JPH0650731A - Three-dimensional shape measuring device with tip-positioning function for object to be measured - Google Patents

Three-dimensional shape measuring device with tip-positioning function for object to be measured

Info

Publication number
JPH0650731A
JPH0650731A JP4227887A JP22788792A JPH0650731A JP H0650731 A JPH0650731 A JP H0650731A JP 4227887 A JP4227887 A JP 4227887A JP 22788792 A JP22788792 A JP 22788792A JP H0650731 A JPH0650731 A JP H0650731A
Authority
JP
Japan
Prior art keywords
light
measured
tip
time point
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4227887A
Other languages
Japanese (ja)
Other versions
JP3311787B2 (en
Inventor
Takayuki Ohata
高之 大幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUNISUN KK
Original Assignee
YUNISUN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUNISUN KK filed Critical YUNISUN KK
Priority to JP22788792A priority Critical patent/JP3311787B2/en
Publication of JPH0650731A publication Critical patent/JPH0650731A/en
Application granted granted Critical
Publication of JP3311787B2 publication Critical patent/JP3311787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To perform tip-positioning work of an object to be measured which is required before measuring a three-dimensional shape automatically, efficiently, and accurately by efficiently utilizing a configuration part which this type of device is originally provided with. CONSTITUTION:The title device is provided with a light-point detection part 14 for detecting a reflection light from an object 3 to be measured where light is applied out of a video signal generated by the image pick-up of a specific region and a movement mechanism 17 for transferring the object 3 to be measured and a laser light source 1 relatively, thus actuating the movement mechanism 17 speedily in forward direction until the reflection light is detected by the light-point detection part 14. Then, a control means for controlling the light-point detection part 14 and the movement mechanism 17 while they are related each other so that the movement mechanism 17 is speedily actuated in a reverse direction from that point to a point when the reflection light cannot be detected and then the movement mechanism 17 is actuated at a low speed in forward direction until the reflection light is detected again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、測定対象物に、たと
えばレーザ光などのスポット光やスリット光を照射し
て、その光像をCCDカメラ等の撮像部で撮像すること
により、測定対象物の位置を求めて、その形状を非接触
で計測する三次元形状計測装置に関するもので、詳しく
は、計測に先立って、測定物の先端に移動させる機能を
持った三次元形状計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention irradiates a measuring object with spot light such as laser light or slit light, and picks up an optical image thereof by an image pickup section such as a CCD camera. The present invention relates to a three-dimensional shape measuring device that obtains the position of the object and measures its shape in a non-contact manner.Specifically, it relates to a three-dimensional shape measuring device that has the function of moving to the tip of the object to be measured prior to measurement. is there.

【0002】[0002]

【従来の技術】非接触型の三次元形状計測装置として、
従来から知られているものに、測定対象物にレーザ光等
によるスポット光を投射してラインセンサでその反射光
を捕らえる、あるいは、光切断法と呼ばれるもので、測
定対象物にレーザスリット光を投射してCCDカメラの
ような面センサでスリット光像を捕らえることにより、
三角測量の原理に基づいて測定対象物の位置および形状
を算出する方法を採用したものが一般的である。
2. Description of the Related Art As a non-contact type three-dimensional shape measuring device,
In what is known in the art, the spot light such as laser light is projected onto the object to be measured and the reflected light is captured by the line sensor, or what is called a light-section method, laser slit light is applied to the object to be measured. By projecting and capturing the slit light image with a surface sensor such as a CCD camera,
It is common to adopt a method of calculating the position and shape of the measuring object based on the principle of triangulation.

【0003】上記のような反射光を利用した三次元形状
計測装置においては、正確な測定上の原点出しを行うた
めと、測定対象物の存在する範囲のみを計測することに
より測定時間の短縮およびメモリの節約を行う上で、レ
ーザ光などの照射光が測定対象物の先端に照射される位
置から計測を開始する必要がある。そのために、計測の
開始に先立って、該計測装置における光源部と測定対象
物とを相対的に移動させて位置調整する、いわゆる測定
物の先端出し作業を必要とする。このような先端出し作
業を行なうにあたって、従来では、照射光が測定物の先
端に当たる手前まで作業者が目で見ながら、コンピュー
タからのキー入力を介してモータ等の駆動機構を作動さ
せていた。
In the three-dimensional shape measuring apparatus using the reflected light as described above, the measurement time is shortened by accurately measuring the origin and by measuring only the range in which the object to be measured exists. In order to save memory, it is necessary to start the measurement from the position where the irradiation light such as laser light is irradiated to the tip of the measurement target. Therefore, prior to the start of measurement, a so-called tip-out operation of the measurement object is required, in which the light source section and the measurement object in the measurement device are relatively moved to adjust the position. In performing such a tip-out operation, conventionally, a worker operates a drive mechanism such as a motor through a key input from a computer while the operator visually observes before the irradiation light hits the tip of the object to be measured.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のような
従来の先端出し作業は、あくまでも人手による作業であ
って、所定の先端出しに多大な手数および時間を要する
だけでなく、キー入力と照射光位置の視認とを同時に行
なわなければならないために、先端出し精度が低い。工
業製品は端部を基準面として寸法指示して加工するのが
常であるから、たとえば、同一の設計図面に基づいて加
工された複数の工業製品間の加工寸法の比較を行う場合
に、各製品の端部に測定上の原点を合わせる際の原点精
度が低いと、生成されたデータの再現性がなくなり、計
測の信頼性が損なわれる。また、モータ等の駆動機構に
頻繁にON・OFF指令信号が入力されることから、過
負荷がかかり、その寿命などにも悪影響を与える。
However, the above-described conventional tip-end work is a manual operation, and not only a great deal of labor and time are required for the predetermined tip-end operation, but also key input and irradiation. Since it is necessary to visually check the light position at the same time, the leading-out accuracy is low. Since industrial products are usually processed by designating the dimensions with the ends as reference planes, for example, when comparing the processing dimensions of a plurality of industrial products processed based on the same design drawing, If the origin precision when aligning the origin on the measurement with the end of the product is low, the reproducibility of the generated data is lost and the reliability of the measurement is impaired. Further, since an ON / OFF command signal is frequently input to a drive mechanism such as a motor, an overload is applied, which adversely affects the life of the drive.

【0005】この発明は上記実情に鑑みてなされたもの
で、計測開始に先立つ測定物の先端出し作業を、この種
の装置が本来備えている構成を有効に利用して、自動的
に、かつ効率的に行なうことができるとともに、その先
端出し精度の向上を図ることができる三次元形状計測装
置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and automatically and automatically makes use of the structure originally provided in this type of device for the work of setting the tip of the measured object prior to the start of measurement. It is an object of the present invention to provide a three-dimensional shape measuring apparatus that can be efficiently performed and that can improve the accuracy of leading out.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、この発明に係る測定物の先端出し機能を持った三次
元形状計測装置は、所定領域に光を照射する光源部と、
上記所定領域を撮像してビデオ信号を生成する撮像部
と、上記ビデオ信号の中から光が照射された測定対象物
からの反射光を検出する光点検出部と、測定対象物と光
源部の少なくとも一方を他方に対して相対的に移動させ
て、光の照射によって測定対象物上を走査させる移動機
構と、測定開始時点から上記光点検出部によって反射光
が検出される第1時点までは測定対象物を上記所定領域
に入れる順方向に上記移動機構を高速で作動させる第1
の制御手段と、上記第1時点から上記光点検出部によっ
て反射光が検出されなくなるまで上記移動機構を高速で
逆方向に作動させる第2の制御手段と、上記第2時点か
ら上記光点検出部によって再び反射光が検出される第3
時点まで上記移動機構を低速で順方向に作動させる第3
の制御手段とを備えてなるものである。
In order to achieve the above object, a three-dimensional shape measuring apparatus having a function of projecting a tip of a measured object according to the present invention comprises a light source section for irradiating a predetermined area with light,
An image pickup unit that picks up the predetermined area to generate a video signal, a light spot detection unit that detects reflected light from the measurement target object irradiated with light from the video signal, and a measurement target object and a light source unit. A moving mechanism that moves at least one relative to the other and scans the object to be measured by irradiation of light, and from the measurement start time to the first time when the reflected light is detected by the light spot detection unit. A first mechanism for operating the moving mechanism at a high speed in a forward direction to put an object to be measured in the predetermined area.
Control means for operating the moving mechanism in the reverse direction at high speed until the reflected light is no longer detected by the light spot detection unit from the first time point, and the light point detection from the second time point. The third part where reflected light is detected again
The third moving mechanism operates the moving mechanism at low speed in the forward direction up to the time point.
And the control means of.

【0007】[0007]

【作用】この発明によれば、光源部から所定領域に向け
て光を照射して、その所定領域を撮像してビデオ信号を
生成するとともに、そのビデオ信号の中から光が照射さ
れた測定対象物からの反射光が光点検出部によって検出
される第1時点になるまで移動機構が高速で順方向に作
動される。この順方向への高速移動により、光源部から
照射される光が測定対象物の先端に対し少しオーバーラ
ンする。つぎに、上記第1時点から上記光点検出部によ
る反射光の検出がなくなる第2時点まで上記移動機構が
高速で逆方向に作動される。これによって、光源部から
照射される光が測定対象物の先端に対し接近した箇所
で、その先端よりも少しだけ逆方向にオーバーランした
箇所に位置することになる。
According to the present invention, the light source section irradiates light toward a predetermined area, the predetermined area is imaged to generate a video signal, and the measurement object irradiated with light from the video signal. The moving mechanism is operated at high speed in the forward direction until the first time point when the light reflected from the object is detected by the light spot detection unit. Due to the high speed movement in the forward direction, the light emitted from the light source unit slightly overruns the tip of the measurement target. Next, the moving mechanism is operated in the reverse direction at a high speed from the first time point to the second time point when the detection of the reflected light by the light spot detection unit disappears. As a result, the light emitted from the light source unit is located at a position close to the tip of the object to be measured, and a position slightly overrun in the opposite direction from the tip.

【0008】最後に、上記第2時点から上記光点検出部
により再び反射光が検出される第3時点になるまで上記
移動機構が低速で順方向に作動される。この順方向への
低速移動により、光源部から照射される光が測定対象物
の先端に合致し、所定の先端出しが終了する。
Finally, the moving mechanism is operated at a low speed in the forward direction from the second time point to the third time point when the reflected light is detected again by the light spot detecting section. Due to this low speed movement in the forward direction, the light emitted from the light source unit matches the tip of the object to be measured, and the predetermined tip end is completed.

【0009】上記のように、順方向への高速移動および
逆方向への高速移動によって、照射される光の位置が測
定対象物の先端に対して大きくずれていようとも、その
光の位置と測定対象物の先端とのずれ量を速やかに微少
量に自動調整することができる。その上で、最後に順方
向への低速移動によって、微少量のずれを収束させて所
定の先端出しを精度よく行なうことができる。
As described above, even if the position of the irradiated light is largely deviated from the tip of the object to be measured by the high speed movement in the forward direction and the high speed movement in the reverse direction, the position of the light and the measurement are measured. The amount of deviation from the tip of the object can be quickly and automatically adjusted to a minute amount. Then, finally, by moving at a low speed in the forward direction, it is possible to converge a minute amount of deviation and accurately perform a predetermined leading end.

【0010】[0010]

【実施例】以下、この発明の実施例を図面にもとづいて
説明する。図1は、この発明の一実施例による測定物の
先端出し機能を持った三次元形状計測装置のシステム構
成図であり、同図において、1は光源部を構成するレー
ザ光源であり、ポリゴンミラー(図示せず)を回転する
ことにより、スリット光を測定対象物3を含む所定領域
に照射する。2はスリット光像を撮像してビデオ信号を
生成する撮像部であり、本実施例では死角部分を減らす
ために2台のCCDカメラ2Aを設置しているが、1台
であってもよい。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system configuration diagram of a three-dimensional shape measuring apparatus having a tip-out function of a measured object according to an embodiment of the present invention. In FIG. 1, reference numeral 1 is a laser light source forming a light source unit, and a polygon mirror. By rotating (not shown), the slit light is applied to a predetermined region including the measurement object 3. Reference numeral 2 denotes an image pickup unit that picks up a slit light image to generate a video signal. In the present embodiment, two CCD cameras 2A are installed to reduce the blind spots, but the number may be one.

【0011】測定対象物3は、テーブル4の一端に設け
た回転テーブル4Aに、回転軸4Bを介して固定され
る。そして、テーブル4をX方向に移動しながらスリッ
ト光を測定対象物3に対しスキャン(走査)させる。測
定対象物3の裏面を測定する際や、測定対象物3の形状
によりレーザ光の当たらない部分が発生した際には、テ
ーブル用ドライバー(駆動回路)15から回転テーブル
4Aに指令を出し、測定対象物3を回転させる。
The measuring object 3 is fixed to a rotary table 4A provided at one end of the table 4 via a rotary shaft 4B. Then, while moving the table 4 in the X direction, the slit light is scanned (scanned) with respect to the measuring object 3. When measuring the back surface of the object 3 to be measured, or when a portion of the object 3 which is not exposed to the laser light is generated, a command is issued from the table driver (driving circuit) 15 to the rotary table 4A for measurement. The object 3 is rotated.

【0012】5は駆動系制御部で、上記テーブル4を単
位量ずつ順方向および逆方向に移動させるように、テー
ブル用ドライバー15に正逆信号を出力する。この駆動
系制御部5、上記ドライバー15およびモータ18によ
り、測定対象物3をレーザ光源1に対して相対的に移動
させて、スリット光を測定対象物3に対しスキャンさせ
る移動機構17を構成している。6は光源制御部で、上
記レーザ光源1をON,OFF制御する。7は撮像系制
御部で、上記CCDカメラ2Aのシャッター速度制御な
どを行なう。8は上記CCDカメラ2Aが撮像したスリ
ット光像のビデオ信号を入力するビデオ入力部である。
A drive system control unit 5 outputs a forward / reverse signal to the table driver 15 so as to move the table 4 by a unit amount in the forward and reverse directions. The drive system controller 5, the driver 15 and the motor 18 constitute a moving mechanism 17 for moving the measuring object 3 relative to the laser light source 1 to scan the measuring object 3 with slit light. ing. A light source controller 6 controls ON / OFF of the laser light source 1. An image pickup system control unit 7 controls the shutter speed of the CCD camera 2A. A video input unit 8 inputs a video signal of the slit light image captured by the CCD camera 2A.

【0013】9はA/D変換部で、上記ビデオ入力部8
から出力されるビデオ信号を2値化する。10はピーク
値検出部で、上記A/D変換部9で2値化されたビデオ
信号の最輝度点を、カメラ座標上の座標点として、複数
のカメラ画面の各走査線ごとに検出するものであり、測
定精度の向上を図るために、実際にピーク値としてサン
プリングされたカメラ画素位置(アドレス)とその両隣
りの位置のサンプリング値を用いて真の最輝度点を求め
る。11は同期信号発生部で、上記ビデオ信号から水平
同期信号および垂直同期信号を分離する同期分離部11
Aと、各走査線上のサンプリングクロックを発生する画
像クロック発生部11Bとからなる。
Reference numeral 9 denotes an A / D converter, which is the video input unit 8
The video signal output from is binarized. Reference numeral 10 denotes a peak value detection unit that detects the highest luminance point of the video signal binarized by the A / D conversion unit 9 as a coordinate point on camera coordinates for each scanning line of a plurality of camera screens. Therefore, in order to improve the measurement accuracy, the true maximum luminance point is obtained by using the camera pixel position (address) actually sampled as the peak value and the sampling values at both positions adjacent thereto. Reference numeral 11 denotes a sync signal generator, which is a sync separator 11 for separating a horizontal sync signal and a vertical sync signal from the video signal.
A and an image clock generator 11B that generates a sampling clock on each scanning line.

【0014】12はアドレス生成部で、上記同期信号発
生部11の同期分離部11Aで分離された水平同期信号
を基にしてY方向アドレスを生成する。13はデータ生
成部で、上記ピーク値検出部10で得られたカメラ座標
上の最輝度アドレスから測定対象物3の置かれた空間で
ある物体座標上の高さ(Z座標)を求めるとともに、同
一撮像部分の三次元位置座標(X,Y,Z)データを作
成するもので、本システムにおいてはパーソナルコンピ
ュータ上で機能する主にソフトウェアの形で存在する。
以上のA/D変換部9、ピーク値検出部10、同期信号
発生部11、アドレス生成部12およびデータ生成部1
3によってビデオ信号の中からスリット光の照射された
測定対象物3からの反射光を検出する光点検出部14が
構成されている。
An address generator 12 generates a Y-direction address based on the horizontal sync signal separated by the sync separator 11A of the sync signal generator 11. Reference numeral 13 denotes a data generation unit that obtains the height (Z coordinate) on the object coordinates, which is the space in which the measurement target 3 is placed, from the highest luminance address on the camera coordinates obtained by the peak value detection unit 10, The three-dimensional position coordinate (X, Y, Z) data of the same image pickup portion is created, and in this system, it exists mainly in the form of software that functions on a personal computer.
The above A / D converter 9, peak value detector 10, synchronization signal generator 11, address generator 12, and data generator 1
The light spot detector 14 detects the reflected light from the measuring object 3 irradiated with the slit light from the video signal.

【0015】16はデータ判別手段で、上記データ生成
部13で作成された三次元位置座標データを判別して、
その判別結果を上記駆動系制御部5へ入力するものであ
り、本実施例においては、測定対象物3がスリット光の
照射範囲に入ったときにスレッシュホールドレベルを越
えることで求められる最輝度点が、例えば10点以上あ
ると、データ有りと判別し、5点以下になると、データ
無しと判別するように設定している。
Reference numeral 16 is a data discriminating means, which discriminates the three-dimensional position coordinate data created by the data generating section 13,
The determination result is input to the drive system control unit 5, and in the present embodiment, the maximum brightness point obtained by exceeding the threshold level when the measurement object 3 enters the slit light irradiation range. However, if there are 10 points or more, it is determined that there is data, and if there are 5 points or less, it is determined that there is no data.

【0016】上記駆動系制御部5は、上記光点検出部1
4による検出結果および上記データ判別手段16による
テータ判別結果に基づいて、上記移動機構17における
ドライバー15の作動を制御する第1、第2および第3
の制御手段5A、5Bおよび5Cから構成されている。
そのうち、第1の制御手段5Aは、図2のAに示すよう
に、測定開始時点t0から上記光点検出部14によって
反射光が検出される第1時点t1までの間にわたり、測
定対象物3がスリット光の照射範囲に入るように上記移
動機構17のドライバー15に正方向の信号を送出して
モータ18を高速で順方向に作動させる。第2の制御手
段5Bは、図2のBに示すように、上記第1時点t1か
ら上記光点検出部14によって反射光が検出されなくな
る第2時点t2までの間にわたり、上記移動機構17の
ドライバー15に逆方向の信号を送出してモータ18を
高速で逆方向に作動させる。また、第3の制御手段5C
は、図2のCに示すように、上記第2時点t2から上記
光点検出部14によって再び反射光が検出される第3時
点t3まで上記移動機構17のドライバー15に正方向
の信号を送出してモータ18を低速で順方向に作動させ
る。
The drive system controller 5 includes the light spot detector 1
The first, second and third control of the operation of the driver 15 in the moving mechanism 17 based on the detection result of 4 and the data determination result of the data determination means 16.
Control means 5A, 5B and 5C.
Among them, the first control means 5A, as shown in A of FIG. 2, extends from the measurement start time t0 to the first time t1 at which the reflected light is detected by the light spot detection unit 14 and then the measurement object 3 Sends a signal in the positive direction to the driver 15 of the moving mechanism 17 so as to enter the slit light irradiation range to operate the motor 18 at high speed in the forward direction. As shown in FIG. 2B, the second control means 5B controls the movement mechanism 17 from the first time point t1 to the second time point t2 when the reflected light is not detected by the light spot detection unit 14. A reverse signal is sent to the driver 15 to operate the motor 18 at high speed in the reverse direction. Also, the third control means 5C
As shown in FIG. 2C, a forward signal is sent to the driver 15 of the moving mechanism 17 from the second time point t2 to the third time point t3 when the reflected light is detected again by the light spot detection unit 14. Then, the motor 18 is operated at a low speed in the forward direction.

【0017】図3は上記駆動系制御部5での処理フロー
を示す。レーザ光源1が光源制御部6によりON制御さ
れ、所定領域にスポット光が照射されて測定が開始され
ると(図2の時点t0)、データ判別手段16がデータ
無しの信号を駆動系制御部5に入力する。これに基づい
て、第1の制御手段5Aからドライバー15に正方向の
信号が送出されてモータ18が高速で順方向に作動され
る(ステップS1〜S3)。
FIG. 3 shows a processing flow in the drive system control section 5. When the laser light source 1 is ON-controlled by the light source controller 6 and a predetermined area is irradiated with spot light to start the measurement (time t0 in FIG. 2), the data discriminating means 16 outputs a signal indicating no data to the drive system controller. Enter in 5. Based on this, a signal in the forward direction is sent from the first control means 5A to the driver 15 and the motor 18 is operated at high speed in the forward direction (steps S1 to S3).

【0018】このようなモータ18の順方向への高速作
動にともなって、測定対象物3からの反射光が上記光点
検出部14によって検出されると(図2の時点t1)、
データ判別手段16がデータ有りの信号を駆動系制御部
5に入力して、モータ18の作動が停止される(ステッ
プS4,S5)。つづいて、第2の制御手段5Aからド
ライバー15に逆方向の信号が送出されてモータ18が
高速で逆方向に作動し、この作動にともなって、測定対
象物3からの反射光が上記光点検出部14によって検出
されなくなると(図2の時点t2)、データ判別手段1
6がデータ無しの信号を駆動系制御部5に入力して、モ
ータ18の作動が停止される(ステップS6〜S9)。
When the reflected light from the object 3 to be measured is detected by the light spot detector 14 in accordance with the high speed operation of the motor 18 in the forward direction (time point t1 in FIG. 2),
The data discriminating means 16 inputs a signal with data to the drive system control section 5, and the operation of the motor 18 is stopped (steps S4, S5). Subsequently, a signal in the reverse direction is sent from the second control means 5A to the driver 15, and the motor 18 operates at a high speed in the reverse direction. Along with this operation, the reflected light from the measuring object 3 causes the optical inspection. When it is no longer detected by the output unit 14 (time point t2 in FIG. 2), the data discriminating means 1
6 inputs a signal with no data to the drive system control unit 5, and the operation of the motor 18 is stopped (steps S6 to S9).

【0019】ついで、第3の制御手段5Cからドライバ
ー15に正方向の信号が送出されてモータ18が低速で
順方向に作動する。この作動にともない、上記光点検出
部14が再び測定対象物3からの反射光を検出すると
(図2の時点t3)、モータ18の作動が停止される
(ステップS10〜S13)。
Then, a signal in the forward direction is sent from the third control means 5C to the driver 15 so that the motor 18 operates in the forward direction at a low speed. Along with this operation, when the light spot detector 14 again detects the reflected light from the measurement object 3 (time point t3 in FIG. 2), the operation of the motor 18 is stopped (steps S10 to S13).

【0020】以上のようなステップ処理により、レーザ
源1から照射されるスポット光が測定対象物3の先端に
合致し、所定の先端出しが終了する。このように、順方
向への高速移動および逆方向への高速移動によって、照
射されるスポット光の位置が測定対象物3の先端に対し
て大きくずれていようとも、その光の位置と測定対象物
3の先端とのずれ量を速やかに微少量に自動調整でき、
その上で、最後に順方向への低速移動によって、微少量
のずれを収束させて所定の先端出しを精度よく行なうこ
とができる。
Through the above-described step processing, the spot light emitted from the laser source 1 matches the tip of the object 3 to be measured, and the predetermined tip exposure is completed. As described above, even if the position of the spot light to be irradiated is largely deviated from the tip of the measurement object 3 due to the high speed movement in the forward direction and the high speed movement in the reverse direction, the position of the light and the measurement object are measured. The amount of deviation from the tip of 3 can be quickly and automatically adjusted to a very small amount.
Then, finally, by moving at a low speed in the forward direction, it is possible to converge a minute amount of deviation and accurately perform a predetermined leading end.

【0021】実際、従来の目視による手作業の場合、測
定対象物の先端出し精度は2〜3mm程度であったが、こ
の発明では、上記低速移動の際のテーブル4の送りピッ
チをたとえば0.02mmに設定することにより、先端出し精
度を最高0.02mmまで高めることができる。
Actually, in the conventional manual work by visual inspection, the precision of the tip of the measuring object was about 2 to 3 mm, but in the present invention, the feed pitch of the table 4 at the time of low speed movement is 0.02 mm, for example. By setting to, it is possible to increase the tip extension accuracy to 0.02 mm.

【0022】また、上記テーブル4の上面は黒色とし
て、レーザ反射光が発生しにくくしたり、CCDカメラ
2Aの視野範囲内にテーブル4からのレーザ反射光が入
らなくすることによって、より正確な先端出しができる
ことはいうまでもない。
Further, by making the upper surface of the table 4 black so that the laser reflected light is less likely to be generated and the laser reflected light from the table 4 is prevented from entering the visual field range of the CCD camera 2A, a more accurate tip is obtained. It goes without saying that you can put it out.

【0023】なお、上記の実施例では、測定対象物3側
をテーブル4を介して移動させるように構成したが、レ
ーザ光源1側を移動させるように構成してもよく、ま
た、測定対象物3およびレーザ光源1の双方を移動させ
るようにしてもよい。さらに、この発明は、測定対象物
3にスッポト光を投射して、ラインセンサでその反射光
を捕える三次元形状側装置にも適用できる。
In the above embodiment, the measurement object 3 side is moved via the table 4, but it may be moved on the laser light source 1 side. Both 3 and the laser light source 1 may be moved. Furthermore, the present invention can also be applied to a three-dimensional shape side device that projects spot light onto the measurement target 3 and captures the reflected light with a line sensor.

【0024】[0024]

【発明の効果】以上のように、この発明によれば、所定
の三次元形状の計測を行なう前に、光源部から所定領域
に向けて光を照射するとともに、その所定領域を撮像し
てビデオ信号を生成するだけで、該三次元形状測定装置
が本来的に備えているところの光点検出部による反射光
の検出機能を有効に利用して、光源部を測定対象物の先
端に自動的に移動させることができ、所定の先端出し作
業の省力化および効率化を図ることができる。
As described above, according to the present invention, before the measurement of a predetermined three-dimensional shape, the light source unit irradiates a predetermined area with light, and the predetermined area is imaged and video-recorded. By simply generating a signal, the light source unit is automatically positioned at the tip of the object to be measured by effectively utilizing the detection function of the reflected light by the light spot detection unit originally provided in the three-dimensional shape measuring apparatus. Therefore, it is possible to save labor and improve the efficiency of the predetermined tip-out work.

【0025】しかも、その自動先端出し作業が、順方向
への高速移動および逆方向への高速移動と、その後の順
方向への低速移動との組合せによって行なわれるので、
光源部と測定対象物との初期の相対位置設定がラフで、
照射される光の位置が測定対象物の先端に対して大きく
ずれている場合でも、そのずれ量を速やかに微少量に自
動調整することができるとともに、その後の順方向への
低速移動によって、微少量のずれを収束させて所定の先
端出しを非常に精度よく行なうことができ、これによっ
て、正確な測定上の原点が求められる。
Moreover, since the automatic leading-out operation is performed by a combination of high-speed movement in the forward direction and high-speed movement in the reverse direction and subsequent low-speed movement in the forward direction,
The initial relative position between the light source and the object to be measured is rough,
Even if the position of the radiated light is largely deviated from the tip of the object to be measured, the amount of deviation can be quickly and automatically adjusted to a very small amount, and the subsequent slow movement in the forward direction makes it possible to make a fine adjustment. A small amount of deviation can be converged to perform a predetermined tip end with extremely high accuracy, and thus an accurate origin of measurement can be obtained.

【0026】また、このように測定対象物の先端に測定
上の原点を正確に合致させることができるので、測定対
象物の先端よりも手前を原点とする従来の場合と比較し
て、測定対象物の存在する範囲だけを測定できるので、
測定時間の短縮とデータ生成量の圧縮を図ることができ
る。
Since the origin of measurement can be accurately matched to the tip of the object to be measured in this manner, the object to be measured can be compared with the conventional case where the origin is before the tip of the object to be measured. Since you can measure only the range where an object exists,
It is possible to reduce the measurement time and the amount of data generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による測定物の先端出し機
能を持った三次元形状計測装置のシステム構成図であ
る。
FIG. 1 is a system configuration diagram of a three-dimensional shape measuring apparatus having a tip-out function of a measured object according to an embodiment of the present invention.

【図2】測定物の先端出し作用工程の説明図である。FIG. 2 is an explanatory diagram of a tip-out operation process of a measurement object.

【図3】図1の要部の処理フローを説明する図である。FIG. 3 is a diagram illustrating a processing flow of a main part of FIG.

【符号の説明】[Explanation of symbols]

1…レーザ光源(光源部)、2…撮像部、2A…CCD
カメラ、3…測定対象物、5…駆動系制御部、5A…第
1の制御部、5B…第2の制御部、5C…第3の制御
部、10…ピーク値検出部、14…光点検出部、17…
移動機構、18…モータ。
1 ... Laser light source (light source section), 2 ... Imaging section, 2A ... CCD
Camera, 3 ... Object to be measured, 5 ... Drive system controller, 5A ... First controller, 5B ... Second controller, 5C ... Third controller, 10 ... Peak value detector, 14 ... Optical inspection Debu, 17 ...
Moving mechanism, 18 ... Motor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所定領域に光を照射する光源部と、上記
所定領域を撮像してビデオ信号を生成する撮像部と、上
記ビデオ信号の中から光が照射された測定対象物からの
反射光を検出する光点検出部と、測定対象物と光源部の
少なくとも一方を他方に対して相対的に移動させて、光
の照射によって測定対象物上を走査させる移動機構と、
測定開始時点から上記光点検出部によって反射光が検出
される第1時点までは測定対象物を上記所定領域に入れ
る順方向に上記移動機構を高速で作動させる第1の制御
手段と、上記第1時点から上記光点検出部によって反射
光が検出されなくなるまで上記移動機構を高速で逆方向
に作動させる第2の制御手段と、上記第2時点から上記
光点検出部によって再び反射光が検出される第3時点ま
で上記移動機構を低速で順方向に作動させる第3の制御
手段とを備えてなる測定物の先端出し機能を持った三次
元形状計測装置。
1. A light source unit for irradiating a predetermined region with light, an image capturing unit for capturing an image of the predetermined region to generate a video signal, and reflected light from a measurement object irradiated with light from the video signal. A light spot detection unit for detecting, at least one of the measurement target and the light source unit is relatively moved with respect to the other, and a moving mechanism for scanning the measurement target by irradiation of light,
From a measurement start time point to a first time point when the reflected light is detected by the light spot detection unit, first control means for operating the moving mechanism at a high speed in a forward direction to put an object to be measured into the predetermined area, and the first control means. Second control means for operating the moving mechanism in the reverse direction at high speed until the reflected light is no longer detected by the light spot detector from one time point, and the reflected light is detected again by the light spot detector from the second time point. A three-dimensional shape measuring apparatus having a tip-out function for measuring an object to be measured, which comprises a third control means for operating the moving mechanism at a low speed in a forward direction until a third time point.
JP22788792A 1992-08-03 1992-08-03 Three-dimensional shape measuring device with a function to put out the tip of the workpiece Expired - Fee Related JP3311787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22788792A JP3311787B2 (en) 1992-08-03 1992-08-03 Three-dimensional shape measuring device with a function to put out the tip of the workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22788792A JP3311787B2 (en) 1992-08-03 1992-08-03 Three-dimensional shape measuring device with a function to put out the tip of the workpiece

Publications (2)

Publication Number Publication Date
JPH0650731A true JPH0650731A (en) 1994-02-25
JP3311787B2 JP3311787B2 (en) 2002-08-05

Family

ID=16867892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22788792A Expired - Fee Related JP3311787B2 (en) 1992-08-03 1992-08-03 Three-dimensional shape measuring device with a function to put out the tip of the workpiece

Country Status (1)

Country Link
JP (1) JP3311787B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021834A1 (en) * 2021-08-19 2023-02-23 株式会社瑞光 Web supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021834A1 (en) * 2021-08-19 2023-02-23 株式会社瑞光 Web supply device

Also Published As

Publication number Publication date
JP3311787B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
US4584455A (en) Laser beam machining apparatus
US5076697A (en) Apparatus and method for inspecting defect of mounted component with slit light
JPH05215518A (en) Optical type inspection probe
JP2002107126A (en) Apparatus and method for inspecting substrate
JPH0425584B2 (en)
JP4084383B2 (en) Vision inspection apparatus and vision inspection method using a total reflection mirror
JP3958815B2 (en) Tool position measuring method in NC machine tools
JPH07108323A (en) Marking device
JP3311787B2 (en) Three-dimensional shape measuring device with a function to put out the tip of the workpiece
JP3759584B2 (en) 3D height measurement method of objects
JP4083854B2 (en) Image detection device
JP2536127B2 (en) Board inspection equipment
JP2664424B2 (en) Laser processing machine
JP2526891B2 (en) Laser Beam Skiana
JP3712572B2 (en) Plasma welding equipment
JPH11241916A (en) Height measuring method, height data processing method, and height measuring device
JPH0560518A (en) Three-dimensional coordinate measurement device
JPH08128816A (en) Lead inspection method
JPH11251799A (en) Component recognition method, component inspection method and component mounting method
JP3923168B2 (en) Component recognition method and component mounting method
KR920010548B1 (en) Shape measuring method and system of three dimensional curved surface
JP2924514B2 (en) Cross-sectional shape measuring device
JP2626611B2 (en) Object shape measurement method
JPH06277864A (en) Laser beam machining device
JP3013255B2 (en) Shape measurement method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees