JPH0652728A - Electric power cable - Google Patents

Electric power cable

Info

Publication number
JPH0652728A
JPH0652728A JP4205051A JP20505192A JPH0652728A JP H0652728 A JPH0652728 A JP H0652728A JP 4205051 A JP4205051 A JP 4205051A JP 20505192 A JP20505192 A JP 20505192A JP H0652728 A JPH0652728 A JP H0652728A
Authority
JP
Japan
Prior art keywords
layer
hydrotalcite
power cable
semiconductive
semiconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4205051A
Other languages
Japanese (ja)
Inventor
Fumio Aida
二三夫 会田
Hajime Tanimoto
元 谷本
Minoru Okashita
稔 岡下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP4205051A priority Critical patent/JPH0652728A/en
Publication of JPH0652728A publication Critical patent/JPH0652728A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

PURPOSE:To provide a stabilized electric power cable excellent in electric characteristic at high temperatures. CONSTITUTION:A copper twisted conductor 1 is covered with an inside semiconductor layer 2 incorporating hydrotalcite or a similar compound and a chelate forming agent, a crosslinked polyethylene insulator layer 3, and an outside semiconductor layer 4 incorporating hydrotalcite or a similar compound and a chelate forming agent, followed by being covered with a sheath 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温電気特性を向上さ
せた電力ケーブルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power cable having improved high temperature electrical characteristics.

【0002】[0002]

【従来の技術】従来から、高圧電力ケーブルとして架橋
ポリエチレン絶縁ケーブルが汎用されている。この架橋
ポリエチレン絶縁ケーブルは、一般に、導体上に、三層
同時押出により内部半導電層、架橋ポリエチレン絶縁体
層、外部半導電層を形成し、その外周に外被を被覆して
構成されており、耐水性、耐湿性、耐薬品性、耐溶剤性
などに優れ、かつ常温付近における絶縁耐力、体積固有
抵抗が高く、誘電率や誘電正接が小さいなどの特徴を有
している。
2. Description of the Related Art Conventionally, a crosslinked polyethylene insulated cable has been widely used as a high voltage power cable. This crosslinked polyethylene insulated cable is generally constructed by forming an inner semiconductive layer, a crosslinked polyethylene insulation layer, and an outer semiconductive layer on a conductor by three-layer coextrusion, and covering the outer circumference with a jacket. It has excellent characteristics such as excellent water resistance, moisture resistance, chemical resistance, solvent resistance, high dielectric strength at room temperature and high volume resistivity, and low dielectric constant and dielectric loss tangent.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この架
橋ポリエチレン絶縁ケーブルは、温度が高くなると電気
特性が大幅に低下し、たとえば、90℃における交流破壊
電圧は常温のそれより約20〜40%程度低下し、また、直
流絶縁抵抗は、常温時より 100〜1000倍程度増大すると
いう問題があった。
However, the electrical characteristics of this crosslinked polyethylene insulated cable are significantly lowered when the temperature rises. For example, the AC breakdown voltage at 90 ° C is reduced by about 20 to 40% from that at room temperature. However, there is a problem that the DC insulation resistance is increased by 100 to 1000 times as much as at room temperature.

【0004】そこで、本発明者らは、このような高温電
気特性を向上すべく鋭意研究を重ねた結果、この高温電
気特性の低下に、半導電層中に含まれるイオン性不純物
が大きく関与することを見出だした。
Therefore, as a result of intensive studies conducted by the present inventors to improve such high-temperature electrical characteristics, ionic impurities contained in the semiconductive layer largely contribute to the deterioration of the high-temperature electrical characteristics. I found that.

【0005】すなわち、一般に、半導電層には、導電性
付与剤として導電性カーボンブラックが相当量配合され
ているが、この導電性カーボンブラックには各種不純物
が混入している。そのうち、水分などの極性溶媒下で陽
イオン化したFe、Ca、Ni、Cr、Alなどの元素や、Cl-
Br- 、SO4 - などに陰イオン化したものは、絶縁体層中
に移行して電荷トラップとなり、半導電層からの電荷の
注入および蓄積を促進させる。そして、この促進効果
は、高温、高電界下で特に顕著になるため、結果とし
て、高温時のtan δが上昇し、熱破壊傾向が助長され、
高温電気特性が低下するものと考えられる。
That is, generally, the semiconductive layer contains a considerable amount of conductive carbon black as a conductivity-imparting agent, but various impurities are mixed in this conductive carbon black. Among them, and elements such as cationized the Fe, Ca, Ni, Cr, Al under polar solvent such as water, Cl -,
Those anionized to Br , SO 4 −, etc. migrate into the insulating layer and become a charge trap, which promotes injection and accumulation of charges from the semiconductive layer. And, since this accelerating effect becomes particularly remarkable under high temperature and high electric field, as a result, tan δ at high temperature rises, promoting the thermal breakdown tendency,
It is considered that the high temperature electrical characteristics are deteriorated.

