JP2882589B2 - Method for measuring the degree of deacetylation of chitin and chitosan - Google Patents

Method for measuring the degree of deacetylation of chitin and chitosan

Info

Publication number
JP2882589B2
JP2882589B2 JP23238889A JP23238889A JP2882589B2 JP 2882589 B2 JP2882589 B2 JP 2882589B2 JP 23238889 A JP23238889 A JP 23238889A JP 23238889 A JP23238889 A JP 23238889A JP 2882589 B2 JP2882589 B2 JP 2882589B2
Authority
JP
Japan
Prior art keywords
chitosan
chitin
deacetylation
degree
glucosamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23238889A
Other languages
Japanese (ja)
Other versions
JPH0394697A (en
Inventor
亮介 勝見
文雄 南条
和男 坂井
正人 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaizu Suisan Kagaku Kogyo Co Ltd
Original Assignee
Yaizu Suisan Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaizu Suisan Kagaku Kogyo Co Ltd filed Critical Yaizu Suisan Kagaku Kogyo Co Ltd
Priority to JP23238889A priority Critical patent/JP2882589B2/en
Publication of JPH0394697A publication Critical patent/JPH0394697A/en
Application granted granted Critical
Publication of JP2882589B2 publication Critical patent/JP2882589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、キチン、キトサンの脱アセチル化度の測定
法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for measuring the degree of deacetylation of chitin and chitosan.

(従来の技術及び問題点) キチンは、カニ、エビなどの甲殻類、カブトムシ、コ
オロギなどの昆虫類や菌体の細胞壁等に含まれるN−ア
セチルグルコサミンがβ−(1−4)結合で連なった構
造を有する多糖類の一種である。一方、キトサンはキチ
ンを濃アルカリで処理することによって脱アセチル化し
たキチン誘導体で、グルコサミンがβ−(1−4)結合
した多糖類である。しかし、一般的には、キチンは10−
20%脱アセチル化され、またキトサンも完全に脱アセチ
ル化されたものは少なく、キチンから脱アセチル化処理
によって得られるキトサンは、通常70−95%の脱アセチ
ル化物である。このように、一概にキチン、キトサンと
いっても、その脱アセチル化度は多種多様である。この
脱アセチル化度は、キチン、キトサンやその誘導体の物
理化学的な特性に影響を与えるだけでなく、これらの物
質を素材とした種々の製品の品質に大きな影響を与える
ものである。また、キチン、キトサンの持つ生理活性機
能に対しても脱アセチル化度が大きく影響することが知
られている。従って、キチン、キトサンの脱アセチル化
度を正確に求めることはこれらの物質の特性を知る上で
重要な因子である。
(Conventional Techniques and Problems) Chitin is composed of N-acetylglucosamine contained in crustaceans such as crabs and shrimps, insects such as beetles and crickets, and cell walls of fungi, etc., linked by β- (1-4) bonds. Is a kind of polysaccharide having a different structure. On the other hand, chitosan is a chitin derivative deacetylated by treating chitin with a concentrated alkali, and is a polysaccharide in which glucosamine is β- (1-4) -linked. However, in general, chitin is 10-
Few are 20% deacetylated and chitosan is completely deacetylated, and chitosan obtained by deacetylation from chitin is usually 70-95% deacetylated. As described above, the degree of deacetylation of chitin and chitosan varies widely. This degree of deacetylation not only affects the physicochemical properties of chitin, chitosan and its derivatives, but also greatly affects the quality of various products made from these substances. It is also known that the degree of deacetylation greatly affects the physiologically active functions of chitin and chitosan. Therefore, accurate determination of the degree of deacetylation of chitin and chitosan is an important factor in knowing the properties of these substances.

