JPH0651800B2 - Method for treating water-soluble cellulose derivative - Google Patents

Method for treating water-soluble cellulose derivative

Info

Publication number
JPH0651800B2
JPH0651800B2 JP26941185A JP26941185A JPH0651800B2 JP H0651800 B2 JPH0651800 B2 JP H0651800B2 JP 26941185 A JP26941185 A JP 26941185A JP 26941185 A JP26941185 A JP 26941185A JP H0651800 B2 JPH0651800 B2 JP H0651800B2
Authority
JP
Japan
Prior art keywords
cellulose derivative
soluble cellulose
sample
water
treating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26941185A
Other languages
Japanese (ja)
Other versions
JPS62135533A (en
Inventor
道弘 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP26941185A priority Critical patent/JPH0651800B2/en
Publication of JPS62135533A publication Critical patent/JPS62135533A/en
Publication of JPH0651800B2 publication Critical patent/JPH0651800B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 水溶性セルロース誘導体の置換度の迅速分析法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a rapid analysis method for the substitution degree of a water-soluble cellulose derivative.

(従来技術とその問題点) 水溶性セルロース誘導体(以下、試料と略称する)の置
換度分析法には、化学分析法、ガスクロマトグラフィー
分析法、核磁気共鳴(以下NMRと略称する)分析法など
がある。
(Prior art and its problems) The substitution degree analysis method of a water-soluble cellulose derivative (hereinafter, abbreviated as a sample) includes a chemical analysis method, a gas chromatography analysis method, a nuclear magnetic resonance (hereinafter abbreviated as NMR) analysis method. and so on.

中でも、NMR分析法は、全ての試料の測定が可能で、且
つ、測定が容易である。更に分子構造に関する詳細な情
報が得られるといった特徴があり、非常に有効である。
Among them, the NMR analysis method can measure all samples and is easy to measure. Further, it has a feature that detailed information on the molecular structure can be obtained, which is very effective.

しかし、一般的に、NMR測定のための高濃度な試料溶液
は、高粘度であるため、NMR分解能が低下するため、シ
グナルの線幅が広がり詳細な情報が得られない場合が多
い。このため試料の前処理が重要となる。
However, in general, a high-concentration sample solution for NMR measurement has a high viscosity, so that the NMR resolution is lowered, and thus the signal line width is broadened and detailed information cannot be obtained in many cases. Therefore, pretreatment of the sample is important.

前処理方法としては、ジャーナルオブポリマーサイエン
ス21巻621号(1977年発行)に記載されている酵素分解
法が採用されている。この方法は、試料をNMR測定用重
水素化溶媒(DO)に溶解し、セルラーゼ酵素(セル
ロース分解酵素)を添加後、所定の温度で、酵素により
加水分解を行ない、水溶性セルロース誘導体を低粘度化
するが分解に4日間もの長時間を必要とする欠点があっ
た。
As the pretreatment method, the enzymatic decomposition method described in Journal of Polymer Science, Vol. 21, No. 621 (published in 1977) is adopted. In this method, a sample is dissolved in a deuterated solvent for NMR measurement (D 2 O), a cellulase enzyme (cellulose degrading enzyme) is added, and then the enzyme is hydrolyzed at a predetermined temperature to give a water-soluble cellulose derivative. Although the viscosity was lowered, there was a drawback that decomposition took a long time of 4 days.

分解時間を短縮する方法として、PH調整によるセルラー
ゼ酵素の活性を高める方法や、振盪器などによる撹拌方
法などが挙げられるが、いずれも前述の問題点を十分解
決する手段には至らなかった。
Examples of methods for shortening the decomposition time include a method for increasing the activity of cellulase enzyme by adjusting PH and a stirring method with a shaker, etc., but none of them has been a means for sufficiently solving the above-mentioned problems.

(問題を解決するための手段−発明の構成) 発明者らは、前記の問題点を解決すべく、鋭意研究の結
果、試料水溶液にセルラーゼ酵素を添加し、試料を加水
分解する時に超音波処理を施しても、セルラーゼ酵素が
失活しないことを見い出し、本発明を完成するに至っ
た。
(Means for Solving the Problem-Structure of the Invention) As a result of earnest research to solve the above-mentioned problems, the inventors of the present invention added a cellulase enzyme to an aqueous solution of a sample and sonicated it when hydrolyzing the sample. It was found that the cellulase enzyme is not inactivated even by applying the above, and the present invention has been completed.

即ち、水溶性セルロース誘導体の水溶液を、セルロース
分解酵素の存在下で、超音波処理することを特徴とす
る、水溶性セルロース誘導体の処理法である。
That is, it is a method for treating a water-soluble cellulose derivative, which comprises subjecting an aqueous solution of the water-soluble cellulose derivative to ultrasonic treatment in the presence of a cellulolytic enzyme.

次に本発明を詳しく説明する。Next, the present invention will be described in detail.

試料濃度は通常NMR測定を効率よくするために、5〜20
重量%の重水素化溶媒溶液にしNMR試料管に入れる。セ
ルロース分解酵素は糸状菌Trichoderma属の一菌株が産
生するセルロース分解酵素(セルラーゼ)などを、試料
に対し通常、0.1〜5重量%、好ましくは0.5〜3重量%
添加する。次に、温度は常温〜60℃湯浴中、周波数は通
常10〜50kHZ、出力は30〜600ワットの超音波を0.5〜2
時間行ない、その後NMR測定を行ない試料の置換度状
況、置換基分布などが求められる。
The sample concentration is usually 5 to 20 for efficient NMR measurement.
Make a wt% deuterated solvent solution and place in an NMR sample tube. The cellulolytic enzyme is, for example, a cellulolytic enzyme (cellulase) produced by a filamentous fungus Trichoderma genus strain, which is usually 0.1 to 5% by weight, preferably 0.5 to 3% by weight.
Added. Next, the temperature is room temperature to 60 ° C in a hot water bath, the frequency is usually 10 to 50 kHz, and the output is 30 to 600 watts of ultrasonic waves of 0.5 to 2
After the time, the NMR measurement is performed to obtain the degree of substitution of the sample, the distribution of substituents, and the like.

(発明の効果) 試料の溶解と加水分解は、セルロース分解酵素による加
水分解と超音波による振動分散効果での加水分解が重複
加速され、試料の処理時間が酵素による加水分解速度、
約4日間に比較し、約0.5〜2時間以内で、NMR測定に支
障ない程度迄、十分粘度低下することが明らかになっ
た。従って、水溶性セルロース誘導体の置換度分析など
が、NMRの測定で迅速に行なえるようになった。
(Effects of the Invention) Dissolution and hydrolysis of a sample are accelerated by the hydrolysis by the cellulolytic enzyme and the hydrolysis by the vibration-dispersion effect by ultrasonic waves, and the processing time of the sample is the hydrolysis rate by the enzyme.
It was revealed that the viscosity was sufficiently reduced within about 0.5 to 2 hours as compared with about 4 days to such an extent that the NMR measurement was not hindered. Therefore, the substitution degree analysis of the water-soluble cellulose derivative can be rapidly performed by the NMR measurement.

尚、本発明の水溶性セルロース誘導体としては、ヒドロ
キシエチルセルロース(HEC)、カルボキシメチルセル
ロース(CMC)、カルボキシメチルヒドロキシエチルセ
ルロース(CMHEC)、ヒドロキシプロピルセルロース(H
PC)、カチオン化ヒドロキシエチルセルロース(カチオ
ン化HEC)、カチオン化カルボキシメチルセルロース
(カチオン化CMC)、などを挙げることが出来る。
The water-soluble cellulose derivative of the present invention includes hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC), carboxymethyl hydroxyethyl cellulose (CMHEC), hydroxypropyl cellulose (HEC).
PC), cationized hydroxyethyl cellulose (cationized HEC), cationized carboxymethyl cellulose (cationized CMC), and the like.

以下に実施例を挙げて、本特許を具体的に詳述する。The present invention will be described in detail below with reference to examples.

実施例1 試料は、HEC(MS=0.61〜MS=3.70)を用いセルロース
分解酵素は、糸状菌Trichoderma属の一菌株が産生する
セルロース分解酵素(セルラーゼ)を用いた。超音波処
理は、周波数45kHZ、出力200ワットの条件で、以下の操
作を実施した。
Example 1 As a sample, HEC (MS = 0.61 to MS = 3.70) was used, and as a cellulolytic enzyme, a cellulolytic enzyme (cellulase) produced by a filamentous fungus Trichoderma sp. Strain was used. The ultrasonic treatment was carried out under the conditions of a frequency of 45 kHz and an output of 200 watts.

まず、直径10mmのNMR試験管に試料300mg、セルラーゼ酵
素3mgを採る。これにDO3mlを加え、50℃の湯浴中で
超音波処理を施したら、試料は0.5〜2時間で溶解しな
がら迅速に酵素分解された。その後試料のNMR測定を行
ない、所定のHECのモル置換度が順調に分析出来た。
First, 300 mg of a sample and 3 mg of cellulase enzyme are put into an NMR test tube having a diameter of 10 mm. When 3 ml of D 2 O was added to this and sonication was performed in a water bath at 50 ° C., the sample was rapidly enzymatically decomposed while dissolving in 0.5 to 2 hours. After that, NMR measurement of the sample was performed, and the molar substitution degree of the predetermined HEC could be analyzed smoothly.

実施例2〜実施例5 実施例1と同様の条件で、以下の試料についても試料の
酵素分解時間は0.5〜2時間であった。即ち、試料にCMC
を使用した場合が実施例2、CMHECを使用した場合が実
施例3、HPCを使用した場合が実施例4、カチオン化HEC
を使用した場合が実施例5である。
Example 2 to Example 5 Under the same conditions as in Example 1, the enzymatic decomposition time of the following samples was 0.5 to 2 hours. That is, CMC
Is used in Example 2, CMHEC is used in Example 3, and HPC is used in Example 4, cationized HEC.
Example 5 is a case in which is used.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水溶性セルロース誘導体の水溶液を、セル
ロース分解酵素の存在下で超音波処理することを特徴と
する水溶性セルロース誘導体の処理法。
1. A method for treating a water-soluble cellulose derivative, which comprises subjecting an aqueous solution of the water-soluble cellulose derivative to ultrasonic treatment in the presence of a cellulolytic enzyme.
JP26941185A 1985-12-02 1985-12-02 Method for treating water-soluble cellulose derivative Expired - Lifetime JPH0651800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26941185A JPH0651800B2 (en) 1985-12-02 1985-12-02 Method for treating water-soluble cellulose derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26941185A JPH0651800B2 (en) 1985-12-02 1985-12-02 Method for treating water-soluble cellulose derivative

Publications (2)

Publication Number Publication Date
JPS62135533A JPS62135533A (en) 1987-06-18
JPH0651800B2 true JPH0651800B2 (en) 1994-07-06

Family

ID=17472038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26941185A Expired - Lifetime JPH0651800B2 (en) 1985-12-02 1985-12-02 Method for treating water-soluble cellulose derivative

Country Status (1)

Country Link
JP (1) JPH0651800B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064272A1 (en) * 2020-09-22 2022-03-31 Rensselaer Polytechnic Institute Polysaccharide-including liquid material and its manufacturing method

Also Published As

Publication number Publication date
JPS62135533A (en) 1987-06-18

Similar Documents

Publication Publication Date Title
Desai et al. Specificity studies on the heparin lyases from Flavobacterium heparinum
Katz et al. Production of glucose by enzymatic hydrolysis of cellulose.
Williams et al. Glycosynthases: mutant glycosidases for glycoside synthesis
Paleček Polarographic behaviour of native and denatured deoxyribonucleic acids
Toida et al. Inhibition of hyaluronidase by fully O-sulfonated glycosaminoglycans
Yang et al. Enzymatic modification of native chitin and chitin oligosaccharides by an alkaline chitin deacetylase from Microbacterium esteraromaticum MCDA02
Ackermann et al. Growth characteristics of influenza virus: the influence of a sulfonic acid
Halliwell A microdetermination of cellulose in studies with cellulase
JPH0651800B2 (en) Method for treating water-soluble cellulose derivative
Zech et al. Invertase from Saccharomyces cerevisiae: reversible inactivation by components of industrial molasses media
Kristiansen et al. The interactions between highly de‐N‐acetylated chitosans and lysozyme from chicken egg white studied by 1H‐NMR spectroscopy
Cassels et al. Structure of a streptococcal adhesin carbohydrate receptor.
Hara et al. Studies on the Substrate Specificity of Egg White Lysozyme: I. The N-Acyl Substituents in the Substrate Mucopolysaccharides
KR100685529B1 (en) A process for the preparation of derivatives of Ruscus aculeatus steroid glycosides by enzymatic hydrolysis
JP2005506092A (en) A method for producing heparin from a mast cell culture.
Böttcher et al. A repeating sulfated galactan motif resuscitates dormant Micrococcus luteus bacteria
US3833555A (en) Polysaccharide cyclic carbamate containing compounds
Starr et al. Catabolism of hexuronic acids by Erwinia and Aerobacter
EP0496351B1 (en) Acid heteropolysaccharide, sulfated polysaccharide and process for producing the same
JPH07155193A (en) Production of chitosan oligosaccharide derived from microorganism
JPH02243697A (en) Production of oligosaccharide
Smith et al. Chromatographic methods in the study of a polysaccharide
JP2882589B2 (en) Method for measuring the degree of deacetylation of chitin and chitosan
Wang et al. Amperometric biosensing of alcohols at electrochemically pretreated glassy‐carbon enzyme electrodes
Smith et al. Morphology and hydrolytic activity of A7, a typing phage of Pseudomonas syringae pv. morsprunorum