格子電極
FIG. 1 is a block diagram of an apparatus showing an embodiment of the present invention, and FIG.
FIG. 4 is a waveform diagram showing the operation of the same device, FIG. 3 is a block diagram of the device showing another embodiment of the present invention, FIG. 4 is a waveform diagram showing the operation of the device of FIG. 3, and FIG. Is a characteristic diagram showing the relationship between the atmospheric condition and the count rate in the low-speed electron detector, and FIG. 6 is a characteristic diagram showing the relationship between the atmospheric condition and the count rate in the atmospheric condition detector. 1 ... Cathode 2, 21 ... Anode 3, 4 ... Lattice electrode 10 ... Atmospheric condition detector 11 ... Cathode 12 ... Anode 14 ... Lattice electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】大気に連通し、低速電子の流入口が形成さ
れた容器状の陰極、該陰極の内部に配設され、少なくと
も放電を生じさせるに足る電圧を出力する第一の電圧可
変型高電圧発生手段からの電圧が印加される陽極、及び
常時は電子の流入を許し、また前記陽極が放電した後
は、一定期間、電子の流入を阻止する格子電極を備えた
低速電子検出器と、 大気に連通する流入口が形成された容器状の陰極、該陰
極の内部に配設され、少なくとも放電を生じさせるに足
る電圧を出力する第二の電圧可変型高電圧発生手段から
の電圧が印加される陽極、及び前記流入口に配設されて
電子の侵入を常時阻止する格子電極を備えた大気状態検
出器と、 第二の電圧可変型高電圧発生手段の出力電圧を一方向に
変化させて前記大気状態検出器の陽極の放電状態が変化
した前記出力電圧により、第一の電圧可変型高電圧発生
手段の出力電圧を制御する制御手段と を備えた低速電子測定装置。
1. A container-shaped cathode, which communicates with the atmosphere and is provided with an inflow port for low-speed electrons, and a first voltage variable type which is arranged inside the cathode and which outputs at least a voltage sufficient to cause discharge. An anode to which a voltage from a high voltage generating means is applied, and a low-speed electron detector provided with a grid electrode that allows the inflow of electrons at all times and blocks the inflow of electrons for a certain period after the anode is discharged. A container-shaped cathode having an inflow port communicating with the atmosphere, and a voltage from a second voltage variable high-voltage generating unit that is disposed inside the cathode and outputs a voltage sufficient to cause at least discharge. An atmospheric condition detector provided with an applied anode and a grid electrode disposed at the inlet to constantly block electrons from entering, and the output voltage of the second voltage variable high voltage generating means is changed in one direction. Let the discharge of the anode of the atmospheric condition detector By the output voltage condition is changed, the low-speed electronic measuring and control means for controlling the output voltage of the first voltage-variable high-voltage generating means.
【請求項2】大気に連通する低速電子の流入口が形成さ
れた容器状の陰極、該陰極の内部に配設され、加熱手段
により温度制御を受け、かつ少なくとも放電を生じさせ
るに足る電圧を出力する第一の電圧可変型高電圧発生手
段からの電圧が印加される陽極、及び常時は電子の流入
を許し、また前記陽極が放電した後は、一定期間、電子
の流入を阻止する格子電極を備えた低速電子検出器と、 大気に連通する流入口が形成された容器状の陰極、該陰
極の内部に配設され、少なくとも放電を生じさせるに足
る電圧を出力する第二の電圧可変型高電圧発生手段から
の電圧が印加される陽極、前記流入口に配設されて電子
の侵入を常時阻止する格子電極を備えた大気状態検出器
と 第二の電圧可変型高電圧発生手段の出力電圧を一方向に
変化させて大気状態検出器の陽極の放電状態が変化した
前記出力電圧により、前記低速電子検出器の前記陽極の
温度を制御する温度制御手段と からなる低速電子測定装置。
2. A container-shaped cathode in which an inflow port for low-speed electrons communicating with the atmosphere is formed, and a voltage which is disposed inside the cathode and which is temperature controlled by a heating means and at least causes discharge. An anode to which a voltage from the first voltage variable high voltage generating means for outputting is applied, and a grid electrode which permits the inflow of electrons at all times and blocks the inflow of electrons for a certain period after the anode is discharged. A low-speed electron detector provided with a container, a container-shaped cathode having an inflow port communicating with the atmosphere, and a second voltage variable type disposed inside the cathode and outputting a voltage sufficient to cause at least discharge. An anode to which a voltage from the high voltage generating means is applied, an atmospheric condition detector provided at the inflow port and having a lattice electrode for always blocking electrons from entering, and an output of the second voltage variable high voltage generating means Change the voltage in one direction By the output voltage discharge state changes in the anode of the state detector, the low-speed electronic measuring device comprising a temperature control means for controlling the temperature of the anode of the low-speed electron detector.
JP60080892A 1985-01-16 1985-04-15 Low speed electronic measuring device Expired - Lifetime JPH065287B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60080892A JPH065287B2 (en) 1985-04-15 1985-04-15 Low speed electronic measuring device
US06/819,226 US4740730A (en) 1985-01-16 1986-01-15 Apparatus for detecting low-speed electrons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080892A JPH065287B2 (en) 1985-04-15 1985-04-15 Low speed electronic measuring device

Publications (2)

Publication Number Publication Date
JPS61239185A JPS61239185A (en) 1986-10-24
JPH065287B2 true JPH065287B2 (en) 1994-01-19

Family

ID=13731008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080892A Expired - Lifetime JPH065287B2 (en) 1985-01-16 1985-04-15 Low speed electronic measuring device

Country Status (1)

Country Link
JP (1) JPH065287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823368A (en) * 1987-06-30 1989-04-18 Rikagaku Kenkyujyo Open counter for low energy electron detection with suppressed background noise
JP4671153B2 (en) * 2006-03-11 2011-04-13 横山 義隆 Open window ionization chamber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131379A (en) * 1975-05-08 1976-11-15 Seiko Instr & Electronics Ltd Radial ray analysis device
JPS59195177A (en) * 1983-04-20 1984-11-06 Rikagaku Kenkyusho Counting method of photoelectron

Also Published As

Publication number Publication date
JPS61239185A (en) 1986-10-24

Similar Documents

Publication Publication Date Title
JP5013563B2 (en) Dose monitor for plasma doping system
JP2002522899A (en) Dose monitor for plasma immersion ion implantation doping equipment
JPS5811596B2 (en) Neutron detection system
US9431222B2 (en) Device and method for measuring an energy particle beam
JPH065287B2 (en) Low speed electronic measuring device
US4740730A (en) Apparatus for detecting low-speed electrons
US3001128A (en) Measuring
JPS607049A (en) Electric potential measuring device
JPH0616103B2 (en) Low speed electronic measuring device
GB2034924A (en) Setting the cathode heating current of an electron beam machine
JPH11500531A (en) Electron beam stop analyzer
US7800376B2 (en) Method and device for measuring ultrahigh vacuum
JP2000075037A (en) Radiation detector
EP0147212B1 (en) Method for determining the operability of a source range detector
US4314205A (en) Method and means for vacuum gauging
CA1075304A (en) Vacuum tube gas test apparatus
US4806765A (en) Method and apparatus for checking the signal path of a measuring system
JPS61164177A (en) Slow electron measuring instrument
Ballantine Fluctuation noise due to collision ionization in electronic amplifier tubes
US3686683A (en) Mass spectrometer electrode gap control
US4101823A (en) Method and apparatus for measuring cathode emission slump
JP2002350552A (en) Radiation detector
JPH075266A (en) Proportional counter capable of correcting measurement error due to fluctuation of voltage between electrodes
JPS63167256A (en) Electron counting device
JP2964741B2 (en) Beam current measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term