JPH0651351A - Electric field double refraction control type liquid crystal element and its production - Google Patents

Electric field double refraction control type liquid crystal element and its production

Info

Publication number
JPH0651351A
JPH0651351A JP20211392A JP20211392A JPH0651351A JP H0651351 A JPH0651351 A JP H0651351A JP 20211392 A JP20211392 A JP 20211392A JP 20211392 A JP20211392 A JP 20211392A JP H0651351 A JPH0651351 A JP H0651351A
Authority
JP
Japan
Prior art keywords
liquid crystal
electric field
crystal material
cell
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20211392A
Other languages
Japanese (ja)
Other versions
JP2881073B2 (en
Inventor
Nobuaki Yamada
信明 山田
Toshiyuki Hirai
敏幸 平井
Noriaki Onishi
憲明 大西
Shuichi Kanzaki
修一 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP20211392A priority Critical patent/JP2881073B2/en
Publication of JPH0651351A publication Critical patent/JPH0651351A/en
Application granted granted Critical
Publication of JP2881073B2 publication Critical patent/JP2881073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the ECB (electric field double refraction control type) element with which the liquid crystal element can be spuriously made into a solid state by providing an orientation method for attaining the orientation of a uniform and low tilt angle and sealing liquid crystal molecules into a high polymer and which can form a display to a larger area and the method for producing said ECB element. CONSTITUTION:This liquid crystal element includes a polymer 12 to be sealed between two sheets of electrodes 15, at least one of which are transparent and which have polarizing plates 10, and the liquid crystal molecules 14 which are dispersed into the polymer 12 in at least either of a continuous and discontinuous forms and are impressed with electric fields of the frequencies to make dielectric anisotropy negative from electrodes 15. The liquid crystal molecules 14 are oriented in the molecule axes of the liquid crystals 14 from 0 to 70 deg. with respect to the vertical direction V of the cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電界複屈折制御型液晶素
子及びその製法に係る。より詳細には電場による液晶の
配向変化に伴う複屈折の変化により色調が変化するECB
(ElectricallyControlled Birefringence 、電界複屈折
制御型) 表示モ−ドを利用した液晶表示素子およびその
製法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric field birefringence control type liquid crystal device and a manufacturing method thereof. More specifically, ECB in which the color tone changes due to the change in birefringence that accompanies the change in liquid crystal orientation due to the electric field
(Electrically Controlled Birefringence) The present invention relates to a liquid crystal display device using a display mode and a manufacturing method thereof.

【0002】電界複屈折制御型液晶素子は、例えば、プ
ロジェクションテレビジョン、パソコン、ワ−ドプロセ
ッサ−等の平面ディスプレイ装置、シャッタ効果を利用
した色調が変化する表示板、窓、扉、壁等および光コン
ピュ−ティング等に利用することができる。特に、単独
絵素ごとにカラ−表示が可能となりカラ−フィルタを必
要とせず実質的に3倍の解像度が得られる平面ディスプ
レ−装置に利用できるものである。
The electric field birefringence control type liquid crystal element is, for example, a flat display device such as a projection television, a personal computer, a word processor, a display plate whose color tone is changed by utilizing the shutter effect, a window, a door, a wall, and the like. It can be used for optical computing and the like. In particular, the present invention can be applied to a flat panel display device capable of color display for each individual picture element and requiring substantially three times the resolution without requiring a color filter.

【0003】[0003]

【従来の技術】一般的にはECB 、すなわち液晶材料の複
屈折の電場による変化を直交ニコル下で検出する表示モ
−ドが活発に研究されてきた。
2. Description of the Related Art In general, an ECB, that is, a display mode for detecting a change in birefringence of a liquid crystal material due to an electric field under orthogonal Nicols has been actively studied.

【0004】このモ−ドは、液晶の見かけ上の複屈折変
化のために1画素でカラ−フィルタ−なしでカラ−表示
でき、通常使われているTNやSTN を用いたTFT-カラ−LC
D 、デュ−ティカラ−LCD に比べて同じ画素数でも3倍
の解像度が達成される。
This mode is capable of displaying color in one pixel without a color filter due to an apparent change in birefringence of the liquid crystal, and a TFT-color LC using TN or STN which is usually used.
Even with the same number of pixels, a resolution three times higher than that of D and Duty-color LCDs can be achieved.

【0005】このモ−ドは、配向ベクトルに平行な方向
と垂直な方向とにおける誘電率εの差、すなわち誘電率
異方性△εが負(△ε<0)の液晶材料を使用し、電圧
無印加時の配向状態がホメオトロピック配向であること
が一般的である。電圧印加時に液晶材料がホメオトロピ
ック配向からホモジニアス配向に同じ方向に倒れ、色斑
を起こさないように垂直配向膜に若干のプレチルトを持
たせなければならない。
This mode uses a liquid crystal material having a difference in permittivity ε between a direction parallel to the orientation vector and a direction perpendicular thereto, that is, a dielectric anisotropy Δε is negative (Δε <0). Generally, the alignment state when no voltage is applied is homeotropic alignment. When a voltage is applied, the liquid crystal material should have a slight pretilt in the vertical alignment film so as to prevent the liquid crystal material from tilting from homeotropic alignment to homogeneous alignment and causing color spots.

【0006】しかし、通常の垂直配向膜では均一で同一
角度のプレチルトを再現性良く持たせることは困難であ
り、電極形状に工夫を加えてチルト角をつけている方法
(SID91 DIGEST 758頁) などの各種方法が開示されてい
る。一方、液晶材料を疑似的に固体化するものとして、
液晶材料を高分子材料の中に分散させることを特徴とし
たポリマ−分散型の液晶表示素子が活発に研究されてお
り、特に液晶の複屈折性を利用し、透明または白濁状態
を電気的にコントロ−ルする方法が提案されている。
However, it is difficult for a normal vertical alignment film to have a uniform and uniform pre-tilt with good reproducibility. Therefore, a method in which a tilt angle is given by devising an electrode shape
(SID91 DIGEST page 758) and various other methods are disclosed. On the other hand, as a pseudo solidification of the liquid crystal material,
Polymer-dispersed liquid crystal display devices, which are characterized by dispersing a liquid crystal material in a polymer material, have been actively researched. A control method has been proposed.

【0007】この方法は、基本的には電圧印加下に液晶
の配向が電場方向に揃い液晶分子の常光屈折率と支持媒
体の屈折率とを一致させ透明状態を表示し、電圧無印加
時には、液晶分子の配向の乱れによる光散乱状態を利用
した表示モ−ドであり、特公平3-52843 に開示されてい
る。
According to this method, the orientation of the liquid crystal is basically aligned with the direction of the electric field when a voltage is applied, and the ordinary state refractive index of the liquid crystal molecules and the refractive index of the support medium are matched to display a transparent state. This is a display mode utilizing the light scattering state due to the disorder of the alignment of liquid crystal molecules, and is disclosed in Japanese Patent Publication No. 3-52843.

【0008】しかし、これら素子では、液晶ドロップレ
ット中の液晶分子を任意に配向させることが難かしく、
ポリマ−分散型液晶表示素子で液晶を配向させる技術と
しては配向膜を形成した基板を用いて、その基板中でポ
リマ−分散型液晶表示素子を作成する方法(17 回液晶討
論会講演予稿集 320頁) 、電極に対して垂直又は水平方
向から電場、または磁場をかけた状態で液晶と高分子物
質を相分離させることにより、高分子壁を液晶分子が相
分離後外部電場に応答した配列( △ε>0の場合電極に
対して液晶がホメオトロピック配列、△ε<0の場合電
極に対してホモジニアス配列) になりやすい環境を作成
し、電圧OFF 時に高分子壁によりダイレクタ−を歪ませ
られていた液晶分子が電圧ON時に電場方向にダイレクタ
−を再配列する駆動電圧が低電圧化する方法がリキッド
クリスタル Vol.5, No. 5, p1477-1489,1989, 特開平3-
210536などに開示されているが、これらの配向方法は、
前者は厳密なプレチルトを要求するECB 表示素子には不
向きであり、後者はポリマ−分散型液晶表示素子作成時
と駆動時で同じ極性の△εを使用しているために、作成
時に形成される液晶の配向状態と電場を印加して液晶材
料が再配列される配向状態が同一であるため、この方法
で作成したセルの電圧ON-OFF時の変化が小さくなる欠点
を有する。
However, in these devices, it is difficult to arbitrarily align the liquid crystal molecules in the liquid crystal droplets,
As a technique for aligning liquid crystals in a polymer-dispersed liquid crystal display device, a substrate on which an alignment film is formed is used, and a polymer-dispersed liquid crystal display device is prepared in the substrate (Proceedings of the 17th Liquid Crystal Conference). Page), the liquid crystal and the polymer substance are phase-separated in a state where an electric field or a magnetic field is applied to the electrodes in the vertical or horizontal direction. If Δε> 0, the liquid crystal is likely to be homeotropically aligned with the electrode, and if Δε <0 is homogeneously aligned with the electrode) An environment is created in which the director is distorted by the polymer wall when the voltage is OFF. The liquid crystal molecule rearranges the director in the direction of the electric field when the voltage is turned on. A method of lowering the driving voltage is Liquid Crystal Vol. 5, No. 5, p1477-1489, 1989, JP-A-3-
210536 and the like, these alignment methods are
The former is not suitable for an ECB display device that requires a strict pretilt, and the latter is formed at the time of manufacturing because it uses the same polarity Δε when manufacturing and driving a polymer-dispersed liquid crystal display device. Since the alignment state of the liquid crystal and the alignment state in which the liquid crystal material is rearranged by applying an electric field are the same, there is a drawback that the change in the voltage ON-OFF of the cell prepared by this method is small.

【0009】これらの欠点を補うものとして二周波駆動
用液晶を使用したリバ−スモ−ドの高分子分散型液晶素
子が17回液晶討論会講演予稿集 328頁に報告されてお
り、作成時に△ε>0となる低周波の電圧を印加し液晶
分子をホメオトロピック配向となるようにし、駆動時に
は△ε<0となるように高周波の電圧で駆動させること
によりホモジニアス配向とすることを特徴としている
が、液晶分子が電極に垂直に配向しておりプレチルトを
つけることができず、かつ、基本的に散乱−透過を制御
するものであり本発明とは基本的に異なる。
In order to make up for these drawbacks, a reverse mode polymer dispersion type liquid crystal device using a liquid crystal for dual frequency driving has been reported on page 328 of the proceedings of the 17th liquid crystal conference, The liquid crystal molecules are homeotropically aligned by applying a low-frequency voltage such that ε> 0, and are driven by a high-frequency voltage so that Δε <0 during driving, thereby achieving homogeneous alignment. However, the liquid crystal molecules are oriented perpendicularly to the electrodes, a pretilt cannot be applied, and basically the scattering-transmission is controlled, which is basically different from the present invention.

【0010】さらに電圧のON-OFF時の応答速度を速く、
上記変化を大きくする目的で、印加する電圧の周波数に
より△εの符号が変化する2周波駆動用の液晶材料を用
いる表示素子が開発されている( Mol. Crist.Liq.Crysr
t.,Vol.89,p77)。
Furthermore, the response speed when the voltage is turned on and off is increased,
For the purpose of increasing the above change, a display element using a liquid crystal material for dual frequency drive in which the sign of Δε changes depending on the frequency of the applied voltage has been developed (Mol. Crist. Liq. Crysr.
t., Vol.89, p77).

【0011】しかし、この液晶材料の△εが0になる周
波数f0は、温度変化により大きく変動し△εが正負にな
るような2つの周波数でセルを駆動させることは難し
い。
However, it is difficult to drive the cell at two frequencies such that the frequency f0 at which Δε of this liquid crystal material becomes 0 fluctuates greatly due to temperature change and Δε becomes positive or negative.

【0012】[0012]

【発明が解決しようとする課題】一般的な配向技術を用
いた素子および高分子分散型液晶素子では、セル内でEC
B 素子に必要な均一で低チルト角の配向を実現すること
が困難であり、ECB 素子の実用化を阻んできた。
In devices using general alignment technology and polymer-dispersed liquid crystal devices, the EC in the cell is
It has been difficult to achieve the uniform and low tilt angle alignment required for B-elements, which has hindered the commercialization of ECB elements.

【0013】また、2周波駆動用液晶の配向状態を変化
させるために△ε>0、△ε<0となる2つの周波数の
電圧を使用した場合、温度変化により△ε=0となる周
波数が大きく変化し実用に耐えない。
When two frequency voltages of Δε> 0 and Δε <0 are used to change the alignment state of the dual frequency driving liquid crystal, the frequency at which Δε = 0 due to temperature change is It changes greatly and cannot be put to practical use.

【0014】前述の問題点を解決するためにまず、第一
に、液晶を疑似的に固体状にすることを可能とする高分
子分散型液晶素子の技術に注目し、一般に液晶ドロップ
レット中を高分子壁に沿ってランダムに配向している液
晶分子をECB 素子に適した配向状態になるように鋭意検
討した。
In order to solve the above-mentioned problems, first of all, attention is focused on the technology of a polymer dispersion type liquid crystal element which makes it possible to make a liquid crystal pseudo solid, and in general, a liquid crystal droplet The liquid crystal molecules randomly aligned along the polymer wall were studied intensively so that the liquid crystal molecules would be in an alignment state suitable for the ECB device.

【0015】その結果、磁場、電場を配向させたいチル
ト角に印加しながらプレポリマ−の重合や溶媒除去など
の高分子分散型液晶素子の作成方法を行うことにより望
みの配向状態が達成されることが明らかになった。
As a result, a desired alignment state can be achieved by carrying out a method for producing a polymer dispersed liquid crystal device such as polymerization of a prepolymer and removal of a solvent while applying a magnetic field and an electric field to a tilt angle to be aligned. Became clear.

【0016】しかし、通常の液晶材料(△ε>0、配向
ベクトルに平行な方向と垂直な方向とにおける透磁率χ
の差である透磁率異方性△χが正、すなわち△χ>0)
を使用した場合これらの配向した状態は、電極間に印加
する駆動用電圧のかかる方向とほぼ同一であるためセル
構成後電圧印加による液晶分子の変化が極めて小さく実
用に耐えない。
However, ordinary liquid crystal materials (Δε> 0, magnetic permeability χ in a direction parallel to the orientation vector and a direction perpendicular to the orientation vector)
The magnetic permeability anisotropy Δχ, which is the difference, is positive, that is, Δχ> 0)
When these are used, these aligned states are almost the same as the direction in which the driving voltage applied between the electrodes is applied, so that the change of the liquid crystal molecules due to the voltage application after the cell structure is extremely small and it cannot be put to practical use.

【0017】本発明の目的は、均一で低チルト角の配向
を実現するための配向方法を提供し、かつ高分子中に液
晶分子を封入することにより液晶素子を疑似的に固体状
にすることを可能にし、かつデイスプレ−の大面積化が
図れるECB 素子、及び該ECB素子の製法を提供すること
にある。
An object of the present invention is to provide an alignment method for realizing uniform alignment with a low tilt angle, and to make a liquid crystal device pseudo solid by encapsulating liquid crystal molecules in a polymer. It is an object of the present invention to provide an ECB element capable of achieving the above and increasing the area of the display, and a method for producing the ECB element.

【0018】[0018]

【課題を解決するための手段】第1の発明は、少なくと
も一方が透明であって偏光板を備えた2枚の電極間に封
止されるポリマ−と、ポリマ−中に連続及び非連続のう
ちの少なくともいずれか一方の形態で分散しており電極
から誘電率異方性が負になる周波数の電場を印加される
液晶分子とを含み、液晶分子は該液晶分子の分子軸がセ
ルの垂直方向に関して0から70°に配向されているこ
とを特徴とし、第2の発明は、2周波駆動用液晶材料と
該2周波駆動用液晶材料に関して可溶性の重合性モノマ
−及びオリゴマ−との混合物を少なくとも一方が透明で
ある2枚の電極間に注入する段階と、混合物中重合性モ
ノマ−及びオリゴマ−を重合するときに、電極の垂直方
向に関して0から70°の角度で液晶材料の誘電率異方
性が正となるような周波数の電場及び磁場をセルに印加
する段階と、セルに偏光板を貼り合わせる段階とを含む
ことを特徴とし、第3の発明は誘電率異方性が負であっ
て透磁率異方性が正である液晶材料と該液晶材料に関し
て可溶性の重合性モノマ−及びオリゴマ−との混合物を
少なくとも一方が透明な2枚の電極間に注入する段階
と、混合物中重合性モノマ−及びオリゴマ−を重合する
ときに、電極の垂直方向に関して0から70°の角度で
磁場をセルに印加する段階と、セルに偏光板を貼り合わ
せる段階とを含むことを特徴とし、第4の発明は重合性
モノマ−及びオリゴマ−の混合物を透明な電極上に薄膜
塗布した基板を未重合物が残存した状態でスペ−サを介
して2枚組み合わせてセルを作成する段階と、セル間に
2周波駆動用液晶材料を注入してのち、電極の垂直方向
に関して0から70°の角度で液晶材料の誘電率異方性
が正になるような周波数の電場及び磁場を印加して該電
場及び磁場中で重合性化合物を硬化させたセルと2枚の
偏光板とを組み合わせる段階とを含むことを特徴とす
る。
According to a first aspect of the present invention, there is provided a polymer, at least one of which is transparent and which is sealed between two electrodes having a polarizing plate, and a continuous and non-continuous polymer in the polymer. Liquid crystal molecules that are dispersed in at least one of the above forms and that are applied with an electric field of a frequency at which the dielectric anisotropy becomes negative from the electrode, and the liquid crystal molecules have a molecular axis perpendicular to the cell. The second invention is characterized in that the liquid crystal material is oriented from 0 to 70 ° with respect to the direction, and a mixture of a liquid crystal material for dual frequency driving and a polymerizable monomer and an oligomer soluble in the liquid crystal material for dual frequency driving. Injecting between two electrodes, at least one of which is transparent, and varying the dielectric constant of the liquid crystal material at an angle of 0 to 70 ° with respect to the vertical direction of the electrodes when polymerizing the polymerizable monomer and the oligomer in the mixture. To be positive A third aspect of the present invention is characterized by including a step of applying an electric field and a magnetic field of a frequency to the cell and a step of attaching a polarizing plate to the cell. Injecting a mixture of a positive liquid crystal material and a polymerizable monomer and oligomer soluble with respect to the liquid crystal material between two electrodes, at least one of which is transparent, and polymerizing the polymerizable monomer and oligomer in the mixture. The present invention comprises a step of applying a magnetic field to the cell at an angle of 0 to 70 ° with respect to the vertical direction of the electrode, and a step of attaching a polarizing plate to the cell. And a step of forming two cells by combining two substrates each having a mixture of oligomers applied on a transparent electrode in a thin film through a spacer in a state where an unpolymerized material remains, and a liquid crystal material for driving two frequencies between the cells. After injecting A cell in which an electric field and a magnetic field having a frequency such that the dielectric anisotropy of the liquid crystal material is positive at an angle of 0 to 70 ° with respect to the vertical direction of the pole is applied to cure the polymerizable compound in the electric field and the magnetic field. And a step of combining two polarizing plates.

【0019】[0019]

【作用】第1の発明は液晶分子が誘電率異方性が負にな
る周波数の電場を印加されるとともに液晶分子の分子軸
が電極の垂直方向に関して0から70°に配向されてお
り、第2の発明は加えて2周波駆動用液晶材料および誘
電率異方性が負であって透磁率異方性が正である液晶材
料からなり、第3の発明は2周波駆動用液晶材料と該2
周波駆動用液晶材料に関して可溶性の重合性モノマ−及
びオリゴマ−との混合物を電極間に注入し、かつ重合性
モノマ−及びオリゴマ−を重合するときに、電極間に電
極の垂直方向に関して0から70°の角度で液晶材料の
誘電率異方性が正となるような周波数の電場及び磁場を
印加し、第4の発明は誘電率異方性が負であって透磁率
異方性が正である液晶材料と該液晶材料に関して可溶性
の重合性モノマ−及びオリゴマ−との混合物を2枚の電
極間に注入し、かつ重合性モノマ−及びオリゴマ−を重
合するときに電極の垂直方向に関して0から70°の角
度で磁場をセルに印加し、第5の発明は重合性モノマ−
及びオリゴマ−の混合物を電極上に薄膜塗布した基板を
未重合物が残存した状態でスペ−サを介して2枚組み合
わせてセルを作成し、かつセル間に2周波駆動用液晶材
料を注入してのち、電極の垂直方向に関して0から70
°の角度で液晶材料の誘電率異方性が正になるような周
波数の電場及び磁場を印加して該電場及び磁場中で重合
性化合物を硬化させたセルと2枚の偏光板とを組み合わ
せるので、セル内の高分子物質のマトリックス内で液晶
がセル面内で均一に若干のチルト角をもった垂直配向を
とっており、表示むらの少ないECB 素子を大面積に再現
性よく作成できる。
According to the first aspect of the invention, the liquid crystal molecules are applied with an electric field having a frequency that makes the dielectric anisotropy negative, and the molecular axes of the liquid crystal molecules are oriented from 0 to 70 ° with respect to the vertical direction of the electrodes. The invention of 2 further comprises a liquid crystal material for dual-frequency driving and a liquid crystal material having negative dielectric anisotropy and positive magnetic permeability anisotropy. Two
When a mixture of a polymerizable monomer and an oligomer which is soluble with respect to the frequency driving liquid crystal material is injected between the electrodes and the polymerizable monomer and the oligomer are polymerized, 0 to 70 with respect to the vertical direction of the electrode between the electrodes. An electric field and a magnetic field having a frequency such that the dielectric anisotropy of the liquid crystal material is positive at an angle of ° are applied, and the fourth invention is such that the dielectric anisotropy is negative and the magnetic permeability anisotropy is positive. A mixture of a liquid crystal material and a polymerizable monomer and an oligomer soluble with respect to the liquid crystal material is injected between the two electrodes, and when polymerizing the polymerizable monomer and the oligomer, from 0 in the vertical direction of the electrode. A magnetic field is applied to the cell at an angle of 70 °, and the fifth invention is a polymerizable monomer.
And a substrate on which a mixture of oligomers is applied as a thin film on the electrode is combined with two via a spacer to form a cell, and a liquid crystal material for dual frequency driving is injected between the cells. After that, 0 to 70 in the vertical direction of the electrode
An electric field and a magnetic field having a frequency that makes the dielectric anisotropy of the liquid crystal material positive at an angle of ° are applied to combine the cell in which the polymerizable compound is cured in the electric field and the magnetic field with two polarizing plates. Therefore, the liquid crystal in the matrix of the polymer substance in the cell has a vertical orientation with a slight tilt angle uniformly in the cell plane, and an ECB element with little display unevenness can be produced in a large area with good reproducibility.

【0020】[0020]

【実施例】以下に本発明の具体例を説明する。EXAMPLES Specific examples of the present invention will be described below.

【0021】本発明の重要なポイントは、2周波駆動用
液晶又は△ε<0、透磁率異方性△χが正(△χ>0)
である液晶材料をECB に適した配向状態を外部電場、磁
場により制御することにある。
An important point of the present invention is that the liquid crystal for dual frequency drive or Δε <0, the magnetic permeability anisotropy Δχ is positive (Δχ> 0).
The purpose is to control the alignment state of the liquid crystal material suitable for ECB by an external electric field and magnetic field.

【0022】すなわち、高分子分散型液晶素子作成にあ
たり高分子を相分離させるとき、又は、すでに形成され
ている液晶、高分子複合体、のポリマ−壁を再配列させ
るにあたり、電極(液晶表示セル)に垂直で若干のチル
ト角をつけた方向を持つ電場、または磁場をドロプレッ
ト形成時間内に加えるところにある。
That is, when a polymer is phase-separated in the production of a polymer-dispersed liquid crystal device, or when a polymer wall of a liquid crystal or polymer composite that has already been formed is rearranged, an electrode (liquid crystal display cell) is used. ), Which is perpendicular to, and has a direction with a slight tilt angle, or a magnetic field is added during the droplet formation time.

【0023】このような操作により、液晶が電極に対し
て垂直で若干のチルト角をつけた方向に液晶の誘電率ε
または透磁率κの大きい分子軸を配向させ、それに伴い
重合又は硬化を起こしているポリマ−壁の分子が上記電
場、又は磁場により配列した液晶と最もエネルギ−的に
最も安定な配列をとり、重合又は硬化後もこのポリマ−
壁の配列制御力が残り、そのため、電極(セル面)に垂
直で若干のチルト角をつけた方向に液晶のεまたはκの
大きい分子軸が配列する。
By such an operation, the dielectric constant ε of the liquid crystal is set in the direction in which the liquid crystal is perpendicular to the electrodes and is slightly tilted.
Alternatively, the molecular axis of the polymer having a large magnetic permeability κ is oriented, and the polymer wall molecules that are polymerized or hardened in association with the liquid crystal are aligned in the most energy-stable manner with the liquid crystal aligned by the electric field or the magnetic field, and polymerized. Or even after curing
The alignment control force of the wall remains, and therefore, the molecular axes having large ε or κ of the liquid crystal are aligned in the direction perpendicular to the electrode (cell surface) and slightly tilted.

【0024】このチルト角はECB 素子の黒レベルを決定
する重要な因子であり、好ましくは0〜70°、より好
ましくは0〜5°で極力電極に対して垂直に近い角度で
あることが望ましい。とくに高分子分散型のECB 素子の
場合、ポリマ−壁により分子軸が若干曲げられることか
ら上記外場の印加方向が0°であってもよい。
This tilt angle is an important factor that determines the black level of the ECB element, and is preferably 0 to 70 °, more preferably 0 to 5 °, and it is desirable that the angle is as close to vertical as possible to the electrode. . Particularly in the case of a polymer-dispersed ECB element, the direction of application of the external field may be 0 ° because the molecular axis is slightly bent by the polymer wall.

【0025】電場、磁場の強度は、液晶分子がその電
場、磁場方向に十分に配向できる程度でよく、電場の場
合、最小のピ−ク値が500 V/cm 以上、最大ピ−ク値が
100KV/cm以下の電場、磁場の場合は500 〜1,000,000 ガ
ウスの磁場が好ましい。
The strength of the electric field or magnetic field may be such that the liquid crystal molecules can be sufficiently oriented in the direction of the electric field or magnetic field. In the case of an electric field, the minimum peak value is 500 V / cm or more and the maximum peak value is
In the case of an electric field or magnetic field of 100 KV / cm or less, a magnetic field of 500 to 1,000,000 gauss is preferable.

【0026】電場ONのときには、△ε<0となる周波数
の電場またはセルに対して水平な磁場を用いることによ
り外部電圧又は磁場による液晶の再配列のため、電極
(セル面)に水平な方向に液晶の分子軸が多く配列す
る。OFF 状態からON状態に至る間に△n ・d が変化し、
直交ニコル間でセルを観察すると色調が連続的に変化す
る。
When the electric field is ON, an electric field having a frequency of Δε <0 or a magnetic field horizontal to the cell is used to rearrange the liquid crystal by an external voltage or magnetic field. Many liquid crystal molecular axes are aligned. △ n ・ d changes from OFF state to ON state,
When the cell is observed between the crossed Nicols, the color tone changes continuously.

【0027】本発明の具体例で用いる液晶材料は、2周
波駆動用の液晶材料と△ε<0、△χ>0である液晶材
料であり、具体的に、2周波駆動用の液晶材料として
は、NR-1012XX(チッソ石油化学製)等であり、△ε<
0、△χ>0である液晶材料としてはZLI-4788-000、ZL
I-4788-100、ZLI-2806である。
The liquid crystal material used in the embodiment of the present invention is a liquid crystal material for dual frequency driving and a liquid crystal material having Δε <0 and Δχ> 0. Specifically, as a liquid crystal material for dual frequency driving, Is NR-1012XX (manufactured by Chisso Petrochemical), etc.
ZLI-4788-000 and ZL as liquid crystal materials with 0 and Δχ> 0
I-4788-100 and ZLI-2806.

【0028】さらに液晶材料中に化学的に安定な分子中
にF,CIを含むビフェニル系、タ−フェニル系、フェニル
シクロヘキサン系、ジフェニルシクロヘキサン系、トラ
ン系ネマチック液晶等の内△n の大きな液晶が適してい
る。
Further, among the biphenyl-based, ta-phenyl-based, phenylcyclohexane-based, diphenylcyclohexane-based, and tolan-based nematic liquid crystals containing F and CI in the chemically stable molecule in the liquid crystal material, liquid crystals with large Δn are Are suitable.

【0029】さらに、液晶材料の誘電率異方性△ε、屈
折率異方性△n の符号が正負いずれの組み合わせも用途
に合わせて使用することができる。
Furthermore, any combination of positive and negative signs of the dielectric anisotropy Δε and the refractive index anisotropy Δn of the liquid crystal material can be used according to the application.

【0030】本発明の具体例でいう重合性モノマ−およ
びオリゴマ−とは、光重合性、放射線重合性、熱重合性
モノマ−およびオリゴマ−を利用することができ、使用
する液晶材料に合わせた親和性( 液晶のSP値に対して±
2以内)を有する反応性有機物である。
The polymerizable monomers and oligomers used in the embodiments of the present invention may be photopolymerizable, radiation-polymerizable, thermopolymerizable monomers and oligomers, which are selected according to the liquid crystal material used. Affinity (± SP value of liquid crystal
2 or less).

【0031】具体的には、モノマ−としてはアクリル酸
およびアクリル酸エステルの誘導体、さらに具体的に
は、アクリル酸イソブチル、アクリル酸ステアリル、ア
クリル酸ラウリル、アクリル酸イソアミル、n-ブチルメ
タクリレ−ト、n-ラウリルメタクリレ−ト、トリデシル
メタクリレ−ト、n-ステアリルメタアクリレ−ト、シク
ロヘキシルメタクリレ−ト、ベンジルメタクリレ−ト、
2-エチルヘキシルアクリレ−ト、2-フェノキシエチルメ
タクリレ−ト、ビスフェノ−ルA ジメタクリレ−ト、ビ
スフェノ−ルA ジアクリレ−ト、イソボルニルメタクリ
レ−ト、イソボルニルアクリレ−ト、さらにポリマ−の
物理的強度を高めるために2 官能以上の多官能性樹脂、
例えば1 、4-ブタンジオ−ルジメタクリレ−ト、1 、6-
ヘキサンジオ−ルジメタクリレ−ト、トリメチロ−ルプ
ロパントリメタクリレ−ト、トリメチロ−ルプロパント
リアクリレ−ト、テトラメチロ−ルメタンテトラアクリ
レ−ト、また、オリゴマ−としてはウレタンアクリレ−
トやポリオキシエチレンアクリレ−ト等が利用できる。
Specifically, as the monomer, acrylic acid and a derivative of acrylic acid ester, more specifically, isobutyl acrylate, stearyl acrylate, lauryl acrylate, isoamyl acrylate, n-butyl methacrylate. , N-laurylmethacrylate, tridecylmethacrylate, n-stearylmethacrylate, cyclohexylmethacrylate, benzylmethacrylate,
2-ethylhexyl acrylate, 2-phenoxyethyl methacrylate, bisphenol A dimethacrylate, bisphenol A diacrylate, isobornyl methacrylate, isobornyl acrylate, and further To increase the physical strength of the polymer, a bifunctional or higher polyfunctional resin,
For example, 1,4-butanediol dimethacrylate, 1,6-
Hexanediol dimethacrylate, trimethylol propane trimethacrylate, trimethylol propane triacrylate, tetramethyl methane tetraacrylate, and urethane acrylate as an oligomer.
And polyoxyethylene acrylate can be used.

【0032】熱硬化性モノマ−としては、エチレングリ
コ−ルジグリシジルエ−テル、トリメチロ−ルプロパン
トリグリシジルエ−テル、1.6-ヘキサンジオ−ルジグリ
シジルエ−テルなどのグリシジルエ−テル類を代表とす
るエポキシ樹脂およびイソシアネ−ト基を有するウレタ
ン樹脂、例えばキシリレンジイソシアナ−ト、Siを含む
2重結合を有するシリコ−ン樹脂などが使用できる。
As the thermosetting monomer, an epoxy represented by glycidyl ethers such as ethylene glycol diglycidyl ether, trimethylolpropane triglycidyl ether, and 1.6-hexanediol diglycidyl ether. A resin and a urethane resin having an isocyanate group, such as xylylene diisocyanate, and a silicone resin having a double bond containing Si can be used.

【0033】さらに本発明の製法の具体例の実施後、よ
り液晶の配向効果をだすためにも、室温又は本発明の具
体例の加工温度付近で液晶性(電場または磁場により分
子が電場または磁場方向に配列する)を示す光重合性、
放射線重合性、熱重合性モノマ−およびオリゴマ−を利
用することがさらに好ましい。
Further, after carrying out the embodiment of the production method of the present invention, in order to exert the alignment effect of the liquid crystal more, at room temperature or near the processing temperature of the embodiment of the present invention, the liquid crystallinity (the molecule is subjected to an electric field or a magnetic field by an electric field or a magnetic field). Aligned in the direction)
It is further preferred to utilize radiation-polymerizable, heat-polymerizable monomers and oligomers.

【0034】これらの反応性液晶化合物を用いることに
より、加工後、電場OFF のときの配列をより強固にする
ことができる。
By using these reactive liquid crystal compounds, the alignment when the electric field is OFF can be further strengthened after processing.

【0035】具体的には、ビフェニル基、タ−フェニル
基、フェニルシクロヘキサン基、ジフェニルシクロヘキ
サン基、トラン骨格などのメソ−ゲン基にアクリレ−
ト、メタクリレ−ト、エポキシ、シロキサンなどの重合
性基が分子末端に結合した化合物である。
Specifically, methacrylic groups such as biphenyl group, ta-phenyl group, phenylcyclohexane group, diphenylcyclohexane group, and tolan skeleton are acrylylated.
It is a compound in which a polymerizable group such as epoxy group, methacrylate group, epoxy group, and siloxane group is bonded to the terminal of the molecule.

【0036】液晶と該液晶と溶解可能なポリマ−及び溶
剤の混合物の混合体から溶剤を除去する方法で使用され
るポリマ−とは、ある溶剤に溶解可能なポリマ−であれ
ばよく具体的にはアラビアゴム、合成ゴム、ゼラチン、
ポリビニルアルコ−ル、ポリスチレン、ポリメチルメタ
クリレ−ト、ポリ酢酸ビニルなどである。
The polymer used in the method for removing the solvent from the mixture of the liquid crystal and the polymer soluble in the liquid crystal and the solvent may be any polymer which can be dissolved in a certain solvent. Is gum arabic, synthetic rubber, gelatin,
Examples thereof include polyvinyl alcohol, polystyrene, polymethylmethacrylate and polyvinyl acetate.

【0037】また本発明の製法の具体例の実施後、より
液晶の配向効果をだすためにもポリマ−として液晶高分
子を用いるのがさらに効果的である。
Further, it is more effective to use a liquid crystal polymer as a polymer after the embodiment of the production method of the present invention has been carried out, in order to exert a more orienting effect on the liquid crystal.

【0038】これらの化合物を使用し高分子分散型液晶
素子を作成するにあたり、偏光板を除いた高分子分散型
液晶素子のみでの光散乱強度を抑えることが本発明のEC
B セルでは重要である。
When preparing a polymer dispersed liquid crystal device using these compounds, it is necessary to suppress the light scattering intensity only in the polymer dispersed liquid crystal device excluding the polarizing plate.
It is important in B cells.

【0039】すなわち、2枚の直交ニコル偏光板間に光
散乱体をおいた場合、一方の偏光板で直線偏光に変換さ
れ、その直線偏向が光散乱体にあたることにより自然光
に変換され、他方の偏光板を一部通過して、結果的にセ
ルの黒レベルを悪化させる。
That is, when a light scatterer is placed between two crossed Nicols polarizers, one of the polarizers converts it into linearly polarized light, and the linearly polarized light hits the light scatterer to be converted into natural light, while the other one is converted into natural light. It partially passes through the polarizing plate and consequently deteriorates the black level of the cell.

【0040】そこで、本発明の具体例で用いる高分子分
散型の液晶素子のセル厚は、散乱強度を低下させるため
に20μm以下であることが好ましく、さらに好ましく
は、1〜12μmの範囲である。
Therefore, the cell thickness of the polymer-dispersed liquid crystal element used in the embodiment of the present invention is preferably 20 μm or less, and more preferably 1 to 12 μm in order to reduce the scattering intensity. .

【0041】さらに、高分子分散型液晶素子中の液晶ド
ロップレットの形状は、光散乱を低く設定するため、可
視光の波長より十分長いか、短い必要がある。可視光の
波長より小さい液晶ドロップレットでは、駆動させるた
めの電圧が高くなり、駆動回路に使用するICの耐電圧が
高くなり実用的でない。
Further, the shape of the liquid crystal droplets in the polymer dispersed liquid crystal element needs to be sufficiently longer or shorter than the wavelength of visible light in order to set the light scattering to be low. Liquid crystal droplets smaller than the wavelength of visible light are not practical because the driving voltage becomes high and the withstand voltage of the IC used in the driving circuit becomes high.

【0042】したがって、高分子分散型液晶素子中の液
晶抽出後をSEM で観察した液晶ドロップレットの平均直
径(長軸方向)は、5 μm以上、さらに好ましくは12μ
m以上が好ましい。
Therefore, the average diameter (long axis direction) of the liquid crystal droplets observed by SEM after extraction of the liquid crystal in the polymer dispersed liquid crystal element is 5 μm or more, and more preferably 12 μm.
m or more is preferable.

【0043】したがって、液晶ドロップレットの立体的
な形状としては“わらじ”状の形状となる。さらに、高
分子分散型液晶素子の光散乱強度は作成時の液晶と高分
子材料の混合比によっても変化し、液晶材料が60〜70 %
の領域で散乱強度が強くなる。散乱強度を弱くすること
から、60 %以下では液晶分率が少なく、駆動電圧が高く
なり実用に耐えないので80 %以上、とくに好ましくは90
〜95 %である。
Therefore, the three-dimensional shape of the liquid crystal droplet is a "straw-shaped" shape. Furthermore, the light-scattering intensity of polymer-dispersed liquid crystal elements also changes depending on the mixing ratio of the liquid crystal and polymer material at the time of creation, and the liquid crystal material is 60-70%
In the region of, the scattering intensity becomes strong. Since the scattering intensity is weakened, if it is 60% or less, the liquid crystal fraction is small, and the driving voltage becomes high, so that it cannot be practically used.
~ 95%.

【0044】図1は本発明の電界複屈折制御型液晶素子
の具体例の電場OFF時の配向状態の断面図、図2は図
1の液晶素子の液晶分子の配向を説明する図、図3は本
発明の電界複屈折制御型液晶素子の具体例の電場ON時
の配向状態の水平状態を示す断面図である。
FIG. 1 is a cross-sectional view of the alignment state of the liquid crystal element of the electric field birefringence control type according to the present invention when the electric field is off, and FIG. 2 is a diagram for explaining the alignment of liquid crystal molecules of the liquid crystal element of FIG. FIG. 3 is a cross-sectional view showing a horizontal state of an alignment state when an electric field is turned on in a specific example of the electric field birefringence control type liquid crystal element of the present invention.

【0045】図1〜3において、10は偏光板、11は
基板、12は高分子、13は液晶材料、14は液晶分
子、15は透明電極である。透明電極15間に封止され
た高分子12に分散された液晶分子14が透明電極15
に対して垂直方向Vからθだけチルトした配向をとって
いる(図2)。
1-3, 10 is a polarizing plate, 11 is a substrate, 12 is a polymer, 13 is a liquid crystal material, 14 is a liquid crystal molecule, and 15 is a transparent electrode. The liquid crystal molecules 14 dispersed in the polymer 12 sealed between the transparent electrodes 15 are transparent electrodes 15
In contrast, the orientation is tilted by θ from the vertical direction V (FIG. 2).

【0046】図3は透明電極15に△ε<0となる周波
数の電場を印加した場合の液晶分子の配向の変化を示し
ている。
FIG. 3 shows a change in orientation of liquid crystal molecules when an electric field having a frequency of Δε <0 is applied to the transparent electrode 15.

【0047】以下に本発明の実施例を示すが本発明はこ
れに限定されるものではない。
Examples of the present invention will be shown below, but the present invention is not limited thereto.

【0048】実施例1 液晶NR-1012xx (チッソ石油化学製)4.3 g 、TMPT(ト
リメチロ−ルプロパントリアクリレ−トケ新中村化学
製)0.2 g 、2-エチルヘキシルアクリレ−ト(日本火薬
製)0.5 g の混合物にチバガイギ−製UV硬化剤Irgacure
184 0.05 gを80℃で均一混合する。
Example 1 Liquid crystal NR-1012xx (manufactured by Chisso Petrochemical Co., Ltd.) 4.3 g, TMPT (trimethylolpropane triacrylate ke Shin Shin Nakamura Chemical Co., Ltd.) 0.2 g, 2-ethylhexyl acrylate (manufactured by Nippon Kayaku Co., Ltd.) Add 0.5 g of the mixture to the UV curing agent Irgacure made by Ciba-Geigy.
Uniformly mix 184 0.05 g at 80 ° C.

【0049】ITO (酸化インジュウム及び酸化すずの混
合物)付ガラス(日本板ガラス製フリントガラス)2 枚
でセル厚さが 5μmとなるようにスペ−サをはさんでセ
ルを作成し、2 枚の透明電極間に上記混合物を注入す
る。注入したセルを電極(液晶表示素子面)に対して垂
直な方向から3 °チルトさせた方向から50,000ガウス静
磁場を印加し、その状態のまま電極(液晶表示素子面)
に対して垂直な方向から鏡を使用してセル面上で20mW/c
m 2 になるように高圧水銀灯でUV照射した。
Two glass with ITO (a mixture of indium oxide and tin oxide) (Flint glass made by Nippon Sheet Glass) were sandwiched with a spacer to make a cell thickness of 5 μm, and two transparent electrodes were prepared. Inject the mixture in between. A static magnetic field of 50,000 Gauss is applied from the direction in which the injected cell is tilted 3 ° from the direction perpendicular to the electrode (liquid crystal display element surface), and the electrode (liquid crystal display element surface) is applied in that state.
20mW / c on the cell surface using a mirror from a direction perpendicular to
UV irradiation was performed with a high-pressure mercury lamp so that m 2 was obtained.

【0050】作成したセルを2 枚の直交ニコル状態にあ
る偏光板の中に置き背面の光源により光を当てながら50
KHz の電圧を印加しながらセルを観察した結果良好な色
むらのない表示が得られた。
The cell thus prepared is placed in two polarizing plates in the crossed Nicols state while shining light from the light source on the back side.
As a result of observing the cell while applying a voltage of KHz, a good display without color unevenness was obtained.

【0051】実施例2 液晶ZLI-4788-000 4.3 g 、TMPT(トリメチロ−ルプロ
パントリアクリレ−ト:新中村化学製) 0.2 g、2-エチ
ルヘキシルアクリレ−ト(日本火薬製) 0.5 gの混合物
にチバガイギ−製UV硬化剤Irgacure 184 0.05 g を80℃
で均一混合する。
Example 2 Liquid crystal ZLI-4788-000 (4.3 g), TMPT (trimethylolpropane triacrylate: manufactured by Shin Nakamura Chemical Co., Ltd.) 0.2 g, 2-ethylhexyl acrylate (manufactured by Nippon Kayaku Co., Ltd.) 0.5 g To the mixture, 0.05 g of Irgacure 184 UV curing agent manufactured by Ciba-Geigy was added at 80 ° C.
Mix evenly with.

【0052】作成した混合物を実施例1と同様に同様な
セルに注入したセルを電極(液晶表示素子面)に対して
垂直な方向から3 °チルトさせた方向から50,000ガウス
静磁場を印加し、実施例1と同様にUV照射しセルを作成
する。
The prepared mixture was injected into the same cell as in Example 1, and a static magnetic field of 50,000 gauss was applied from the direction in which the cell was tilted 3 ° from the direction perpendicular to the electrode (liquid crystal display element surface). UV irradiation is performed in the same manner as in Example 1 to form a cell.

【0053】作成したセルを2枚の直交ニコル状態にあ
る偏光板の中に置き、背面の光源により光を当てながら
50KHz の電圧を印加しながらセルを観察した結果良好な
色むらのない表示が得られた。
The cell thus prepared is placed in two polarizing plates in the crossed Nicols state, and light is applied from the light source on the back surface.
As a result of observing the cell while applying a voltage of 50 KHz, good display without color unevenness was obtained.

【0054】実施例3 TMPT(前述):NK オリゴU-122A(新中村化学工業製)の
7:3混合物をn-ヘキサンの5%溶液としスピンコ−ト
法により透明電極付ガラス基板上に塗布し、溶媒を蒸発
させることにより薄膜形成する。
Example 3 TMPT (previously described): A 7: 3 mixture of NK Oligo U-122A (manufactured by Shin-Nakamura Chemical Co., Ltd.) was applied as a 5% solution of n-hexane on a glass substrate with a transparent electrode by a spin coat method. Then, the solvent is evaporated to form a thin film.

【0055】該基板を10μmのスペ−サを介して2枚貼
り合わせセル化する。該セルに実施例1と同じ液晶材料
を注入し、電極(液晶表示素子面)に対して垂直な方向
から3 °チルトさせた方向から50,000ガウス静磁場を印
加し、、その状態のまま、電極(液晶表示素子面)に対
して垂直な方向から20mW/cm 2 (365 nm)になるように高
圧水銀灯でUV照射した。
Two substrates are attached to each other through a 10 μm spacer to form a cell. The same liquid crystal material as in Example 1 was injected into the cell, a static magnetic field of 50,000 Gauss was applied from a direction tilted by 3 ° from a direction perpendicular to the electrode (liquid crystal display element surface), and the electrode was left as it was. UV irradiation was performed from a direction perpendicular to the (liquid crystal display element surface) with a high pressure mercury lamp at 20 mW / cm 2 (365 nm).

【0056】作成したセルを実施例1と同様に電圧を印
加した結果良好な色むらのない表示がえられた。
As a result of applying a voltage to the prepared cell in the same manner as in Example 1, good display without color unevenness was obtained.

【0057】[0057]

【発明の効果】第1の発明は液晶分子が誘電率異方性が
負になる周波数の電場を印加されるとともに液晶分子の
分子軸が電極の垂直方向に関して0から70°に配向さ
れており、第2の発明は加えて2周波駆動用液晶材料お
よび誘電率異方性が負であって透磁率異方性が正である
液晶材料からなり、第3の発明は2周波駆動用液晶材料
と該2周波駆動用液晶材料に関して可溶性の重合性モノ
マ−及びオリゴマ−との混合物を電極間に注入し、かつ
重合性モノマ−及びオリゴマ−を重合するときに、電極
間に電極の垂直方向に関して0から70°の角度で液晶
材料の誘電率異方性が正となるような周波数の電場及び
磁場を印加し、第4の発明は誘電率異方性が負であって
透磁率異方性が正である液晶材料と該液晶材料に関して
可溶性の重合性モノマ−及びオリゴマ−との混合物を2
枚の電極間に注入し、かつ重合性モノマ−及びオリゴマ
−を重合するときに電極の垂直方向に関して0から70
°の角度で磁場をセルに印加し、第5の発明は重合性モ
ノマ−及びオリゴマ−の混合物を電極上に薄膜塗布した
基板を未重合物が残存した状態でスペ−サを介して2枚
組み合わせてセルを作成し、かつセル間に2周波駆動用
液晶材料を注入してのち、電極の垂直方向に関して0か
ら70°の角度で液晶材料の誘電率異方性が正になるよ
うな周波数の電場及び磁場を印加して該電場及び磁場中
で重合性化合物を硬化させたセルと2枚の偏光板とを組
み合わせるので、セル内の高分子物質のマトリックス内
で液晶がセル面内で均一に若干のチルト角をもった垂直
配向をとっており、表示むらの少ないECB 素子を大面積
に再現性よく作成できる。
According to the first aspect of the present invention, the liquid crystal molecules are applied with an electric field having a frequency having a negative dielectric anisotropy, and the molecular axes of the liquid crystal molecules are oriented from 0 to 70 ° with respect to the vertical direction of the electrodes. The second invention is composed of a liquid crystal material for dual frequency driving and a liquid crystal material having negative dielectric constant anisotropy and positive magnetic permeability anisotropy. The third invention is a liquid crystal material for dual frequency driving. When a mixture of a polymerizable monomer and an oligomer soluble with respect to the liquid crystal material for driving the dual frequency is injected between the electrodes and the polymerizable monomer and the oligomer are polymerized, a vertical direction of the electrodes is provided between the electrodes. An electric field and a magnetic field having a frequency such that the dielectric anisotropy of the liquid crystal material is positive at an angle of 0 to 70 ° are applied, and the fourth invention is that the dielectric anisotropy is negative and the magnetic anisotropy is negative. Of positive liquid crystal and a polymerizable monomer soluble in the liquid crystal material A mixture of a polymer and an oligomer with 2
0 to 70 with respect to the vertical direction of the electrodes when pouring between the electrodes and polymerizing the polymerizable monomer and oligomer.
A magnetic field is applied to the cell at an angle of °, and the fifth invention is to use a substrate on which a mixture of a polymerizable monomer and an oligomer is applied as a thin film on an electrode and to leave two substrates through a spacer with an unpolymerized substance remaining. After creating cells by combining them and injecting a liquid crystal material for dual frequency driving between the cells, a frequency at which the dielectric anisotropy of the liquid crystal material becomes positive at an angle of 0 to 70 ° with respect to the vertical direction of the electrodes. Since the cell in which the polymerizable compound is cured in the electric field and the magnetic field is combined with the two polarizing plates, the liquid crystal is uniform in the cell plane in the matrix of the polymer substance in the cell. Since it has a vertical orientation with a slight tilt angle, it is possible to produce an ECB element with little display unevenness on a large area with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電界複屈折制御型液晶素子の具体例の
電場OFF時の配向状態の断面図である。
FIG. 1 is a cross-sectional view of an alignment state when an electric field is off in a specific example of an electric field birefringence control type liquid crystal element of the present invention.

【図2】図1の液晶素子の液晶分子の配向を説明する図
である。
FIG. 2 is a diagram illustrating the alignment of liquid crystal molecules of the liquid crystal element of FIG.

【図3】本発明の電界複屈折制御型液晶素子の具体例の
電場ON時の配向状態の水平状態を示す断面図である。
FIG. 3 is a cross-sectional view showing a horizontal state of an alignment state when an electric field is turned on in a specific example of the electric field birefringence control type liquid crystal element of the present invention.

【符号の説明】[Explanation of symbols]

10 偏光板 11 ガラス基板 12 高分子材料 13 液晶材料 14 液晶分子 15 透明電極 10 Polarizing plate 11 Glass substrate 12 Polymer material 13 Liquid crystal material 14 Liquid crystal molecule 15 Transparent electrode

フロントページの続き (72)発明者 神崎 修一 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内Front page continuation (72) Inventor Shuichi Kanzaki 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方が透明であって偏光板を
備えた2枚の電極間に封止されるポリマ−と、前記ポリ
マ−中に連続及び非連続のうちの少なくともいずれか一
方の形態で分散しており前記電極から誘電率異方性が負
になる周波数の電場を印加される液晶分子とを含み、前
記液晶分子は該液晶分子の分子軸がセルの垂直方向に関
して0から70°に配向されていることを特徴とする電
界複屈折制御型液晶素子。
1. A polymer, at least one of which is transparent and which is sealed between two electrodes provided with a polarizing plate, and at least one of continuous and discontinuous forms in the polymer. Liquid crystal molecules dispersed and applied with an electric field of a frequency having a negative dielectric anisotropy from the electrodes, the liquid crystal molecules having a molecular axis of 0 to 70 ° with respect to a vertical direction of the cell. An electric field birefringence control type liquid crystal device characterized by being oriented.
【請求項2】 2周波駆動用液晶材料及び誘電率異方性
が負であって透磁率異方性が正である液晶材料のいずれ
か一方からなることを特徴とする請求項1に記載の液晶
素子。
2. A liquid crystal material for dual-frequency driving and a liquid crystal material having a negative dielectric anisotropy and a positive magnetic permeability anisotropy. Liquid crystal element.
【請求項3】 2周波駆動用液晶材料と該2周波駆動用
液晶材料に関して可溶性の重合性モノマ−及びオリゴマ
−との混合物を少なくとも一方が透明である2枚の電極
間に注入する段階と、前記混合物中前記重合性モノマ−
及びオリゴマ−を重合するときに、前記電極の垂直方向
に関して0から70°の角度で液晶材料の誘電率異方性
が正となるような周波数の電場及び磁場をセルに印加す
る段階と、前記セルに偏光板を貼り合わせる段階とを含
むことを特徴とする請求項1に記載の電界複屈折制御型
液晶素子の製法。
3. Injecting a mixture of a two-frequency driving liquid crystal material and a polymerizable monomer and an oligomer soluble in the two-frequency driving liquid crystal material between two electrodes, at least one of which is transparent, The polymerizable monomer in the mixture
And a step of applying an electric field and a magnetic field having a frequency such that the dielectric anisotropy of the liquid crystal material is positive at an angle of 0 to 70 ° with respect to the vertical direction of the electrode when polymerizing the oligomer, The method for manufacturing an electric field birefringence control type liquid crystal device according to claim 1, further comprising: adhering a polarizing plate to the cell.
【請求項4】 誘電率異方性が負であって透磁率異方性
が正である液晶材料と該液晶材料に関して可溶性の重合
性モノマ−及びオリゴマ−との混合物を少なくとも一方
が透明な2枚の電極間に注入する段階と、前記混合物中
前記重合性モノマ−及びオリゴマ−を重合するときに、
前記電極の垂直方向に関して0から70°の角度で磁場
をセルに印加する段階と、前記セルに偏光板を貼り合わ
せる段階とを含むことを特徴とする請求項1に記載の電
界複屈折制御型液晶素子の製法。
4. A mixture of a liquid crystal material having a negative dielectric anisotropy and a positive magnetic permeability anisotropy and a polymerizable monomer or oligomer soluble in the liquid crystal material, at least one of which is transparent. Injecting between the electrodes and when polymerizing the polymerizable monomer and the oligomer in the mixture,
The electric field birefringence control type device according to claim 1, comprising: applying a magnetic field to the cell at an angle of 0 to 70 ° with respect to a vertical direction of the electrode; and bonding a polarizing plate to the cell. Liquid crystal element manufacturing method.
【請求項5】 重合性モノマ−及びオリゴマ−の混合物
を透明な電極上に薄膜塗布した基板を未重合物が残存し
た状態でスペ−サを介して2枚組み合わせてセルを作成
する段階と、前記セル間に2周波駆動用液晶材料を注入
してのち、前記電極の垂直方向に関して0から70°の
角度で液晶材料の誘電率異方性が正になるような周波数
の電場及び磁場を印加して該電場及び磁場中で重合性化
合物を硬化させたセルと2枚の偏光板とを組み合わせる
段階とを含むことを特徴とする電界複屈折制御型液晶素
子の製法。
5. A step of preparing a cell by combining two substrates, each having a mixture of a polymerizable monomer and an oligomer coated on a transparent electrode in a thin film, through a spacer while leaving an unpolymerized substance, After injecting a liquid crystal material for driving two frequencies between the cells, an electric field and a magnetic field having a frequency such that the dielectric anisotropy of the liquid crystal material becomes positive at an angle of 0 to 70 ° with respect to the vertical direction of the electrodes are applied. And a step of combining a cell obtained by curing a polymerizable compound in the electric field and a magnetic field with two polarizing plates, the method for producing an electric field birefringence control type liquid crystal element.
JP20211392A 1992-07-29 1992-07-29 Electric field birefringence control type liquid crystal device and manufacturing method thereof Expired - Lifetime JP2881073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20211392A JP2881073B2 (en) 1992-07-29 1992-07-29 Electric field birefringence control type liquid crystal device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20211392A JP2881073B2 (en) 1992-07-29 1992-07-29 Electric field birefringence control type liquid crystal device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0651351A true JPH0651351A (en) 1994-02-25
JP2881073B2 JP2881073B2 (en) 1999-04-12

Family

ID=16452180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20211392A Expired - Lifetime JP2881073B2 (en) 1992-07-29 1992-07-29 Electric field birefringence control type liquid crystal device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2881073B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0876097A (en) * 1994-07-05 1996-03-22 Nec Corp Liquid crystal optical element and its production
WO1999031545A1 (en) * 1997-12-17 1999-06-24 Matsushita Electric Industrial Co., Ltd. Polymer dispersion type liquid crystal display panel and its manufacturing method
JP2016502144A (en) * 2012-12-14 2016-01-21 エルジー・ケム・リミテッド Liquid crystal element (Liquid Crystal Element)
KR20170072270A (en) * 2014-10-21 2017-06-26 롤리크 아게 Polymer containing scattering type vertically aligned liquid crystal device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0876097A (en) * 1994-07-05 1996-03-22 Nec Corp Liquid crystal optical element and its production
WO1999031545A1 (en) * 1997-12-17 1999-06-24 Matsushita Electric Industrial Co., Ltd. Polymer dispersion type liquid crystal display panel and its manufacturing method
US6429914B1 (en) 1997-12-17 2002-08-06 Matsushita Electric Industrial Co., Ltd. Polymer dispersion type liquid crystal display panel and its manufacturing method
US6630969B2 (en) 1997-12-17 2003-10-07 Matsushita Electric Industrial Co., Ltd. Polymer dispersion type liquid crystal display panel and manufacturing method thereof
JP2016502144A (en) * 2012-12-14 2016-01-21 エルジー・ケム・リミテッド Liquid crystal element (Liquid Crystal Element)
US9828550B2 (en) 2012-12-14 2017-11-28 Lg Chem, Ltd. Polymerizable composition and method for manufacturing liquid crystal device
US9840668B2 (en) 2012-12-14 2017-12-12 Lg Chem, Ltd. Liquid crystal device
US10370591B2 (en) 2012-12-14 2019-08-06 Lg Chem, Ltd. Liquid crystal device
KR20170072270A (en) * 2014-10-21 2017-06-26 롤리크 아게 Polymer containing scattering type vertically aligned liquid crystal device

Also Published As

Publication number Publication date
JP2881073B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
KR0173803B1 (en) Lcd element and its manufacture
KR960004126B1 (en) Liquid crystal display devices
JPH07120728A (en) Liquid crystal display element and its production
JPH10268318A (en) Optical device and liquid crystal display device as well as production of optical device
JP2004514934A (en) Liquid crystal display laminate and method of manufacturing the same
JP2000321562A (en) Liquid crystal optical device having reverse mode optical switching function and its production
JP2937684B2 (en) Liquid crystal display device and method of manufacturing the same
JP3477000B2 (en) Reflective liquid crystal display
JPH08152609A (en) Liquid crystal display element and its production
JP2006234885A (en) Manufacturing method of liquid crystal optical modulator, liquid crystal optical modulator and liquid crystal display
JP3108571B2 (en) Liquid crystal display input / output device
JP2827720B2 (en) Liquid crystal optical element and manufacturing method thereof
JP3092896B2 (en) Liquid crystal display device and method of manufacturing the same
US5477352A (en) Liquid crystal display device with liquid crystal dispersed or impregnated in a perfluoro-type polymer of perfluoroalkyl acrylate or methacrylate
JP2881073B2 (en) Electric field birefringence control type liquid crystal device and manufacturing method thereof
JP2880354B2 (en) Liquid crystal display device and method of manufacturing the same
JP2004109787A (en) Liquid crystal optical modulation film, its manufacturing method, liquid crystal display element, and liquid crystal display
JP3059030B2 (en) Liquid crystal display device and method of manufacturing the same
JP2001083516A (en) Alignment layer, liquid crystal display element and optical film
KR19980015423A (en) Manufacturing method of liquid crystal display device
JP3205503B2 (en) Liquid crystal display device and manufacturing method thereof
JP3054005B2 (en) Liquid crystal display device and method of manufacturing the same
JP2000098354A (en) Polymer dispersion type liquid crystal display device and its production
JP3269771B2 (en) Manufacturing method of liquid crystal display device
JP2002148600A (en) Polymer dispersion type liquid crystal element and method of manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120129

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130129

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 14