【0006】したがって、このようなイオン性不純物の
絶縁体層への移行を防止できれば、ケーブルの高温電気
特性の改善する上で極めて有効な手段になるものと考え
られる。
Therefore, if such migration of ionic impurities to the insulating layer can be prevented, it is considered to be an extremely effective means for improving the high temperature electrical characteristics of the cable.

【0007】本発明は、このような知見に基づいてなさ
れたもので、内部および外部半導電層から絶縁体層への
イオン性不純物の移行が防止され、高温電気特性が大幅
に向上した電力ケーブルを提供することを目的とする。
The present invention has been made on the basis of such knowledge, and prevents migration of ionic impurities from the inner and outer semiconductive layers to the insulator layer, and significantly improves high-temperature electrical characteristics of a power cable. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明の電力ケーブル
は、導体上に、内部半導電層、絶縁体層、外部半導電
層、および外被を順に形成してなる電力ケーブルにおい
て、前記内部および/または外部半導電層には、ハイド
ロタルサイトもしくはその類似化合物と、キレート形成
剤が配合されてなることを特徴としている。
A power cable of the present invention is a power cable in which an inner semiconductive layer, an insulating layer, an outer semiconductive layer, and an outer cover are formed in order on a conductor. The external semiconductive layer is characterized in that hydrotalcite or a similar compound thereof and a chelate-forming agent are mixed.

【0009】本発明に使用されるハイドロタルサイト
は、次式 [M2+ 1-x M3+ x (OH)2 ] x+[An-x/n ・mH2 O]x- (式中、 M2+はMg2+、Mn2+、Fe2+、Co2+、Ni2+、Cu2+
Zn2+などの 2価金属を、M3+はAl3+、Fe3+、Cr3+、C
o3+、In3+などの 3価金属を、 An-はOH- 、 F- 、C
l- 、Br- 、NO3 - 、CO3 2-、SO4 2-、Fe(CN)6 3-、CH
3 COO - 、シュウ酸イオン、サリチン酸イオンなどの n
価のアニオンを示し、x は0 <x ≦0.33を満足する数で
ある。)で表わされる不定比化合物であり、ソ連のウラ
ル地方やノルウェーのスナルムなどで天然に産出され
る。また、このようなハイドロタルサイトの類似化合物
としては、Mg4 Al2 (OH)12CO3 ・3H2 O 、Mg4.5 Al2 (O
H)13CO3 ・3.5H2 O 、Mg6 Al2 (OH)16CO3 ・4H2 O 、Al
2 O 3 ・xH2 O 、2.5MgO・Al2 O 3 ・xH2 O などの合成
ハイドロタルサイト、および、Al2 O 3 ・Na2 O ・2CO
3 ・xH2 O 、2MgO・6SiO2 ・xH2 O 、Al2 O 3 ・9SiO2
・xH2 O 、Mg0.7 Al0.3 O 1.15、水酸化アルミニウム、
ケイ酸アルミニウム、ケイ酸マグネシウム、水酸化マグ
ネシウムなどがあげられ、これらは 1種を単独で使用し
てもよく、 2種以上を併用して使用してもよい。本発明
においては、なかでも、合成ハイドロタルサイトの使用
が好ましい。
The hydrotalcite used in the present invention has the following formula [M 2+ 1-x M 3+ x (OH) 2 ] x + [A n- x / n mH 2 O] x- (wherein , M 2+ is Mg 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ ,
Divalent metals such as Zn 2+ , M 3+ is Al 3+ , Fe 3+ , Cr 3+ , C
o 3+, trivalent metal such as In 3+, A n- is OH -, F -, C
l -, Br -, NO 3 -, CO 3 2-, SO 4 2-, Fe (CN) 6 3-, CH
3 COO -, oxalic acid ion, n such Sarichin ion
A valent anion is shown, and x is a number satisfying 0 <x ≤ 0.33. ) Is a non-stoichiometric compound, which is naturally produced in the Ural region of the Soviet Union and Sunalm in Norway. Further, as such a compound similar to hydrotalcite, Mg 4 Al 2 (OH) 12 CO 3 .3H 2 O, Mg 4.5 Al 2 (O
H) 13 CO 3・ 3.5H 2 O, Mg 6 Al 2 (OH) 16 CO 3・ 4H 2 O, Al
2 O 3 · xH 2 O, 2.5MgO · Al 2 O 3 · xH 2 O and other synthetic hydrotalcite, and Al 2 O 3 · Na 2 O · 2CO
3・ xH 2 O, 2MgO ・ 6SiO 2・ xH 2 O, Al 2 O 3・ 9SiO 2
XH 2 O, Mg 0.7 Al 0.3 O 1.15 , aluminum hydroxide,
Examples thereof include aluminum silicate, magnesium silicate, and magnesium hydroxide. These may be used alone or in combination of two or more. In the present invention, use of synthetic hydrotalcite is preferable.

【0010】このようなハイドロタルサイトもしくはそ
の類似化合物は、内部または外部半導電層に含まれるア
ニオンまたはアニオンとカチオンを不動化(トラップ)
し、これらのイオン性不純物の絶縁体層への移行を防止
し、ケーブルの電気特性、特に高温時の電気特性を向上
させる効果を有する。
Such a hydrotalcite or a similar compound thereof immobilizes (traps) anions or anions and cations contained in the inner or outer semiconductive layer.
However, it has the effect of preventing the migration of these ionic impurities to the insulating layer and improving the electrical characteristics of the cable, especially at high temperatures.

【0011】一方、本発明に使用されるキレート形成剤
としては、8-ヒドロキシキノリン、o-フェナントロリ
ン、1,2-グリコール、グリセリン、α- ベンゾインオキ
シム、EDTAなどがあげられ、これらは 1種を単独で
使用してもよく、 2種以上を併用して使用してもよい。
本発明においては、なかでも、8-ヒドロキシキノリンの
使用が好ましい。
On the other hand, examples of the chelating agent used in the present invention include 8-hydroxyquinoline, o-phenanthroline, 1,2-glycol, glycerin, α-benzoin oxime, EDTA and the like. They may be used alone or in combination of two or more.
In the present invention, it is preferable to use 8-hydroxyquinoline.

【0012】このようなキレート形成剤は、それ自身、
内部または外部半導電層に不純物として含まれる金属イ
オンを不動化(トラップ)し、その絶縁体層への移行を
防止する作用を有するものである。
Such chelating agents are themselves
It has a function of immobilizing (trapping) metal ions contained as impurities in the inner or outer semiconductive layer and preventing the migration thereof to the insulating layer.

【0013】本発明においては、このようなキレート形
成剤と上記ハイドロタルサイトもしくはその類似化合物
を併用することによって、それぞれの効果がより高めら
れ、内部または外部半導電層に含まれるイオン性不純物
の移行防止において、著しい効果を得ることができる。
すなわち、ハイドロタルサイトもしくはその類似化合物
のイオン性不純物の移行防止効果、およびキレート形成
剤の同効果は、それぞれを単独で使用した場合に比べて
はるかに大きな効果を得ることができ、ケーブルの電気
特性、特に高温時の電気特性が大幅に向上させることが
できる。
In the present invention, by using such a chelate-forming agent in combination with the above-mentioned hydrotalcite or a compound similar thereto, the respective effects can be further enhanced, and the ionic impurities contained in the inner or outer semiconductive layer can be improved. A significant effect can be obtained in preventing migration.
That is, the effect of preventing migration of ionic impurities of hydrotalcite or its similar compound and the same effect of the chelating agent can be far greater than the effects of using each alone, and the electrical conductivity of the cable can be improved. The characteristics, especially the electrical characteristics at high temperature, can be significantly improved.

【0014】なお、これらの配合量は、半導電層の種類
によって適宜きめられるが、たとえば、導電性カーボン
ブラックを含有する半導電性樹脂組成物からなる半導電
層では、導電性カーボンブラックに対し 0.001〜10%程
度が適当である。
The blending amount of these is appropriately determined depending on the kind of the semiconductive layer. For example, in a semiconductive layer made of a semiconductive resin composition containing a conductive carbon black, the amount of the semiconductive layer is different from that of the conductive carbon black. 0.001-10% is appropriate.

【0015】本発明の電力ケーブルは、導体上に、ハイ
ドロタルサイトもしくはその類似化合物とキレート形成
剤とを配合した半導電性樹脂組成物、架橋剤を配合した
ポリエチレンなどの絶縁性樹脂組成物、ハイドロタルサ
イトもしくはその類似化合物とキレート形成剤とを配合
した半導電性樹脂組成物を順に、三層同時押出もしくは
個別に押出して被覆し、必要ならば架橋させて、内部半
導電層、絶縁体層、外部半導電層を形成し、その上に、
軟質塩化ビニル樹脂シースなどの外被を設けることによ
り得ることができる。
The power cable of the present invention comprises a semiconductive resin composition in which hydrotalcite or a similar compound thereof and a chelate forming agent are mixed on a conductor, an insulating resin composition such as polyethylene in which a crosslinking agent is mixed, A semiconductive resin composition in which hydrotalcite or a similar compound thereof and a chelating agent are mixed is sequentially coated by three-layer coextrusion or individual extrusion, and if necessary, crosslinked to form an internal semiconductive layer and an insulator. A layer, an outer semiconducting layer, on which
It can be obtained by providing an outer cover such as a soft vinyl chloride resin sheath.

【0016】ここで、ハイドロタルサイトもしくはその
類似化合物とキレート形成剤とが配合される半導電性樹
脂組成物としては、ポリエチレンや、エチレン・酢酸ビ
ニル共重合体(EVA)、エチレン・エチルアクリレー
ト共重合体(EEA)などのエチレン系共重合体、ある
いは、これらに、エチレン・酢酸ビニル共重合体−ポリ
塩化ビニルのグラフトマー(EVA−PVCグラフトマ
ー)、塩素化ポリエチレン、クロルスルホン化ポリエチ
レン、ニトリルゴム、アクリルゴム、スチレンブタジエ
ンゴムなどのスチレン系−ポリマーを配合したものをベ
ース樹脂として、これに導電性付与剤として、アセチレ
ンブラックやファーネスブラックなどの導電性カーボン
ブラックを配合し、さらに、必要に応じて老化防止剤な
どの添加剤を配合した公知のものを使用することができ
る。なお、導電性付与剤としてファーネスブラックを用
いたものは、アセチレンブラックなどに比べてイオン性
不純物の含有量が多いため、本発明により特に大きな効
果が得られる。ちなみに、ファーネスブラックのイオン
性不純物の含有量は 0.1〜0.7 %、アセチレンブラック
のそれは0.06%程度である。
Here, as the semiconductive resin composition in which hydrotalcite or a similar compound thereof and a chelating agent are mixed, polyethylene, ethylene / vinyl acetate copolymer (EVA), ethylene / ethyl acrylate copolymer is used. Ethylene-based copolymers such as polymers (EEA), or ethylene / vinyl acetate copolymer-polyvinyl chloride grafters (EVA-PVC grafters), chlorinated polyethylene, chlorosulfonated polyethylene, nitrile rubber, Acrylic rubber, styrene-based rubber such as styrene-butadiene rubber is used as a base resin, and a conductive carbon black such as acetylene black or furnace black is added as a conductivity-imparting agent to the base resin. Contains additives such as anti-aging agents Known what can be used with. The one using furnace black as the conductivity-imparting agent has a large amount of ionic impurities as compared with acetylene black and the like, so that the present invention is particularly effective. By the way, the content of ionic impurities in furnace black is 0.1 to 0.7%, and that of acetylene black is about 0.06%.

【0017】[0017]

【作用】本発明の電力ケーブルでは、内部または外部半
導電層にハイドロタルサイトもしくはその類似化合物と
キレート形成剤とを配合したことによって、内部または
外部半導電層に含まれるイオン性不純物の絶縁体層への
移行を抑制することができ、このような移行によって、
特に高温、高電界下で促進される半導電層から絶縁体層
への電荷の注入、蓄積が抑えられる。したがって、高温
使用時においても、tan δ特性が低下するようなことは
なく、初期の優れた電気特性が保持される。
In the electric power cable of the present invention, by blending hydrotalcite or a similar compound and a chelating agent in the inner or outer semiconductive layer, an insulator of ionic impurities contained in the inner or outer semiconductive layer is obtained. It is possible to suppress the transition to layers, and by such transition,
In particular, the injection and accumulation of charges from the semiconductive layer to the insulator layer, which is promoted under high temperature and high electric field, can be suppressed. Therefore, the tan δ characteristic does not deteriorate even when used at high temperatures, and the initial excellent electrical characteristics are maintained.

【0018】[0018]

【実施例】次に、実施例について説明する。EXAMPLES Next, examples will be described.

【0019】実施例1〜7 表1に示す組成で各成分をバンバリーミキサーで均一に
混練して半導電性樹脂組成物を得、これを、 1mm厚のシ
ートにプレス成型して、体積抵抗率を測定するととも
に、表面の平滑度を調べた。また、同様に作成した 1mm
厚のシートを 1mm厚の架橋ポリエチレンシートの片面に
張り合わせ、一体に圧着させて複合シートとし、これら
についてtan δの温度特性を調べた。また、室温− 120
℃−室温を10回繰り返すヒートサイクルをかけた後、再
度、tan δの温度特性を調べた。以上の結果を表1に併
せ示す。なお、半導電性シートの表面平滑度は、表面に
生じたブツの数で評価した。
Examples 1 to 7 Each component having the composition shown in Table 1 was uniformly kneaded with a Banbury mixer to obtain a semiconductive resin composition, which was press-molded into a sheet having a thickness of 1 mm to obtain a volume resistivity. Was measured and the smoothness of the surface was examined. In addition, 1mm created in the same way
A thick sheet was bonded to one side of a 1 mm thick cross-linked polyethylene sheet and pressed together to form a composite sheet, and the tan δ temperature characteristics of these were investigated. Also, room temperature-120
After applying a heat cycle of repeating ℃ -room temperature 10 times, the temperature characteristic of tan δ was examined again. The above results are also shown in Table 1. The surface smoothness of the semiconductive sheet was evaluated by the number of spots formed on the surface.

【0020】また、比較のために、ハイドロタルサイト
もしくはその類似化合物とキレート形成剤をそれぞれ単
独で配合した場合の半導電性樹脂組成物について同様に
評価した結果を表1に併せ示す。
For comparison, Table 1 also shows the results of the same evaluation of the semiconductive resin composition in which hydrotalcite or a similar compound thereof and the chelate-forming agent were individually blended.

【0021】[0021]

【表1】 表1からも明らかなように、ハイドロタルサイトもしく
はその類似化合物とキレート形成剤を併用した場合の半
導電性樹脂組成物は、それぞれを単独で配合した比較例
のものに比べて、高温で長時間使用した後も安定したta
n δ特性を有している。
[Table 1] As is clear from Table 1, the semiconductive resin composition in the case of using hydrotalcite or a similar compound thereof and a chelating agent together has a longer temperature at a higher temperature than that in the comparative example in which each of them is blended alone. Stable ta after using for a long time
It has n δ characteristics.

【0022】次に、上記各実施例の半導電性樹脂組成物
を用いて、図1に示すような、架橋ポリエチレン絶縁ケ
ーブルを試作した。
Next, using the semiconductive resin composition of each of the above examples, a crosslinked polyethylene insulated cable as shown in FIG. 1 was manufactured as a prototype.

【0023】すなわち、図1に示すように、断面積12mm
2 の銅撚線導体1上に、上記半導電性樹脂組成物、ポリ
エチレンに 1.6重量%のDCP(ジクミルパーオキサイ
ドを配合した絶縁性ポリエチレン組成物、前記半導電性
樹脂組成物を順に、三層同時押出しにより被覆し、常法
により加熱架橋させて、 0.5mm厚の内部半導電層2、1.
5mm厚の絶縁体層3、 0.5mm厚の外部半導電層4を形成
し、さらに、その上に、軟質塩化ビニル樹脂を押出被覆
して 1mm厚の外被5を形成した。
That is, as shown in FIG. 1, the cross-sectional area is 12 mm.
On the copper stranded wire conductor 1 of 2 , the above semiconductive resin composition, an insulating polyethylene composition in which 1.6% by weight of DCP (dicumyl peroxide is mixed with polyethylene), and the above semiconductive resin composition are sequentially formed into three layers. Coated by layer co-extrusion, heat-crosslinked by a conventional method, and 0.5 mm thick inner semiconductive layer 2, 1.
An insulating layer 3 having a thickness of 5 mm and an outer semiconductive layer 4 having a thickness of 0.5 mm were formed, and a soft vinyl chloride resin was extrusion-coated thereon to form a jacket 5 having a thickness of 1 mm.

【0024】得られた各ケーブルと、ハイドロタルサイ
トもしくはその類似化合物とキレート形成剤を配合しな
い従来の半導電性組成物を用いた以外は、上記と同様に
製造したケーブルについて、誘電特性の熱安定性を比較
した。結果は、実施例のものが、90℃で 1ケ月劣化後も
初期の良好なtan δ温度特性(常温〜90℃の範囲内でta
n δ特性が0.02%以下)をそのまま維持していたのに対
し、従来のものでは、高温で長時間の劣化により、高温
tan δの上昇が認められ、その値は90℃で 0.1%となっ
た。
The cables produced in the same manner as described above except that each of the obtained cables and a conventional semiconductive composition containing no hydrotalcite or a similar compound thereof and a chelating agent were used, were subjected to heat treatment of dielectric properties. The stability was compared. The results show that the example has good initial tan δ temperature characteristics even after 1 month deterioration at 90 ° C (ta within the range of room temperature to 90 ° C).
While the n δ characteristic was maintained at 0.02% or less), the conventional one has a high temperature due to long-term deterioration.
An increase in tan δ was observed, which was 0.1% at 90 ° C.

【0025】[0025]

【発明の効果】以上の実施例からも明らかなように、本
発明の電力ケーブルは、半導電層にハイドロタルサイト
もしくはその類似化合物とキレートな形成剤が配合され
ているので、高温時の絶縁体層への電荷の注入および蓄
積を促進するイオン性不純物の半導電層から絶縁体層へ
の移行が防止される。したがって、高温時においても良
好かつ安定した電気特性を有しており、特に、高圧電力
ケーブルに用いた場合に非常に有用である。
As is clear from the above examples, the electric power cable of the present invention contains hydrotalcite or a compound similar thereto and a chelating agent in the semiconductive layer, so that the insulation at high temperature is prevented. The migration of ionic impurities from the semiconductive layer to the insulator layer, which promotes the injection and accumulation of charges into the body layer, is prevented. Therefore, it has good and stable electrical characteristics even at high temperatures, and is very useful especially when used in a high-voltage power cable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の架橋ポリエチレンケーブル
を示す横断面図。
FIG. 1 is a cross-sectional view showing a crosslinked polyethylene cable according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1………銅撚線導体 2………内部半導電層 3………絶縁体層 4………外部半導電層 5………外被 1 ... Copper stranded conductor 2 ... Inner semiconductive layer 3 ... Insulator layer 4 ... Outer semiconductive layer 5 ...

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導体上に、内部半導電層、絶縁体層、外
部半導電層、および外被を順に形成してなる電力ケーブ
ルにおいて、 前記内部および/または外部半導電層には、ハイドロタ
ルサイトもしくはその類似化合物と、キレート形成剤が
配合されてなることを特徴とする電力ケーブル。
1. A power cable in which an inner semiconductive layer, an insulator layer, an outer semiconductive layer, and a jacket are sequentially formed on a conductor, wherein the inner and / or outer semiconductive layers are hydrotal. A power cable comprising a site or a compound similar thereto and a chelating agent.
JP4205051A 1992-07-31 1992-07-31 Electric power cable Withdrawn JPH0652728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4205051A JPH0652728A (en) 1992-07-31 1992-07-31 Electric power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4205051A JPH0652728A (en) 1992-07-31 1992-07-31 Electric power cable

Publications (1)

Publication Number Publication Date
JPH0652728A true JPH0652728A (en) 1994-02-25

Family

ID=16500639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4205051A Withdrawn JPH0652728A (en) 1992-07-31 1992-07-31 Electric power cable

Country Status (1)

Country Link
JP (1) JPH0652728A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503784A (en) * 2007-11-02 2011-01-27 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー エルエルシー Reduction of dielectric loss through the use of organoclays in semiconductor or insulator compositions.
US8532453B2 (en) 2010-02-12 2013-09-10 Hitachi Cable, Ltd. High voltage cabtire cable
US20140069689A1 (en) * 2011-05-04 2014-03-13 Borealis Ag Polymer Composition for Electrical Devices
CN103649192A (en) * 2011-05-04 2014-03-19 博里利斯股份公司 Polymer composition for electrical devices
US20140093732A1 (en) * 2011-05-04 2014-04-03 Borealis Ag Polymer Composition for Electrical Devices
JP2019087399A (en) * 2017-11-07 2019-06-06 日立金属株式会社 Insulated electric wire
JP2019087388A (en) * 2017-11-07 2019-06-06 日立金属株式会社 Insulated electric wire
JP2019087389A (en) * 2017-11-07 2019-06-06 日立金属株式会社 Insulated electric wire
JP2019087400A (en) * 2017-11-07 2019-06-06 日立金属株式会社 Insulated electric wire
JP2019087390A (en) * 2017-11-07 2019-06-06 日立金属株式会社 Insulated electric wire

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503784A (en) * 2007-11-02 2011-01-27 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー エルエルシー Reduction of dielectric loss through the use of organoclays in semiconductor or insulator compositions.
US8532453B2 (en) 2010-02-12 2013-09-10 Hitachi Cable, Ltd. High voltage cabtire cable
US20140069689A1 (en) * 2011-05-04 2014-03-13 Borealis Ag Polymer Composition for Electrical Devices
CN103649192A (en) * 2011-05-04 2014-03-19 博里利斯股份公司 Polymer composition for electrical devices
US20140093732A1 (en) * 2011-05-04 2014-04-03 Borealis Ag Polymer Composition for Electrical Devices
US9978478B2 (en) * 2011-05-04 2018-05-22 Borealis Ag Polymer composition for electrical devices
US9978476B2 (en) * 2011-05-04 2018-05-22 Borealis Ag Polymer composition for electrical devices
JP2019087399A (en) * 2017-11-07 2019-06-06 日立金属株式会社 Insulated electric wire
JP2019087388A (en) * 2017-11-07 2019-06-06 日立金属株式会社 Insulated electric wire
JP2019087389A (en) * 2017-11-07 2019-06-06 日立金属株式会社 Insulated electric wire
JP2019087400A (en) * 2017-11-07 2019-06-06 日立金属株式会社 Insulated electric wire
JP2019087390A (en) * 2017-11-07 2019-06-06 日立金属株式会社 Insulated electric wire
US10755834B2 (en) 2017-11-07 2020-08-25 Hitachi Metals, Ltd. Insulated wire
US10784018B2 (en) 2017-11-07 2020-09-22 Hitachi Metals, Ltd. Insulated wire
US10872712B2 (en) 2017-11-07 2020-12-22 Hitachi Metals, Ltd. Insulated wire
US11205525B2 (en) 2017-11-07 2021-12-21 Hitachi Metals, Ltd. Insulated wire
US11875922B2 (en) 2017-11-07 2024-01-16 Proterial, Ltd. Insulated electric wire

Similar Documents

Publication Publication Date Title
JPH0652728A (en) Electric power cable
GB1583353A (en) Electric cables
EP4181158A1 (en) High-voltage power cable
JPS6247325B2 (en)
JPH0620530A (en) Water tree resistant cable
JPH0695444B2 (en) Heat resistant oil resistant insulated wire
JP2675144B2 (en) Power cable
JPH10279736A (en) Abrasion-resistant and flame retardant resin composition, its production and insulated wire
JP2838278B2 (en) Power cable
JPH10340635A (en) Insulated wire
JPH0750107A (en) Water-proof tree cable
JPH09231839A (en) Direct current cable
JPS6355721B2 (en)
JPH06309949A (en) Anti-watertree electric power cable
JPH07192542A (en) Water tree resistant cable
JPS63150811A (en) Power cable
JPH09129039A (en) Dc cable
JPS61250058A (en) Organic conductive composition with ptc characteristics
SU817749A1 (en) Electric cable
JPS63146302A (en) Rubber resin insulated power cable
JPH06267334A (en) Electrically insulating composition and wire and/or cable
JPH11213769A (en) Insulated wire and its manufacture
JPH0314741Y2 (en)
JPH07176217A (en) Water-tree resistant cable
JPS62256847A (en) Electrically conductive composition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005