JPH0650317B2 - Measuring method of viscosity change of blood etc. - Google Patents

Measuring method of viscosity change of blood etc.

Info

Publication number
JPH0650317B2
JPH0650317B2 JP63053082A JP5308288A JPH0650317B2 JP H0650317 B2 JPH0650317 B2 JP H0650317B2 JP 63053082 A JP63053082 A JP 63053082A JP 5308288 A JP5308288 A JP 5308288A JP H0650317 B2 JPH0650317 B2 JP H0650317B2
Authority
JP
Japan
Prior art keywords
blood
sensor
change
viscosity
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63053082A
Other languages
Japanese (ja)
Other versions
JPH01227062A (en
Inventor
友繁 堀
靖彦 椎木
健介 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP63053082A priority Critical patent/JPH0650317B2/en
Priority to DE68925829T priority patent/DE68925829T2/en
Priority to EP89103900A priority patent/EP0332110B1/en
Priority to US07/319,192 priority patent/US4947678A/en
Priority to CA000592887A priority patent/CA1333754C/en
Publication of JPH01227062A publication Critical patent/JPH01227062A/en
Publication of JPH0650317B2 publication Critical patent/JPH0650317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、血液等の粘性変化を測定する方法に関するも
のである。
TECHNICAL FIELD The present invention relates to a method for measuring a change in viscosity of blood or the like.

(従来の技術) 一般に、血液等の粘性変化を調べることは、血液等の状
態を把握するうえで重要であり、例えば粘性変化を調べ
ることによって、血液型なども容易に知ることができる
し、また疾患の診断などにおいても幅広く利用されてい
るものであり、例えば血液の凝固時間を測定することに
よって、血友病、フォンビルブランド病、クリスマス病
あるいは肝疾患等の診断に利用され、また血液中の血漿
と坑原や坑体を反応させることによって、免疫反応の状
態を知ることも病理学上実施されている。
(Prior Art) In general, it is important to check the viscosity change of blood or the like in order to understand the state of blood or the like. For example, by checking the viscosity change, the blood type can be easily known, It is also widely used in the diagnosis of diseases, for example, by measuring the coagulation time of blood, it is used in the diagnosis of hemophilia, von Willebrand disease, Christmas disease, liver disease, etc. It is also pathologically performed to know the state of the immune reaction by reacting the plasma in the body with the body or body.

従来、血液の凝固時間を測定する方法としては、プロト
ロンビン時間(PT)の測定によるもの、活性化部分ト
ロンボプラスチン時間(APTT)の測定によるもの、
トロンビン時間の測定によるもの、フィビリノゲンテス
ト、ヘパリンテスト等が代表的なものとしてあげられ
る。
Conventionally, as a method for measuring the coagulation time of blood, a method of measuring prothrombin time (PT), a method of measuring activated partial thromboplastin time (APTT),
Typical examples include those based on measurement of thrombin time, fibrinogen test, heparin test and the like.

また、免疫反応の検査方法としては、補体供給反応、蛍
光体反応、酵素免疫測定法等があげられる。
In addition, examples of a method for testing an immune reaction include a complement supply reaction, a fluorescent reaction, and an enzyme immunoassay method.

また、本出願人が先に開示した特開昭60−15294
3号公報記載の、血管内の血液の物性変化を測定するこ
とによって血栓の形成状態を測定する方法などもある。
In addition, Japanese Patent Application Laid-Open No. 60-15294 previously disclosed by the present applicant.
There is also a method described in Japanese Patent No. 3, which measures the state of thrombus formation by measuring changes in the physical properties of blood in blood vessels.

(発明が解決しようとする課題) しかしながら、以上のような従来の血液等の粘性変化測
定方法にあっては、刺激物質や検査試薬は市販された一
定の安定した成分を有するものを使用しているといって
も、凝固の判断等は人間が肉眼で行っているのがほとん
どであり、測定値にばらつきが生じ、またその信頼度を
担保するために測定を何回も行う必要があるという難点
がある。
(Problems to be Solved by the Invention) However, in the conventional method for measuring the change in viscosity of blood or the like as described above, the stimulating substance and the test reagent are commercially available and have a certain stable component. However, it is said that humans mostly judge the coagulation with the naked eye, and the measured values vary, and it is necessary to perform the measurement many times to ensure the reliability. There are difficulties.

また、測定を装置的に行う、例えばプロトロンビン時間
を分光光度計を用いて測定する方法などもあるが、被検
査液面の淫れによる光散乱などが生じて測定誤差を生ず
るという難点がある。
There is also a method in which the measurement is carried out by an apparatus, for example, the prothrombin time is measured using a spectrophotometer, but there is a drawback that light scattering due to the incongruity of the liquid surface to be inspected causes a measurement error.

しかも、従来の装置的手段による測定方法は、各々の方
法に合わせた装置・器具などを用意する必要性を伴うも
のである。
Moreover, the conventional method of measuring by means of devices requires the preparation of devices, instruments, etc. adapted to the respective methods.

そしてまた、本出願人が先に開示した特開昭60−15
2943号公報記載の測定方法は、人工血管における血
液細胞の付着による血栓形成を調べるもので、血液や血
漿の異常を調べるには至っていない。
And, again, Japanese Patent Application Laid-Open No. 60-15 disclosed by the present applicant.
The measuring method described in Japanese Patent No. 2943 is to investigate thrombus formation due to adhesion of blood cells in an artificial blood vessel, and has not been able to investigate abnormalities in blood and plasma.

本発明の技術的課題は、以上の難点を解決し、各種測定
方法に対して広く利用することが出来、かつ誤差のない
測定を行いえる血液の粘性変化の測定方法を提供するこ
とにある。
The technical problem of the present invention is to solve the above problems, to provide a method for measuring the change in blood viscosity that can be widely used for various measuring methods and can perform measurement without error.

(課題を解決するための手段) 以上の技術的課題を解決するために、本発明では、吸熱
体もしくは発熱体で構成されるセンサーを血液もしくは
血漿中に装置すると共に、該血液等を刺激することによ
って血液等中に粘性変化を生じせしめ、該粘性変化を、
吸発熱体の温度θ、吸発熱体を内蔵した前記センサー
の表面温度θ、血液等の温度θとθもしくはθ
との差であるθ−θもしくはθ−θ、血液等の
動粘性率νもしくは前記センサー表面における熱伝達率
αの各変化の何れかを測定することによって検知するよ
うにしたことを特徴とする血液等の粘性変化の測定方法
成るものを構成した。
(Means for Solving the Problems) In order to solve the above technical problems, in the present invention, a sensor including a heat absorbing body or a heat generating body is provided in blood or plasma, and the blood or the like is stimulated. This causes a change in viscosity in blood, etc.
Temperature θ w of the heat-absorbing body, surface temperature θ s of the sensor incorporating the heat-generating body, temperatures θ and θ w or θ s of blood, etc.
It has to be detected by measuring either the change in the heat transfer coefficient α in kinematic viscosity ν or the sensor surface, such as theta w - [theta] or θ s∞, blood is the difference between And a method for measuring the change in viscosity of blood or the like.

(作用) 血液の凝固は、凝固因子の活性化カスケードから、最終
的に形成されるフィビリンによって急速に行われるもの
であり、血液の粘性変化はそのとき生ずるものである
が、このとき同時に、血液とその血液中に装置された吸
熱体もしくは発熱体で構成されるセンサーに係るθ
θ、θ−θ、θ−θ、αの変化が引き起こさ
れる。
(Action) Blood coagulation is rapidly performed by fibrin that is finally formed from the activation cascade of coagulation factors, and the viscosity change of blood occurs at that time. And θ w relating to a sensor composed of an endothermic or exothermic device installed in the blood,
Changes in θ s , θ w −θ , θ s −θ , and α are caused.

またセンターの温度等の変化量と流体の動粘性率は一定
の関数関係にあることも知られている。(日本食品工学
会誌、:昭和63年1月号総説参照)。
It is also known that the amount of change in the center temperature and the like and the kinematic viscosity of the fluid have a constant functional relationship. (See Japanese Food Engineering Society, January 1988, Review Article).

したがって、センサーの温度等の変化量を断続的もしく
は経時的に測定することによって動粘性率もしくは動粘
性率に関連のある指標値が求められるので、これを刺激
を与えた血液に利用することにより、血液の粘性変化が
検知されることになる。。
Therefore, the kinematic viscosity or an index value related to the kinematic viscosity can be obtained by measuring the amount of change in the temperature of the sensor intermittently or over time, and by using this for the stimulated blood. The change in blood viscosity will be detected. .

また、免疫反応系においても、血液中に微小なプラスチ
ック球体を多数添加し、その球体表面で坑原・坑体反応
を進行させ、球体を結果的に凝集させることにより、先
ほどと同様にセンサーによって、血液の粘性変化として
免疫反応が測定されることになる。
Also in the immune reaction system, a large number of minute plastic spheres are added to the blood, and the reaction of the original and the pits is allowed to proceed on the surface of the spheres, and the spheres are eventually aggregated. The immune response will be measured as a change in blood viscosity.

(実施例) 以下、本発明の実施例を説明する。(Example) Hereinafter, the Example of this invention is described.

変化量の一例として、血液とセンサーの表面温度との温
度差θ−θの変化量と血液の動粘性率との関係につ
いて、以下詳細に説明する。
As an example of the amount of change, the relationship between the amount of change in the temperature difference θ s −θ between blood and the surface temperature of the sensor and the kinematic viscosity of blood will be described in detail below.

第7図において、(S)はセンサー、(F)は容器(1
0)に充填された流体である。
In FIG. 7, (S) is a sensor, (F) is a container (1
It is the fluid filled in 0).

センサー(S)表面における定常熱伝達率αは、発熱量
をQ(W),センサーの表面積をA(m)とすると次
式で与えられる。
The steady-state heat transfer coefficient α on the surface of the sensor (S) is given by the following equation, where the calorific value is Q (W) and the surface area of the sensor is A (m 2 ).

従って、上記式(1)から発熱量Q及びセンサーの表面
積Aが既知であれば、上記温度差θ−θから熱伝達
率が算出できる。
Therefore, if the calorific value Q and the surface area A of the sensor are known from the equation (1), the heat transfer coefficient can be calculated from the temperature difference θ s −θ .

一方、センサーを、物性値が既知である、例えば蒸溜水
中にセットして、該センサーに種々の値の定電流、例え
ば直流定電流を通じて蒸溜水と(加熱される)センサー
との温度差θ−θを測定すると、熱伝達率の無次元
量であるヌッセルト(Nusselt)数Nuと、動粘性率の
無次元量であるプラントル(Prandlt)数Pr及び温度
差の無次元量であるグラスホッフ(Grashof)数Grと
の関係式、即ち、上記センサー周囲における自由対流熱
伝達現象を一般的に表示する方程式、例えば Nu=C0GrC1PrC2 ……(2) が求められる(式中C、C、Cは定数を示す)。
On the other hand, the sensor is set in, for example, distilled water whose physical properties are known, and the temperature difference θ s between the distilled water and the (heated) sensor is passed through a constant current of various values, for example, a direct current, to the sensor. When −θ is measured, the Nusselt number Nu, which is a dimensionless amount of heat transfer coefficient, the Prandlt number Pr, which is a dimensionless amount of kinematic viscosity, and the Grashof (dimensional amount of temperature difference). Grashof) The relational expression with the number Gr, that is, an equation for generally expressing the free convection heat transfer phenomenon around the sensor, for example, Nu = C 0 Gr C1 Pr C2 (2) is obtained (wherein C 0 , C 1 and C 2 are constants).

なお、Nu、Gr及びPrは下記の関係式で表される。Nu, Gr and Pr are represented by the following relational expressions.

Nu=αL/λ ……(3) Gr=Lgβ(θ−θ)/ν (4) Pr=ν/a ……(5) [式中Lは代表長さ(m)、λは熱伝導率(w/m
k),gは重力加速度(m/s)、βは体積膨張率
(1/K)、νは動粘性率(m/s),aは温度伝達
率(w/m・K)をそれぞれ示す。] 従って、被測定物質の動粘性率νは、上記式(2)〜
(5)より下記式で表される。
Nu = αL / λ (3) Gr = L 3 gβ (θ s −θ ) / ν 2 (4) Pr = ν / a (5) [wherein L is a representative length (m), λ is the thermal conductivity (w / m
k) and g are gravitational acceleration (m / s 2 ), β is volume expansion coefficient (1 / K), ν is kinematic viscosity (m 2 / s), and a is temperature transfer coefficient (w / m 2 · K). Are shown respectively. Therefore, the kinematic viscosity ν of the substance to be measured is expressed by the above equation (2) to
It is expressed by the following formula from (5).

ν2C1-C2=Cog C1AL3C1-1Q-1λβC1a-C2(θ−θ
C1+1 ……(6) ここで、例えばセンサーとして電流iにて通電加熱する
白金線を用いた場合 Q=Ri ……(7) [式中Rはセンサーとして用いた、白金線の電気抵抗
(Ω)、iはセンサーに通電された電流値(A)を表
す。] 上記式(6)において、g,A,Lは定数であり、さら
にλ、β及びaについては、その変化がνの変化幅比べ
て十分に小さいので、結局動粘性率νは発熱量Qとθ
−θのみの関数として、次式(8)で表される。
ν 2C1-C2 = C og C1 AL 3C1-1 Q -1 λβ C1 a -C2 (θ s -θ ∞)
C1 + 1 (6) Here, for example, when a platinum wire that is electrically heated at a current i is used as a sensor Q = Ri 2 (7) [where R is the electricity of the platinum wire used as the sensor] The resistance (Ω) and i represent the current value (A) applied to the sensor. In the above equation (6), g, A, and L are constants, and the changes in λ, β, and a are sufficiently smaller than the change width of ν, so that the kinematic viscosity ν is the calorific value Q. And θ s
It is expressed by the following equation (8) as a function of only −θ .

ν2C1-C2=C-1(θ−θC1+1 ……(8) [式中Cは定数を表す。] しかして、流体(F)に血液を用いるとともにセンサー
(S)に発熱量Qが一定になるように電流を通電し、血
液とセンサーとの温度差の変化量θ−θを測定する
ことによって、動粘性率νが求められ、粘性変化が検知
されることになるのである。
ν 2C1-C2 = C 3 Q -1s ) C1 + 1 (8) [wherein C 3 represents a constant. ] Then, blood is used as the fluid (F) and an electric current is applied to the sensor (S) so that the calorific value Q is constant, and the change amount θ s −θ of the temperature difference between the blood and the sensor is measured. Thus, the kinematic viscosity ν is obtained, and the viscosity change is detected.

以下に、本発明者らが行った実験結果を示す。The results of experiments conducted by the present inventors are shown below.

実験は、人正常血漿(VNC)試料に各種試薬をインジ
ェクション添加し、その後の凝固変化過程をセンサーを
用いて連続的に測定した。
In the experiment, various reagents were injected into a normal human plasma (VNC) sample, and the subsequent coagulation change process was continuously measured using a sensor.

第7図において、(M)は、センサー(S)を司る計測
装置系であり、(1)は電流源、(2)は電圧測定装
置、(3)は制御装置であって、これらはGP−IB
(ゼネラル・パーパス・インターフェース・バス)で接
続されている。
In FIG. 7, (M) is a measuring device system that controls the sensor (S), (1) is a current source, (2) is a voltage measuring device, and (3) is a control device. -IB
(General purpose interface bus).

そして、以上のようなセンサー(S)の温度は印加され
た電圧値と電流値から抵抗値を算出することによって常
法により容易に知ることができ、血液の温度も側温低抗
体などによって測定されるものである。
Then, the temperature of the sensor (S) as described above can be easily known by the usual method by calculating the resistance value from the applied voltage value and current value, and the blood temperature is also measured by the side temperature low antibody etc. It is what is done.

<実験例1> 正常全血、正常血漿、異常全血、異常血漿のそれぞれ
に、組織トランボプラスチンと塩化カルシウムとから成
る凝固因子及び刺激物質を混注し、プロトビン時間(P
T)を測定した。
<Experimental Example 1> A coagulation factor and a stimulant consisting of tissue tramoplastin and calcium chloride were co-injected into normal whole blood, normal plasma, abnormal whole blood, and abnormal plasma, respectively, and the protobin time (P
T) was measured.

各検査液を、0゜Cにおける抵抗約50Ωの白金線から
なるセンサーを装置したスピッツ内で作成し、約40m
Aもしくは約60mAの電流でセンサーを加熱した。
Each test solution was prepared in Spitz equipped with a sensor consisting of a platinum wire with a resistance of about 50Ω at 0 ° C,
The sensor was heated with A or a current of about 60 mA.

表1はそれぞれのプロトビン時間(PT)を示すもので
あり、第1図はそのうちの異常血漿を被検査液とし、セ
ンサー加熱電流が40mAとしたときの、温度差の変化
量θ−θと経過時間との関係を示すものであり、第
2図は正常血漿を被検査液とし、同じくセンサー加熱電
流が約40mAとしたときのものである。
Table 1 shows each protobin time (PT), and FIG. 1 shows the amount of change in temperature difference θ s −θ when the abnormal plasma among them was used as the test liquid and the sensor heating current was 40 mA. 2 shows the relationship between the time and the elapsed time, and FIG. 2 shows the case where normal plasma is used as the test liquid and the sensor heating current is about 40 mA.

なお、各図において、横軸は被検査液の作成時を0とし
た経過時間を示しており、それぞれ上図は経過時間に対
する温度差の変化率を表すグラフであり、下図は経過時
間に対する温度差の変化を表すグラフである。
In each figure, the horizontal axis represents the elapsed time with the time of preparation of the test liquid as 0, the upper figure is a graph showing the change rate of the temperature difference with respect to the elapsed time, and the lower figure shows the temperature with respect to the elapsed time. It is a graph showing the change of the difference.

<実験例2> 正常全血、正常血漿、異常全血、異常血漿のそれぞれ
に、カオリン、リン脂質、セライト、ケイ酸、エラジン
酸などでなる凝固因子刺激物質を混注し、活性化部分ト
ロンボプラスチン時間(APTT)を測定した。
<Experimental example 2> A coagulation factor stimulating substance such as kaolin, phospholipid, celite, silicic acid, and ellagic acid was co-injected into each of normal whole blood, normal plasma, abnormal whole blood, and abnormal plasma, and activated partial thromboplastin time. (APTT) was measured.

各検査液を、金属細線を装置したスピッツ内で作成し、
センサー加熱電流は、約40mAとした。
Create each test solution in Spitz equipped with a thin metal wire,
The sensor heating current was about 40 mA.

表2はそれぞれの活性化部分トロンボプラスチン時間
(APTT)を示すものであり、第3図はそのうちの異
常血漿を被検査液とし、センサー加熱電流が約40mA
としたときの、温度差の変化量θ−θと経過時間と
の関係を示すものであり、第4図は正常血漿を被検査液
とし、同じくセンサー加熱電流が約40mAとしたとき
のものである。
Table 2 shows each activated partial thromboplastin time (APTT). FIG. 3 shows abnormal plasma among them as the test liquid, and the sensor heating current was about 40 mA.
Fig. 4 shows the relationship between the amount of change in temperature difference θ s and the elapsed time, when Fig. 4 shows that normal plasma was used as the test liquid and the sensor heating current was about 40 mA. It is a thing.

<実験例3> 血漿中のフィビリン析出濃度が1〜20%のものにおい
て段階的にトロンビン時間を測定した。
<Experimental Example 3> The thrombin time was measured stepwise in a plasma sample having a fibrin deposition concentration of 1 to 20%.

センサー加熱電流は約60mAとした。The sensor heating current was about 60 mA.

表3はそれぞれのトロンビン時間を示すものであり、第
5図はそのうちのフィビリン析出濃度が1%であるとき
の、温度差の変化量θ−θと経過時間との関係を示
すものであり、第6図はフィビリン析出濃度が20%で
あるときのものである。
Table 3 shows each thrombin time, and FIG. 5 shows the relationship between the change amount of temperature difference θ s −θ and the elapsed time when the concentration of fibrin precipitation is 1%. Yes, FIG. 6 is when the fibrin precipitation concentration is 20%.

(発明の効果) 以上、本発明方法によれば、血液に刺激を与えることに
より血液を凝固させて粘性変化を測定するもので血液等
の状態を把握するうえで重要な粘性変化を調べることが
極めて容易かつ正確になる。
(Effects of the Invention) As described above, according to the method of the present invention, the viscosity change is measured by stimulating the blood to coagulate the blood to measure the viscosity change. Extremely easy and accurate.

従って、血液型なども容易に知ることができることにな
る。
Therefore, the blood type can be easily known.

また、例えば血液凝固時間が長くなる重疾患者の診断
も、その低粘性に影響されることなく行うことができ、
また小さな凝固変化も容易に検出できるので、診断測定
で生じる誤差が極めて少なくなる。
Further, for example, the diagnosis of a seriously ill person whose blood coagulation time is long can be performed without being affected by the low viscosity,
In addition, since small changes in coagulation can be easily detected, the error caused in diagnostic measurement is extremely small.

従って、従来のように何回も測定する必要が無くなり、
測定に要する時間や労力の削減につながる。
Therefore, there is no need to measure many times as in the past,
This will reduce the time and labor required for measurement.

また、各種試験に合わせた装置・器具などを用意する必
要性も無いので経済的である。
In addition, it is economical because there is no need to prepare equipment and instruments for various tests.

【図面の簡単な説明】[Brief description of drawings]

第1〜6図は、本発明方法によって測定された結果を表
すグラフ、第7図は測定状態の説明図である。 (F)……流体 (S)……センサー (M)……計測装置系 (1)……電流源 (2)……電圧測定装置 (3)……制御装置
1 to 6 are graphs showing the results measured by the method of the present invention, and FIG. 7 is an explanatory view of the measurement state. (F) …… Fluid (S) …… Sensor (M) …… Measuring device system (1) …… Current source (2) …… Voltage measuring device (3) …… Control device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】吸熱体もしくは発熱体で構成されるセンサ
ーを血液もしくは血漿中に装置すると共に、該血液等を
刺激することによって血液等中に粘性変化を生じせし
め、該粘性変化を、吸発熱体の温度θw、吸発熱体を内
蔵した前記センサーの表面温度θs、血液等の温度θ
とθwもしくはθsとの差であるθw−θもしくはθs
θ、血液等の動粘性率νもしくは前記センサー表面に
おける熱伝達率αの各変化の何れかを測定することによ
って検知するようにしたことを特徴とする血液等の粘性
変化の測定方法。
1. A sensor comprising a heat absorbing body or a heat generating body is installed in blood or plasma, and the blood or the like is stimulated to cause a viscosity change in the blood or the like. Body temperature θ w , surface temperature θ s of the sensor with built-in heat absorbing / heating element, temperature θ ∞ of blood, etc.
And θ w or θ s , which is the difference between θ w −θ or θ s
A method for measuring a viscosity change of blood or the like, characterized in that it is detected by measuring either θ , a kinematic viscosity ν of blood or the like or a heat transfer coefficient α of the sensor surface.
【請求項2】上記血液等の刺激は、血液凝固を活性化さ
せる因子を添加する手段によるものである請求項(1)
に記載の血液等の粘性変化の測定方法。
2. The stimulation of blood or the like is performed by adding a factor that activates blood coagulation (1).
The method for measuring the change in viscosity of blood, etc.
【請求項3】上記血液等の刺激は、坑原もしくは坑体を
添加する手段によるものである請求項(1)に記載の血
液等の粘性変化の測定方法。
3. The method for measuring the viscosity change of blood or the like according to claim 1, wherein the stimulation of the blood or the like is performed by means of adding a raw material or a hollow body.
【請求項4】上記血液等の刺激は、物理的手段によるも
のである請求項(1)に記載の血液等の粘性変化の測定
方法。
4. The method for measuring the change in viscosity of blood or the like according to claim 1, wherein the stimulation of blood or the like is performed by physical means.
JP63053082A 1988-03-07 1988-03-07 Measuring method of viscosity change of blood etc. Expired - Fee Related JPH0650317B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63053082A JPH0650317B2 (en) 1988-03-07 1988-03-07 Measuring method of viscosity change of blood etc.
DE68925829T DE68925829T2 (en) 1988-03-07 1989-03-06 Process for measuring the change in viscosity in the blood or blood plasma and detector therefor
EP89103900A EP0332110B1 (en) 1988-03-07 1989-03-06 Method for measurement of viscosity change in blood or blood plasma and sensor therefor
US07/319,192 US4947678A (en) 1988-03-07 1989-03-06 Method for measurement of viscosity change in blood or the like and sensor thereof
CA000592887A CA1333754C (en) 1988-03-07 1989-03-06 Method for measurement of viscosity change in blood or the like and sensor thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053082A JPH0650317B2 (en) 1988-03-07 1988-03-07 Measuring method of viscosity change of blood etc.

Publications (2)

Publication Number Publication Date
JPH01227062A JPH01227062A (en) 1989-09-11
JPH0650317B2 true JPH0650317B2 (en) 1994-06-29

Family

ID=12932873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053082A Expired - Fee Related JPH0650317B2 (en) 1988-03-07 1988-03-07 Measuring method of viscosity change of blood etc.

Country Status (1)

Country Link
JP (1) JPH0650317B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273422A (en) * 1993-03-22 1994-09-30 Snow Brand Milk Prod Co Ltd Method for determining quantity of coagulation factor of blood
JP2706416B2 (en) * 1993-09-21 1998-01-28 雪印乳業株式会社 How to measure the kinematic viscosity of a fluid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950783A (en) * 1972-09-19 1974-05-17

Also Published As

Publication number Publication date
JPH01227062A (en) 1989-09-11

Similar Documents

Publication Publication Date Title
EP0332110B1 (en) Method for measurement of viscosity change in blood or blood plasma and sensor therefor
McMichael et al. Viscoelastic coagulation testing: technology, applications, and limitations
Nair et al. Tests of global haemostasis and their applications in bleeding disorders
CA2032561C (en) Method of determining levels of extrinsic and intrinsic clotting factors and protein c
Konstantinidi et al. Clinical application of thromboelastography/thromboelastometry (TEG/TEM) in the neonatal population: a narrative review
US5601995A (en) Apparatus and method for detecting coagulation in blood samples
CN103748459B (en) For determining the method and apparatus of sensing device availability
US3840806A (en) Instrument for measuring blood clotting times
US3694161A (en) Method for measuring platelet aggregation
EP1588161B1 (en) System and method for measuring coagulation time without thermostatic control
EP0356893B1 (en) Method for measuring a gel-point temperature
JPH0650317B2 (en) Measuring method of viscosity change of blood etc.
Barrowcliffe Monitoring haemophilia severity and treatment: new or old laboratory tests?
Beck et al. Hyperviscosity syndrome in paraproteinemia: managed by plasma exchange; monitored by serum tests
Dahms Automated potentiometric determination of inorganic blood constituents (Na+, K+, H+, CI)
Tripodi et al. Oral anticoagulant monitoring by laboratory or near-patient testing: what a clinician should be aware of
US11199533B2 (en) Microscale whole blood coagulation assay platform
Angberg et al. Evaluation of heat-conduction microcalorimetry in pharmaceutical stability studies (II) Methods to evaluate the microcalorimetric response
Podczasy et al. Evaluation of whole-blood lumiaggregation
LaForce et al. Evaluation of the SonoClot Analyzer for the measurement of platelet function in whole blood
Gemmati et al. A modified functional global test to measure protein C, protein S activities and the activated protein C-resistance phenotype
JPH0470577B2 (en)
Wilson Measurement of electrical conductivity for clinical purposes
JPH01254860A (en) Method of measuring concentration of component liquid of liquid mixture
Fieschko et al. Kinetics of viscosity changes in sickle hemoglobin solutions

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees