JPH0470577B2 - - Google Patents

Info

Publication number
JPH0470577B2
JPH0470577B2 JP63064776A JP6477688A JPH0470577B2 JP H0470577 B2 JPH0470577 B2 JP H0470577B2 JP 63064776 A JP63064776 A JP 63064776A JP 6477688 A JP6477688 A JP 6477688A JP H0470577 B2 JPH0470577 B2 JP H0470577B2
Authority
JP
Japan
Prior art keywords
sensor
blood
viscosity
measuring
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63064776A
Other languages
Japanese (ja)
Other versions
JPH01239433A (en
Inventor
Tomoshige Hori
Kensuke Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP63064776A priority Critical patent/JPH01239433A/en
Priority to CA000592887A priority patent/CA1333754C/en
Priority to EP89103900A priority patent/EP0332110B1/en
Priority to DE68925829T priority patent/DE68925829T2/en
Priority to US07/319,192 priority patent/US4947678A/en
Publication of JPH01239433A publication Critical patent/JPH01239433A/en
Publication of JPH0470577B2 publication Critical patent/JPH0470577B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、血液等の粘性変化の測定用センサー
に関するものであり更に詳しくは、血液凝固時
間、血液型の鑑定、免疫反応の検査等に使用でき
るセンサーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a sensor for measuring changes in viscosity of blood, etc., and more specifically to a sensor for measuring blood coagulation time, blood type identification, immune reaction testing, etc. It concerns the sensors that can be used.

(従来の技術) 一般に、血液等の粘性変化を調べることは、血
液等の状態を把握するうえで重要であり、例えば
粘性変化の測定結果を利用して、血液型などを容
易に知ることができるし、また疾患の診断などに
おいても幅広く利用されているものであり、例え
ば血液の凝固時間を測定することによつて、血友
病、フオンビルブランド病、クリスマス病あるい
は肝疾患等の診断に利用され、また血液中の血漿
や坑原や坑体を反応させることによつて、免疫反
応の状態を知ることも病理学上実施されている。
(Prior art) In general, examining changes in viscosity of blood, etc. is important in understanding the condition of blood, etc. For example, it is possible to easily know blood type etc. using the measurement results of changes in viscosity. It is also widely used in the diagnosis of diseases, such as hemophilia, Vonvillebrand disease, Christmas disease, liver disease, etc., by measuring blood clotting time. It is also used in pathology to determine the state of the immune response by reacting plasma, antigens, and antibodies in the blood.

血液の凝固時間を測定する方法としては、プロ
トロンビン時間(PT)の測定によるもの、活性
化部分トロンボプラスチン時間(APTT)の測
定によるもの、トロンビン時間の測定によるも
の、フイビリノゲンテスト、ヘパリンテスト等が
代表的なものとしてあげられる。
Methods for measuring blood clotting time include prothrombin time (PT) measurement, activated partial thromboplastin time (APTT) measurement, thrombin time measurement, fibilinogen test, heparin test, etc. is cited as a representative example.

また、免疫反応の検査方法としては、補体供給
反応、蛍光体反応、酵素免疫測定法等があげられ
る。
In addition, examples of testing methods for immune reactions include complement supply reaction, fluorophore reaction, enzyme immunoassay, and the like.

また、本出願人が先に開示した特開昭60−
152943号公報記載の、血管内の血液の物性変化を
測定することによつて血栓の形成状態を測定する
方法などもある。
In addition, the present applicant has previously disclosed JP-A-60-
There is also a method of measuring the state of thrombus formation by measuring changes in the physical properties of blood within a blood vessel, as described in Japanese Patent No. 152943.

しかして、従来には血等の粘性を測定するため
の専用のセンサーはなく、以上のような測定を行
う際しては、刺激物質や検査試薬は市販された一
定の安定した成分を有するものを使用し、凝固な
判断等は人間が肉眼で行つている。
However, in the past, there was no dedicated sensor for measuring the viscosity of blood, etc., and when performing the above measurements, the stimulating substances and test reagents used were commercially available ones with certain stable components. Humans use the naked eye to make solid judgments.

(発明が解決しようとする課題) このような人間が肉眼により判断する方法は、
測定値なばらつきが生じ、またその信頼度を確保
するために測定を何回も行う必要があるという難
点がある。
(Problem to be solved by the invention) This method of human judgment using the naked eye is
There are disadvantages in that measurement values vary and it is necessary to perform measurements many times to ensure reliability.

また、測定を装置的に行う、例えばプロトロン
ビン時間を分光光度計を用いて測定するものもあ
るが、被検査液面の乱れによる光散乱などが生じ
て測定誤差を生じ、充分な方法とはいえない。
In addition, there are methods that measure the prothrombin time using a spectrophotometer, for example, but this method is not an adequate method as it causes measurement errors due to light scattering due to disturbances in the surface of the liquid to be tested. do not have.

しかも、従来の装置的手段によるものは、各々
の方法に合わせた装置・器具などを用意しなけれ
ばならない。
Moreover, when using conventional equipment means, it is necessary to prepare devices and instruments suitable for each method.

本発明の技術的課題は、以上の難点を解決し、
各種測定方法に対して広く利用することができ、
かつ誤差のない測定を行いえる血液の粘性変化の
測定用センサーを提供することにある。
The technical problem of the present invention is to solve the above-mentioned difficulties,
Can be widely used for various measurement methods,
Another object of the present invention is to provide a sensor for measuring changes in blood viscosity that can perform error-free measurements.

(課題を解決するための手段) 以上の技術的課題を解決するために、本発明で
は、リード線を挿通せしめた電気的絶縁体の周囲
に金属細線を捲回すると共にこの金属細線の両端
部を前記電気的絶縁体の表面に露呈するリード線
に結線し、さらにその金属細線を捲回した部分を
コーテイングするようにして血液等の粘性変化の
測定用センサーを構成した。
(Means for Solving the Problems) In order to solve the above technical problems, in the present invention, a thin metal wire is wound around an electrical insulator through which a lead wire is inserted, and both ends of the thin metal wire are wound. was connected to a lead wire exposed on the surface of the electrical insulator, and the part where the thin metal wire was wound was further coated to construct a sensor for measuring changes in viscosity of blood or the like.

(実施例) 以下、本発明の実施例を説明する。(Example) Examples of the present invention will be described below.

第1,2図は、本発明に係る測定用センサーS
を示すものであり、1は円柱体からなる電気的絶
縁体、2はこの電気的絶縁体1に挿通するリード
線、3は電気的絶縁体1に無誘導巻され、測定部
S′を形成する白金細線である。
1 and 2 show a measurement sensor S according to the present invention.
1 is a cylindrical electrical insulator, 2 is a lead wire that is inserted through the electrical insulator 1, and 3 is a non-inductively wound coil around the electrical insulator 1.
This is a thin platinum wire forming S′.

リード線2は、電気的絶縁体1の後端1″から
先端1′に貫通した後、Uターンして再び後端
1″に抜けるようになつており、白金細線3の両
端部は電気的絶縁体1の先端1′に露呈するリー
ド線2のその折り返し部分に結線されている。従
つて、白金細線3の両端部にはそれぞれ2本ずつ
のリード線が結線されていることになる。
The lead wire 2 passes through the electrical insulator 1 from the rear end 1'' to the tip 1', then makes a U-turn and exits again to the rear end 1'', and both ends of the thin platinum wire 3 are electrically connected. The lead wire 2 is connected to the folded portion of the lead wire 2 exposed at the tip 1' of the insulator 1. Therefore, two lead wires are connected to each end of the thin platinum wire 3.

また、白金細線3を捲回した測定部S′は、ガラ
ス層でコーテイングされている。
Furthermore, the measuring section S' in which the thin platinum wire 3 is wound is coated with a glass layer.

以上のような構成からなるセンサーSは、例え
ば第3図に示すように容器10に入つた血等の流
体F中にいれ、計測装置系Mにおいて、白金細線
3に結線されたリード線2のうち一対を電流源5
に接続して通電用に使用し、他方を電圧測定装置
6に接続して電圧測定用に使用する。
The sensor S having the above configuration is placed in a fluid F such as blood contained in a container 10, for example, as shown in FIG. One pair of them is connected to current source 5.
The other end is connected to the voltage measuring device 6 and used for voltage measurement.

なお、計測装置系Mにおいて、電流源5、電圧
測定装置6、及び制御装置7はGP−IB(ゼネラ
ル・パーパス・インターフエース・バス)で接続
されているものである。
In the measurement device system M, the current source 5, voltage measurement device 6, and control device 7 are connected via GP-IB (General Purpose Interface Bus).

そして、白金細線3の発熱量Qが一定になるよ
うに電流を通電し、白金細線3に印加された電圧
値から血液とセンサーとの温度差の変化量θS
θ∽を測定することによつて、動粘性率νが求め
られ、粘性変化が検知されることになるのであ
る。
Then, a current is applied so that the calorific value Q of the thin platinum wire 3 is constant, and the amount of change in temperature difference between the blood and the sensor θ S − is determined from the voltage value applied to the thin platinum wire 3.
By measuring θ∽, the kinematic viscosity ν can be determined, and changes in viscosity can be detected.

なお、本発明は、以上の実施例に限定されるも
のではないことは勿論であり、適宜変形実施可能
である。
It should be noted that the present invention is of course not limited to the above embodiments, and can be modified as appropriate.

第4図は、本発明センサーの変形実施例を示す
ものであり、第2図のものと同様、電気的絶縁体
1に白金細線3を無誘伝導巻し、これを樹脂11
でコーテイングしたもの示している。
FIG. 4 shows a modified embodiment of the sensor of the present invention. Similar to the sensor shown in FIG.
The one coated with is shown.

次に、血液とセンサーの表面温度との温度差θS
−θ∽の変化量と血液の導粘性率との関係につい
て説明する。
Next, the temperature difference θ S between the blood and the sensor surface temperature is
The relationship between the amount of change in −θ∽ and the viscosity coefficient of blood will be explained.

センサーS表面における定常熱伝達率αは、入
熱量をQ(W)、センサーの表面積をA(m2)とす
ると次式で与えられる。
The steady heat transfer coefficient α on the surface of the sensor S is given by the following equation, where the amount of heat input is Q (W) and the surface area of the sensor is A (m 2 ).

α=Q/A(θS−θ∽) ……(1) 従つて、上記(1)から発熱量Q及びセンサーの表
面積Aが既知であれば、上記温度差θS−θ∽から
熱伝達率が算出できる。
α=Q/A(θ S −θ∽) ……(1) Therefore, if the calorific value Q and the surface area A of the sensor are known from (1) above, heat transfer from the above temperature difference θ S −θ∽ The rate can be calculated.

一方、センサーを、物性値が既知である、例え
ば蒸留水中にセツトして、該センサーに種々の値
の定電流、例えば直流電流を通じて蒸留水と(加
熱される)センサーとの温度差θS−θ∽を測定す
ると、熱伝達率の無次元量であるヌツセルト
(Nusselt)数Nuと、動粘性率の無次元量である
プラントル(Prandlt)数Pr及び温度差の無次元
量でるグラスホツフ(Grashof)数Grとの関係
式、即ち、上記センサー周囲における自由対流熱
伝達現象を一般的に表示する方程式、例えば Nu=C0GrC1PrC2 ……(2) が求められる(式中C0、C1、C2は定数を示す)。
On the other hand, the sensor is set in, for example, distilled water with known physical property values, and a constant current of various values, for example, a direct current, is applied to the sensor to generate a temperature difference θ S − between the distilled water and the (heated) sensor. Measuring θ∽ yields the Nusselt number Nu, which is a dimensionless quantity of heat transfer coefficient, the Prandlt number Pr, which is a dimensionless quantity of kinematic viscosity, and the Grashof number, which is a dimensionless quantity of temperature difference. A relational expression with the number Gr, that is, an equation that generally represents the free convection heat transfer phenomenon around the sensor, for example, Nu=C 0 Gr C1 Pr C2 ...(2) (in the formula, C0, C1, C2 indicates a constant).

なお、Nu、Gr及びPrは下記の関係式で表され
る。
Note that Nu, Gr, and Pr are expressed by the following relational expression.

Nu=αL/λ ……(3) Gr=L3gβ(θS−θ∽)/ν2 ……(4) Pr=ν/a ……(5) [式中Lは代表長さ(m)、λは熱伝導率(W/
mK)、gは重量加速度(m/S2)、βは体積膨張
率(1/K)、νは動粘性率(m2/s)、aは温度
伝達率(w/m2・K)をそれぞれ示す。] 従つて、被測定物質の動粘性率νは。上記(2)〜
(5)より下記式で表される。
Nu=αL/λ ……(3) Gr=L 3 gβ(θ S −θ∽)/ν 2 ……(4) Pr=ν/a ……(5) [In the formula, L is the representative length (m ), λ is the thermal conductivity (W/
mK), g is the weight acceleration (m/S 2 ), β is the volume expansion coefficient (1/K), ν is the kinematic viscosity (m 2 /s), and a is the temperature transfer coefficient (w/m 2 ·K). are shown respectively. ] Therefore, the kinematic viscosity ν of the substance to be measured is. Above (2)~
From (5), it is expressed by the following formula.

ν2C1-C2=C0gC1AL3C-1Q-1λβC1a-C2(θS−θ∽
C1+1……(6) ここで、センサーに電流iを通電加熱した場合 Q=Ri2 ……(7) [式中Rはセンサーとして用いた、白金線の電気
抵抗(Ω)、iはセンサーに通電された電流値(A)
を表す。] 上記(6)において、g、A、Lは定数あり、さら
にλ、β及びaについては、その変化がνの変化
幅比べて十分に小さいので、結局動粘性率νは発
熱量QとθS−θ∽のみの関数として、次式(8)で表
される。
ν 2C1-C2 = C 0 g C1 AL 3C-1 Q -1 λβ C1 a -C2S −θ∽
) C1+1 ...(6) Here, when the sensor is heated with current i, Q=Ri 2 ...(7) [In the formula, R is the electrical resistance (Ω) of the platinum wire used as the sensor, i is the current value (A) applied to the sensor
represents. ] In (6) above, g, A, and L are constants, and the changes in λ, β, and a are sufficiently small compared to the range of change in ν, so the kinematic viscosity ν is the result of the calorific value Q and θ. It is expressed by the following equation (8) as a function only of S −θ∽.

ν2C1-2=C3Q-3(θS−θ∽)C1+1 ……(8) [式中C3は定数を表す。] しかして、流体Fに血液を用いるとともにセン
サーSに発熱量Qが一定になるように電流を通電
し、血液とセンサーとの温度差の変化量θS−θ∽
を測定することによつて、動粘性率νが求められ
る、粘性変化が検知されることになるのである。
ν 2C1-2 = C 3 Q -3S −θ∽) C1+1 ...(8) [In the formula, C 3 represents a constant. ] By using blood as the fluid F and applying current to the sensor S so that the amount of heat generated Q is constant, the amount of change in the temperature difference between the blood and the sensor θ S −θ∽
By measuring the kinematic viscosity ν, the change in viscosity can be detected.

なお、電気的絶縁体1として長さ50mm、φ1.4mm
のセラミツクス棒を用いてその先端3mmを測定部
S′としてφ13μmの白金線を無誘伝導巻し、これ
にガラスバイプを嵌装した後加熱溶着することに
よつて、もしくはその無誘伝導巻したもを溶融ガ
ラス液中に浸漬することによつて、或はその無誘
伝導巻したものを樹脂モノマー分散用液中に浸漬
して白金線を通電加熱し、白金線外表面周囲にお
ける熱重合反応を進行させて、金属線表面に樹脂
ポリマー層を形成することによつて、本発明者ら
が実際にセンサーを作成したところ、小量のサン
プルでも感度良く計測できるセンサーを得ること
ができた。
In addition, as electrical insulator 1, the length is 50 mm and φ1.4 mm.
Measure the 3mm tip using a ceramic rod.
By non-conductingly winding a platinum wire with a diameter of 13 μm as S′, fitting a glass pipe around it and then heat-welding it, or by immersing the non-conductively wound wire in molten glass liquid. Alternatively, the non-inductively wound material is immersed in a resin monomer dispersion liquid and the platinum wire is heated with electricity to advance a thermal polymerization reaction around the outer surface of the platinum wire to form a resin polymer layer on the surface of the metal wire. When the present inventors actually created a sensor by forming a sensor, they were able to obtain a sensor that could measure even a small amount of sample with high sensitivity.

また、ガラスもしくは樹脂表面に対する血液成
分の付着も少なく、その洗浄等も容易であつた。
Further, there was little adhesion of blood components to the glass or resin surface, and cleaning thereof was easy.

(発明の効果) 以上、本発明センサーを用いれば、血液凝固時
間が長くなる重疾患者の診断も、その低粘性に影
響させることなく行うことができ、また小さな凝
固変化も容易に検出できるので、診断測定で生じ
る誤差が極めて少なくなる。
(Effects of the Invention) As described above, by using the sensor of the present invention, it is possible to diagnose patients with serious diseases whose blood clotting time is long without affecting the low viscosity of the blood, and even small changes in coagulation can be easily detected. , errors occurring in diagnostic measurements are significantly reduced.

従つて、従来のように何回も測定する必要が無
くなり、測定に要する時間や労力の削減につなが
る。
Therefore, there is no need to perform measurements many times as in the past, leading to a reduction in the time and labor required for measurements.

また、各種試験に含わせた装置・器具などを用
意する必要性も無いので経済的である。
Furthermore, it is economical since there is no need to prepare devices and instruments included in various tests.

そしてまた、小量のサンプルでも感度良く測定
ることが可能であり、表面がガラスもしくは樹脂
コーテイングされているので、血液成分の付着が
少なくその洗浄も簡単であるという特徴がある。
Furthermore, it is possible to measure even a small amount of sample with high sensitivity, and since the surface is coated with glass or resin, there is less adhesion of blood components and it is easy to clean.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は本発明測定用センサーの斜視図と
拡大図、第3図は本発明測定用センサーの使用状
態図、第4図は変形実施例に係る本発明測定用セ
ンサーの斜視図である。 F……流体、S……センサー、S′……測定部、
M……計測装置系、1……電気的絶縁体、2……
リード線、3……白金細線、4……ガラス層、5
……電流源、6……電圧測定装置、7……制御装
置、10……容器、11……樹脂。
Figures 1 and 2 are a perspective view and an enlarged view of the measuring sensor of the present invention, Figure 3 is a usage state diagram of the measuring sensor of the present invention, and Figure 4 is a perspective view of the measuring sensor of the present invention according to a modified embodiment. be. F...fluid, S...sensor, S'...measuring section,
M...Measuring device system, 1...Electrical insulator, 2...
Lead wire, 3... Platinum thin wire, 4... Glass layer, 5
... Current source, 6 ... Voltage measuring device, 7 ... Control device, 10 ... Container, 11 ... Resin.

Claims (1)

【特許請求の範囲】 1 リード線を挿通せしめた電気的絶縁体の周囲
に金属細線を捲回するとともに該金属細線の両端
部を前記電気的絶縁体の表面に露呈するリード線
に結線し、さらに前記金属細線を捲回した部分を
コーテイングしたことを特徴とする、血液等の粘
性変化の測定用センサー。 2 前記コーテイングは、ガラスコーテイングで
あることを特徴とする請求項1項記載の血液等の
粘性変化の測定用センサー。 3 前記コーテイングは、樹脂コーテイングであ
ることを特徴とする請求項1項記載の血液等の粘
性変化の測定用センサー。
[Scope of Claims] 1. Winding a thin metal wire around an electrical insulator through which the lead wire is inserted, and connecting both ends of the thin metal wire to the lead wire exposed on the surface of the electrical insulator, Furthermore, a sensor for measuring changes in viscosity of blood, etc., characterized in that a portion where the thin metal wire is wound is coated. 2. The sensor for measuring changes in viscosity of blood or the like according to claim 1, wherein the coating is a glass coating. 3. The sensor for measuring changes in viscosity of blood or the like according to claim 1, wherein the coating is a resin coating.
JP63064776A 1988-03-07 1988-03-18 Sensor for measuring change in viscosity of blood or the like Granted JPH01239433A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63064776A JPH01239433A (en) 1988-03-18 1988-03-18 Sensor for measuring change in viscosity of blood or the like
CA000592887A CA1333754C (en) 1988-03-07 1989-03-06 Method for measurement of viscosity change in blood or the like and sensor thereof
EP89103900A EP0332110B1 (en) 1988-03-07 1989-03-06 Method for measurement of viscosity change in blood or blood plasma and sensor therefor
DE68925829T DE68925829T2 (en) 1988-03-07 1989-03-06 Process for measuring the change in viscosity in the blood or blood plasma and detector therefor
US07/319,192 US4947678A (en) 1988-03-07 1989-03-06 Method for measurement of viscosity change in blood or the like and sensor thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63064776A JPH01239433A (en) 1988-03-18 1988-03-18 Sensor for measuring change in viscosity of blood or the like

Publications (2)

Publication Number Publication Date
JPH01239433A JPH01239433A (en) 1989-09-25
JPH0470577B2 true JPH0470577B2 (en) 1992-11-11

Family

ID=13267948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63064776A Granted JPH01239433A (en) 1988-03-07 1988-03-18 Sensor for measuring change in viscosity of blood or the like

Country Status (1)

Country Link
JP (1) JPH01239433A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167436A (en) * 2013-02-28 2014-09-11 Netsushin:Kk Four-conductor micro temperature measuring resistance element
FR3018604B1 (en) * 2014-03-17 2017-11-10 Auxitrol Sa METHOD FOR MANUFACTURING SENSITIVE ELEMENT, SENSITIVE ELEMENT AND CORRESPONDING MEASURING DEVICE

Also Published As

Publication number Publication date
JPH01239433A (en) 1989-09-25

Similar Documents

Publication Publication Date Title
US4947678A (en) Method for measurement of viscosity change in blood or the like and sensor thereof
CA1140212A (en) Method of and apparatus for monitoring platelet aggregation and test cell for use in such method apparatus
US7294899B2 (en) Nanowire Filament
JP6100760B2 (en) Micro cantilever sensor operated by bimorph and reading by piezoresistor
US4685328A (en) Capillary viscometer
US6004818A (en) Aggregometer with disposable test cell
JPH0288955A (en) Disposable sensor
US3840806A (en) Instrument for measuring blood clotting times
CA1321491C (en) Method for measuring a gel-point temperature
JPH0470577B2 (en)
Pop et al. Blood electrical impedance closely matches whole blood viscosity as parameter of hemorheology and inflammation
JPH01227062A (en) Measurement of change in viscosity for blood or the like
Podczasy et al. Evaluation of whole-blood lumiaggregation
EP3427034A1 (en) Microscale whole blood coagulation assay platform
US7350402B2 (en) Method and apparatus for determination of medical diagnostics utilizing biological fluids
US20220229006A1 (en) A sensor device
US4613238A (en) Method and apparatus for measuring temperature of ultra small areas
RU2815247C1 (en) Biosensor
Bostick et al. Plasma and blood coagulation time detector based on the flow sensitivity of self-heated thermistors
SU1157456A1 (en) Method of investigating process of blood coagulation
Wilson Measurement of electrical conductivity for clinical purposes
JP2920510B2 (en) A method for measuring the thermal constant of a substance by heating the inner surface of a cylindrical partition
RU2205392C1 (en) Facility establishing electric parameters of liquid medium
SU1144041A1 (en) Pickup for determination of thermal conductivity
JPH0317543A (en) Measuring method of thermal conductivity