従来から、キチン、キトサンの脱アセチル化度の測定
については、種々の方法が考案されている。例えば、ポ
リビニル硫酸カリウムによるコロイド滴定性、赤外吸収
スペクトルを利用する方法(IR法)、キチン、キトサン
を加水分解したときに生成する酢酸を定量する方法(加
水分解法)などが代表的な脱アセチル化度の測定法とし
てあげられる。しかしながら、これらの従来法は、いく
つかの問題点を含んでいる。コロイド滴定法は簡便な定
量法ではあるが、希酸に溶解するキトサンにしか適用で
きずその精度にも問題が残る。IR法は、精度の高い脱ア
セチル化法でキチン、キトサンのいずれにも適用できる
方法であるが、サンプルの調製に熟練を要し、また多数
のサンプルを測定する場合には長時間を必要とするなど
必ずしも簡便な方法とは言えない。加水分解法では、直
接酢酸を定量できるので精度の高い方法であるが、実験
操作が煩雑で長時間を要するなどの難点がある。
Conventionally, various methods have been devised for measuring the degree of deacetylation of chitin and chitosan. For example, typical methods include colloid titration with polyvinyl potassium sulfate, a method using an infrared absorption spectrum (IR method), and a method of quantifying acetic acid generated when hydrolyzing chitin or chitosan (hydrolysis method). It can be mentioned as a method for measuring the degree of acetylation. However, these conventional methods have several problems. Although the colloid titration method is a simple quantitative method, it can be applied only to chitosan that dissolves in a dilute acid, and there remains a problem in its accuracy. The IR method is a highly accurate deacetylation method that can be applied to both chitin and chitosan, but requires skill in sample preparation and requires a long time when measuring a large number of samples. It is not always a simple method. The hydrolysis method is a highly accurate method because acetic acid can be directly quantified, but has disadvantages such as complicated experimental operations and a long time.

(問題を解決するための手段) 本発明者らは、キチン、キトサンを酵素を用いてそれ
らの構成成分であるN−アセチルグルコサミンとグルコ
サミンに完全に加水分解する方法について鋭意研究を重
ねた結果、キトサンオリゴ糖やキトサンに作用し単糖の
グルコサミンを遊離するエキソ型のβ−D−グルコサミ
ニダーゼとキチンオリゴ糖やキチンに使用し単糖のN−
アセチルグルコサミンを遊離する酵素を組み合わせるこ
とによって、またこれらの酵素にキチナーゼやキトサナ
ーゼを共存させることによりさらにキチン、キトサンを
より効果的にN−アセチルグルコサミンとグルコサミン
にまで完全に分解できることを見いだし本発明を完成す
るに至った。
(Means for Solving the Problem) The present inventors have conducted intensive studies on a method for completely hydrolyzing chitin and chitosan to N-acetylglucosamine and glucosamine, which are constituents thereof, using an enzyme. An exo-type β-D-glucosaminidase that acts on chitosan oligosaccharides and chitosan to release the monosaccharide glucosamine and N-monosaccharide used for chitin oligosaccharides and chitin
It has been found that by combining enzymes that release acetylglucosamine, and by coexisting chitinase and chitosanase with these enzymes, chitin and chitosan can be more effectively completely degraded to N-acetylglucosamine and glucosamine. It was completed.

(発明の構成) 本発明に使用する酵素としては、キトサンオリゴ糖や
キトサンを分解しグルコサミンを遊離するエキソ型のβ
−D−グルコサミニダーゼ、キチンオリゴ糖やキチンに
作用しN−アセチルグルコサミンを生成するβ−N−ア
セチルヘキソサミニダーゼ(あるいはβ−N−アセチル
グルコサミニダーゼ)、キトサンをキトサンオリゴ糖に
まで分解するキトサナーゼ、キチンをキチンオリゴ糖に
分解するキチナーゼやリゾチームなどがあげられる。こ
れらの酵素のうち、β−N−アセチルヘキソサミニダー
ゼ、キトサナーゼ、キチナーゼやリゾチームは、一般に
市販されている酵素を使用することができる。例えば、
β−N−アセチルヘキソサミニダーゼ(あるいはβ−N
−アセチルグルコサミニダーゼ)は、アスパラギルス・
ニガーやジャック・ビーン由来のものが、キトサナーゼ
では、バチルスR−4やバチルス・パミラス起源のもの
が、キチナーゼでは、ストレプトマイセス・グリセウ
ス、セラチア・マルセッセンス、アエロモナス・ハイド
ロフィラ起源のものがあげられる。リゾチームは、卵白
由来のものが一般的である。その他、これらの酵素を生
産する微生物を培養することによっても調製可能であ
る。本発明に使用するキトサンオリゴ糖やキトサンを分
解しグルコサミンを遊離するエキソ型のβ−D−グルコ
サミニダーゼは、後述の調製例に従って調製することが
できる。
(Constitution of the Invention) The enzyme used in the present invention includes an exo-type β which decomposes chitosan oligosaccharides and chitosan to release glucosamine.
-D-glucosaminidase, β-N-acetylhexosaminidase (or β-N-acetylglucosaminidase) that acts on chitin oligosaccharides and chitin to generate N-acetylglucosamine, chitosanase that degrades chitosan to chitosan oligosaccharide, Examples include chitinase and lysozyme that degrade chitin into chitin oligosaccharide. Among these enzymes, commercially available enzymes can be used for β-N-acetylhexosaminidase, chitosanase, chitinase and lysozyme. For example,
β-N-acetylhexosaminidase (or β-N
-Acetylglucosaminidase) is
Examples of chitinases include those derived from Bacillus R-4 and Bacillus pamilus, and those derived from Streptomyces griseus, Serratia marcescens, and Aeromonas hydrophila. Lysozyme is generally derived from egg white. In addition, it can also be prepared by culturing microorganisms that produce these enzymes. The exo-type β-D-glucosaminidase that degrades chitosan oligosaccharide or chitosan and releases glucosamine used in the present invention can be prepared according to the preparation examples described later.

キチン、キトサンの酵素による分解は、これらの物質
を完全に分解することが必須であることから、少なくと
もエキソ型のβ−D−グルコサミニダーゼとβ−N−ア
セチルヘキソサミニダーゼ(あるいはβ−N−アセチル
グルコサミニダーゼ)の両酵素を用いることが不可欠で
ある。さらに、分解をより速やかにするためキトサンで
はキトサナーゼを、キチンではキチナーゼを併用するこ
とが好ましく、また必要とあらばキトサナーゼ、キチナ
ーゼの両方を併用することもできる。これらの酵素は、
キチン、キトサンの分解に際し同時に添加するが、別々
に添加することも可能である。酵素反応は、キチン、キ
トサンを完全に単糖であるN−アセチルグルコサミンと
グルコサミンに分解できる条件であれば特に規定する必
要はないが、より迅速な操作を行うことのできるpH、温
度、酵素濃度条件等を設定することが好ましい。
Since the degradation of chitin and chitosan by enzymes is essential to completely degrade these substances, at least exo-type β-D-glucosaminidase and β-N-acetylhexosaminidase (or β-N- It is essential to use both enzymes (acetylglucosaminidase). Furthermore, in order to make the decomposition faster, it is preferable to use chitosanase for chitosan and chitinase for chitin, and if necessary, both chitosanase and chitinase can be used together. These enzymes are
They are added simultaneously when decomposing chitin and chitosan, but they can also be added separately. The enzyme reaction is not particularly limited as long as it can completely decompose chitin and chitosan into N-acetylglucosamine and glucosamine, which are monosaccharides, but pH, temperature, and enzyme concentration at which a quicker operation can be performed. It is preferable to set conditions and the like.

キチンあるいはキトサンを完全に加水分解後、生成し
たN−アセチルグルコサミンとグルコサミンの定量は、
高速液体クロマトグラフィーによる方法や比色定量法で
測定することができる。
After complete hydrolysis of chitin or chitosan, the quantification of N-acetylglucosamine and glucosamine produced is as follows:
It can be measured by a method using high performance liquid chromatography or a colorimetric method.

調製例−エキソ型のβ−D−グルコサミニダーゼの調製
− グルコース1%、ペプトン1%、リン酸二水素カリウ
ム0.03%、リン酸一水素カリウム0.07%と硫酸マグネシ
ウム0.05%を含む培養液(pH7.0)500mlを500ml用三角
フラスコに100mlずつ入れ、これにノカルディア・オリ
エンタリスIFO−12806株を接種し、30℃で2日間振とう
培養した。次に、キトサン1%、酵母エキス0.01%、と
上記と同じ組成の無機塩を含む培養液4.5を含むジャ
ーファーメンターに、上記の培養液を移し30℃で4日間
通気攪拌培養した。培養液を遠心分離して菌体を除去
し、上清液に80%飽和となるように固形硫安を加えタン
パク質を沈澱させた。この沈澱を少量の25mM酢酸緩衝液
(pH4.5)に溶解後、同緩衝液で平衡化したセファデッ
クスG−25カラムに展開して脱塩し、粗酵素液とした。
Preparation Example-Preparation of exo-type β-D-glucosaminidase-A culture solution containing 1% glucose, 1% peptone, 0.03% potassium dihydrogen phosphate, 0.07% potassium monohydrogen phosphate and 0.05% magnesium sulfate (pH 7.0 ) 500 ml was put into a 500 ml Erlenmeyer flask for 100 ml each, and Nocardia orientalis IFO-12806 strain was inoculated into the flask and cultured with shaking at 30 ° C for 2 days. Next, the above culture solution was transferred to a jar fermenter containing 1% chitosan, 0.01% yeast extract, and a culture solution 4.5 containing the same inorganic salt as above, and cultured with aeration and stirring at 30 ° C. for 4 days. The culture was centrifuged to remove the cells, and solid supernatant was added to the supernatant to obtain 80% saturation, thereby precipitating the protein. This precipitate was dissolved in a small amount of a 25 mM acetate buffer (pH 4.5), developed on a Sephadex G-25 column equilibrated with the same buffer, and desalted to obtain a crude enzyme solution.

この粗酵素液を上記の緩衝液で平衡化したCM−セファ
デックスC−50カラムに供しイオン交換クロマトグラフ
ィーを行った。カラムを同緩衝液で洗浄後、0から0.6M
塩化ナトリウムを含む酢酸緩衝液による直線濃度勾配を
用いて目的とする酵素を溶出した。β−D−グルコサミ
ニダーゼ活性を有する画分を集め硫安塩析した。生じた
沈澱を50mM酢酸緩衝液(pH5.5)に溶解し、これを同緩
衝液で平衡化したトーヨーパールHW−55Sカラムに展開
した。タンパク質を上記緩衝液で溶出し活性画分を集め
た。次に、この画分を50mM酢酸緩衝液で平衡化したキト
トリイトール−セファロースCL−4Bカラムに供しアフィ
ニティークロマトグラフィーを行った。カラムを上記緩
衝液で洗浄後、目的酵素を2mMキトトリイトールを含む
同緩衝液で溶出した。活性画分を集め硫安塩析でタンパ
ク質を沈澱させた。この沈澱物を少量の50mM酢酸緩衝液
(pH5.5)に溶解後、同緩衝液で透析して精製酵素標品
を得た。
This crude enzyme solution was applied to a CM-Sephadex C-50 column equilibrated with the above buffer, and subjected to ion exchange chromatography. After washing the column with the same buffer, 0 to 0.6M
The target enzyme was eluted using a linear concentration gradient with an acetate buffer containing sodium chloride. Fractions having β-D-glucosaminidase activity were collected and salted out with ammonium sulfate. The resulting precipitate was dissolved in a 50 mM acetate buffer (pH 5.5) and applied to a Toyopearl HW-55S column equilibrated with the same buffer. The protein was eluted with the above buffer and the active fraction was collected. Next, this fraction was applied to a chitotriitol-Sepharose CL-4B column equilibrated with a 50 mM acetate buffer, and subjected to affinity chromatography. After washing the column with the above buffer, the target enzyme was eluted with the same buffer containing 2 mM chitotriitol. The active fraction was collected and the protein was precipitated by ammonium sulfate salting out. The precipitate was dissolved in a small amount of a 50 mM acetate buffer (pH 5.5) and dialyzed with the same buffer to obtain a purified enzyme preparation.

本発明においては、粗酵素液と精製酵素のいずれを用
いてもよい。
In the present invention, either a crude enzyme solution or a purified enzyme may be used.

以下に実施例を示して本発明をさらに詳細に説明する
が、かかる説明によって本発明が何ら限定されるもので
はないことは勿論である。
Hereinafter, the present invention will be described in more detail with reference to Examples, but it is a matter of course that the present invention is not limited by the description.

(実施例) あらかじめポリビニル硫酸カリウムを用いたコロイド
滴定法によって脱アセチル化度を測定した5種類のキト
サン(A−E)各1.5gを0.2%酢酸300mlに溶解した。少
量の不溶物を除去後、このキトサン溶液2mlに対して、
エキソ−β−グルコサミニダーゼ、β−N−アセチルヘ
キソサミニダーゼ及びキトサナーゼを5単位ずつ添加し
た。試料DとEは、脱アセチル化度が比較的低かったた
めさらにキチナーゼ5単位を添加した。反応液を40℃で
12時間保った後、反応液1mlを凍結乾燥した。残りの反
応液は、その一部をとりグルコサミンとN−アセチルグ
ルコサミンを分別比色定量した。定量法は、グルコサミ
ンに対してインドール−塩酸法を、N−アセチルグルコ
サミンに対してはライシッヒらの法を用いた。凍結乾燥
した試料は、これを0.1mlの水に溶解した後、高速液体
クロマトグラフィー(HPLC)でグルコサミンとN−アセ
チルグルコサミンを分離定量した。HPLCでの分析条件は
下記に示した。また、代表例として試料A(表−1参
照)のHPLCによる分析パターンを添付の図に示した。
(Example) Five kinds of chitosans (AE), whose degree of deacetylation was previously measured by a colloid titration method using polyvinyl potassium sulfate, were dissolved in 300 ml of 0.2% acetic acid. After removing a small amount of insoluble matter, for 2 ml of this chitosan solution,
Exo-β-glucosaminidase, β-N-acetylhexosaminidase and chitosanase were added in 5 units each. Samples D and E had an additional 5 units of chitinase due to the relatively low degree of deacetylation. Reaction solution at 40 ° C
After holding for 12 hours, 1 ml of the reaction solution was freeze-dried. A part of the remaining reaction solution was sampled, and glucosamine and N-acetylglucosamine were separated and colorimetrically determined. The quantification method used the indole-hydrochloric acid method for glucosamine and the method of Leishig et al. For N-acetylglucosamine. The freeze-dried sample was dissolved in 0.1 ml of water, and glucosamine and N-acetylglucosamine were separated and quantified by high performance liquid chromatography (HPLC). The analysis conditions in HPLC are shown below. As a representative example, the analysis pattern of the sample A (see Table 1) by HPLC is shown in the attached figure.

また、表−1には、本発明の原理に基づいて各試料の
脱アセチル化度を比色定量法及びHPLC法で測定した値と
従来のコロイド滴定法で測定した結果を示した。
Table 1 shows the values of the degree of deacetylation of each sample measured by the colorimetric method and the HPLC method based on the principle of the present invention and the results measured by the conventional colloid titration method.

なお、各試料の酵素分解は各々3回行った。 The enzymatic decomposition of each sample was performed three times.

インドール−塩酸法(グルコサミンの定量) 試料0.5ml(グルコサミン、10−200μg)に、5%亜
硝酸ナトリウム溶液0.5mlと33%酢酸0.5mlを加え、十分
に攪拌して10分間放置し脱アミノ化反応を行う。次に、
12.5%スルファミン酸アンモニウム溶液0.5mlを加えと
きどき攪拌しながら30分間放置し、過剰の亜硝酸を消去
する。これに5%塩酸2mlと1%インドール(エタノー
ル溶液)0.2mlを加えて沸騰湯浴中で5分間加熱する。
冷却後、2mlのエタノールを加え、492nmの吸光度を測定
する。
Indole-hydrochloric acid method (quantification of glucosamine) To 0.5 ml of sample (glucosamine, 10-200 μg), add 0.5 ml of 5% sodium nitrite solution and 0.5 ml of 33% acetic acid, stir well, leave for 10 minutes and deamination Perform the reaction. next,
Add 0.5 ml of 12.5% ammonium sulfamate solution and leave for 30 minutes with occasional stirring to eliminate excess nitrous acid. 2 ml of 5% hydrochloric acid and 0.2 ml of 1% indole (ethanol solution) are added thereto, and the mixture is heated in a boiling water bath for 5 minutes.
After cooling, add 2 ml of ethanol and measure the absorbance at 492 nm.

ライシッヒ(Reissig)らの方法(N−アセチルグルコ
サミンの定量) 試料0.5ml(N−アセチルグルコサミン、5−30μ
g)にホウ酸塩溶液0.1mlを加え沸騰湯浴中で正確に5
分間加熱する。流水で冷却後、p−ジメチルアミノベン
ズアルデヒド(DMAB)試薬3mlを加えて十分に混合す
る。37℃に20分間正確に保った後室温まで冷却し、585n
mの吸光度を測定する。
Method of Reissig et al. (Quantification of N-acetylglucosamine) 0.5 ml sample (N-acetylglucosamine, 5-30 μm)
g), add 0.1 ml of a borate solution, and add exactly 5 in a boiling water bath.
Heat for a minute. After cooling with running water, add 3 ml of p-dimethylaminobenzaldehyde (DMAB) reagent and mix well. After accurately maintaining at 37 ° C for 20 minutes, cool to room temperature and
Measure absorbance at m.

ホウ酸塩溶液−0.8Mホウ酸−水酸化カリウム溶液(pH9.
1) DMAB試薬 10N塩酸を12.5%濃度で含む酢酸100mlにDMAB10gを溶
解し、使用直前に酢酸でさらに10倍希釈して用いる。
Borate solution-0.8 M boric acid-potassium hydroxide solution (pH 9.
1) DMAB reagent Dissolve 10 g of DMAB in 100 ml of acetic acid containing 1N hydrochloric acid at a concentration of 12.5%, and dilute 10 times with acetic acid immediately before use.

HPLC分析条件 カラム:YMC−Pack PA−03 移動相:アセトニトリル:水=3:1 流 速:0.1ml/min 検 出:示差屈折計 温 度:室温 (発明の効果) 本発明の方法によれば、キチン、キトサンの脱アセチ
ル化度を簡便にしかも高精度で測定できる。
HPLC analysis conditions Column: YMC-Pack PA-03 Mobile phase: acetonitrile: water = 3: 1 Flow rate: 0.1 ml / min Detection: differential refractometer Temperature: room temperature (Effect of the Invention) According to the method of the present invention, the degree of deacetylation of chitin and chitosan can be measured simply and with high accuracy.

【図面の簡単な説明】 キトサン(試料A)を酵素によって完全に加水分解した
後に生成したグルコサミンとN−アセチルグルコサミン
を高速液体クロマトグラフィーで分析したときのパター
ンを示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows patterns when glucosamine and N-acetylglucosamine produced after completely hydrolyzing chitosan (sample A) with an enzyme are analyzed by high performance liquid chromatography.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】キチンまたはキトサンを、酵素により完全
に構成単糖であるN−アセチルグルコサミンとグルコサ
ミンにまで分解した後、生成した単糖類を定量すること
を特徴とするキチン、キトサンの脱アセチル化度の測定
法。
1. Deacetylation of chitin or chitosan, comprising decomposing chitin or chitosan into N-acetylglucosamine and glucosamine, which are constituent monosaccharides, by an enzyme, and quantifying the produced monosaccharide. Degree measurement method.
JP23238889A 1989-09-07 1989-09-07 Method for measuring the degree of deacetylation of chitin and chitosan Expired - Fee Related JP2882589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23238889A JP2882589B2 (en) 1989-09-07 1989-09-07 Method for measuring the degree of deacetylation of chitin and chitosan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23238889A JP2882589B2 (en) 1989-09-07 1989-09-07 Method for measuring the degree of deacetylation of chitin and chitosan

Publications (2)

Publication Number Publication Date
JPH0394697A JPH0394697A (en) 1991-04-19
JP2882589B2 true JP2882589B2 (en) 1999-04-12

Family

ID=16938455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23238889A Expired - Fee Related JP2882589B2 (en) 1989-09-07 1989-09-07 Method for measuring the degree of deacetylation of chitin and chitosan

Country Status (1)

Country Link
JP (1) JP2882589B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998173A (en) * 1996-02-20 1999-12-07 The University Of Bristish Columbia Process for producing N-acetyl-D-glucosamine
CN105136951A (en) * 2015-08-07 2015-12-09 华中农业大学 Rapid quantitative method for tea polysaccharide monosaccharide composition

Also Published As

Publication number Publication date
JPH0394697A (en) 1991-04-19

Similar Documents

Publication Publication Date Title
Hirano et al. N-acetylation in chitosan and the rate of its enzymic hydrolysis
Waterhouse et al. An investigation of chitinase activity in cockroach and termite extracts
Moreau et al. Structure of the type 5 capsular polysaccharide of Staphylococcus aureus
Bull Chemical composition of wild-type and mutant Aspergillus nidulans cell walls. The nature of polysaccharide and melanin constituents
Linker et al. The structure of a polysaccharide from infectious strains of Burkholderia cepacia
Tischer et al. Structure of the arabinogalactan from gum tragacanth (Astralagus gummifer)
RU2193039C2 (en) Sugar compound
Wilkinson et al. The extracellular polysaccharide of Aerobacter aerogenes A3 (S1)(Klebsiella type 54)
Yoneyama et al. Distribution of mannosamine and mannosaminuronic acid among cell walls of Bacillus species
Tokuyasu et al. Reverse hydrolysis reaction of chitin deacetylase and enzymatic synthesis of β-d-GlcNAc-(1→ 4)-GlcN from chitobiose
Lüderitz et al. Biochemical studies of the smooth-rough mutation in Salmonella minnesota
Salton Chemistry and function of amino sugars and derivatives
San-Blas et al. Chemical and ultrastructural studies on the cell walls of the yeastlike and mycelial forms of Histoplasma farciminosum
JP2882589B2 (en) Method for measuring the degree of deacetylation of chitin and chitosan
Dmitriev et al. Somatic Antigens of Shigella: Structural Investigation on the O‐Specific Polysaccharide Chain of Shigella Dysenteriae Type‐2 Lipopolysaccharide
Corsaro et al. Structural determination of the phytotoxic mannan exopolysaccharide from Pseudomonas syringae pv. ciccaronei
Sømme Chemical analysis of exocellular, acid polysaccharides from seven Rhizobium strains
Jaan et al. 2‐Amino‐2, 6‐Dideoxy‐L‐Mannose (L‐Rhamnosamine) Isolated from the Lipopolysaccharide of Escherichia coli 03: K2ab (L): H2
Mendonça-Previato et al. Investigations on polysaccharide components of cells of Herpetomonas samuelpessoai grown on various media
Majima et al. The application of the Milner-Avigad method for the quantitative determination of endouronidase activities
Zehavi et al. Hydrolysis of benzyl 2-acetamido-4-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-2-deoxy-β-D-glucopyranoside by egg-white lysozyme
JP3002113B2 (en) Method for producing carbohydrate or complex carbohydrate
Wang et al. Composition and structure of the O-specific side chain of endotoxin from Serratia marcescens
Winn et al. Structure of the O3 antigen of Stenotrophomonas (Xanthomonas or Pseudomonas) maltophilia
Ito et al. Isolation and characterization of an asparagine-linked keratan sulfate from the skin of a marine teleost, Scomber japobicus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees