JPH06500260A - liquid aeration - Google Patents

liquid aeration

Info

Publication number
JPH06500260A
JPH06500260A JP3513811A JP51381191A JPH06500260A JP H06500260 A JPH06500260 A JP H06500260A JP 3513811 A JP3513811 A JP 3513811A JP 51381191 A JP51381191 A JP 51381191A JP H06500260 A JPH06500260 A JP H06500260A
Authority
JP
Japan
Prior art keywords
conduit
liquid
bubbles
gas
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3513811A
Other languages
Japanese (ja)
Inventor
ジェイムソン、グラエム・ジョン
Original Assignee
ザ・ユニバーシティ・オブ・ニューキャッスル・リサーチ・アソシエイツ・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ・ユニバーシティ・オブ・ニューキャッスル・リサーチ・アソシエイツ・リミテッド filed Critical ザ・ユニバーシティ・オブ・ニューキャッスル・リサーチ・アソシエイツ・リミテッド
Publication of JPH06500260A publication Critical patent/JPH06500260A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1431Dissolved air flotation machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • B01F23/23231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2341Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere
    • B01F23/23413Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere using nozzles for projecting the liquid into the gas atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/454Mixing liquids with liquids; Emulsifying using flow mixing by injecting a mixture of liquid and gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4337Mixers with a diverging-converging cross-section
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/305Treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Physical Water Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 液体の曝気 「技術分野」 この発明は液体の曝気(エアレーション)、特に液体中へのガスの吸収を行って 液体から溶解ガスを分離し、液体に懸濁された小滴または粒子の浮選による分離 、或は上述の作用を行うよう液体の容器内に移送されるべき泡の群の形成に関す るものである。[Detailed description of the invention] liquid aeration "Technical field" This invention performs aeration of liquids, especially the absorption of gases into liquids. Separation of dissolved gases from liquids and separation by flotation of droplets or particles suspended in liquids , or relating to the formation of a group of bubbles to be transferred into a container of liquid to perform the above-mentioned action. It is something that

「背景技術」 上述した各fj用において、位相間の物質の移送または浮選による粒子の収集の ための二面に挟まれた大きな領域を形成するために微細な泡にガスを先ず分散す るのが利点である。液体中の微細な泡の高密度な分散が生じられると、吸収や剥 ぎ取り或は浮選の様な別の移送作用を実施出来る容器内にガス気体混合物を噴射 するのが別の利点である。従来、これは多くの異なった型のディフューザ、すな わちそらせ板やノズル或はジエ・ント、または種々な形の羽根および固定子によ って達成されるが、いずれも造られる泡の大きさや泡の流量および曝気されるべ き液体本体への泡の分散等に十分な制限がある。"Background technology" For each of the above-mentioned fj applications, the transport of matter between phases or the collection of particles by flotation The gas is first dispersed into fine bubbles to form a large area sandwiched between two sides. The advantage is that A dense dispersion of microbubbles in a liquid results in absorption and exfoliation. Injecting a gas mixture into a container where another transfer action such as stripping or flotation can be carried out Another advantage is that Traditionally, this has been done with many different types of diffusers, e.g. By means of baffles, nozzles or jets, or vanes of various shapes and stators. However, the size of the bubbles created, the flow rate of the bubbles, and the amount of aeration required There are sufficient restrictions on the dispersion of bubbles into the liquid body.

この発明に従った液体の曝気のための方法と装置の目的は、液体中の微細な泡の 混合物へのガスの流れを分散する装置を提供すると共に、大きな容器の液体への 泡の効果的な利用のための装置を提供することにある。The purpose of the method and device for aeration of liquids according to the invention is to Provides a device for distributing the flow of gas into a mixture, as well as distributing the flow of gas into a large container of liquid. The object of the present invention is to provide a device for effective use of foam.

「発明の開示」 1つの形態に従えば、この発明は、下端が液体中に浸された下方に延びる導管の 上部内に下方に移動するジェットとして液体を通し、導管内(こ泡を形成して、 下方に移動する泡を生じて導管の下端から液体中に出るように為す工程力)ら液 体を曝気する方法から構成されている。"Disclosure of invention" According to one form, the invention provides a downwardly extending conduit whose lower end is immersed in a liquid. Pass the liquid as a jet moving downwards into the upper part of the conduit (forming a bubble, A process force that causes bubbles to move downward and exit into the liquid from the lower end of the conduit. It consists of a method of aerating the body.

好適には、ガスが導管の上部に供給されて泡を形成するジエ・ント内(こ搬送さ れる。Preferably, the gas is supplied to the top of the conduit to form a bubble. It will be done.

好適には、導管の上部が閉鎖され、ガスが大気圧で且つ流量制御制限付きで供給 される。Preferably, the top of the conduit is closed and the gas is supplied at atmospheric pressure and with flow control restrictions. be done.

また、導管の上部が閉鎖され、圧力ガスがブロワ−や圧縮機によって供給される 。Also, the top of the conduit is closed and pressure gas is supplied by a blower or compressor. .

この発明の1つの形において、導管の上部を通過する液体が、液体中の過飽和溶 液中のガスと協同している。In one form of the invention, the liquid passing through the top of the conduit contains a supersaturated solution in the liquid. It cooperates with the gas in the liquid.

ガスは便宜な所要されるガスとすることが出来、多くの利用では空気から成って いる。The gas can be any convenient gas required, and in many applications it consists of air. There is.

別の形態において、この発明は、下端が開口した垂直に大体延びる導管と、導管 内に下方に噴射された液体のジェットを形成するよう導管の上部に設けられた下 方を向いたノズルに液体を圧力供給するよう設けられた液体供給装置と、液体中 に下端が浸された導管を支持するよう設けられた支持装置とから成る液体を曝気 する装置より構成されている。In another form, the invention provides a generally vertically extending conduit with an open lower end; A lower section provided at the top of the conduit to form a jet of liquid that is injected downward into the conduit. A liquid supply device installed to supply liquid under pressure to a nozzle facing toward the and a support device arranged to support a conduit whose lower end is immersed in aerated liquid. It consists of equipment that

好適には、導管の外から外方に延び液体中に浸されるべく設けられたそらせ板が 導管に設けられ、泡が液体中を上昇するよう導管から外方に導管の下端から出る 泡を分散する様にそらせ板が設けられている。Preferably, a baffle plate extends outwardly from outside the conduit and is provided to be immersed in the liquid. provided in a conduit and exiting outwardly from the conduit at the lower end of the conduit so that bubbles rise through the liquid A deflector plate is provided to disperse the bubbles.

好適には、そらせ板は、導管を取り囲み導管の外部の予定位置から上外方に延び る板から成っている。Preferably, the baffle surrounds the conduit and extends upwardly and outwardly from the intended location on the exterior of the conduit. It consists of a board.

更に、予定された流量の泡が番孔を通るよう大きさが決められた複数個の孔が板 に設けられている。Additionally, the plate includes a plurality of holes sized to allow a predetermined flow rate of bubbles to pass through the holes. It is set in.

好適には、板の内周と導管の外面の間に間隙が設けられると共に、転換リングが 、間隙の下の導管の外面上に、導管から外方に上方に動く泡を導管と板の間の間 隙から離れるよう偏向すべく設けられている。Preferably, a gap is provided between the inner circumference of the plate and the outer surface of the conduit, and a diversion ring is provided. , on the outer surface of the conduit below the gap, between the conduit and the plate, with bubbles moving outward and upward from the conduit. It is provided to deflect away from the gap.

この発明の1つの形にて、導管の軸心に平行な軸心を有して導管内のガスの流れ を指向して導管内のジェットを抑制するよう形成された吸出管が導管の内部に設 けられている。In one form of the invention, the flow of gas within the conduit has an axis parallel to the axis of the conduit. A suction pipe is installed inside the conduit and is configured to direct the jet and suppress the jet within the conduit. I'm being kicked.

好適には、導管は断面が大体円形か或は同一値の大小横軸を有する他の断面であ り、同一面積の円の直径に等しい有効直径を有し、導管の直径がノズルの直径の 2〜20倍の範囲内にある。Preferably, the conduit is generally circular in cross-section or has other cross-sections having equal magnitude transverse axes. has an effective diameter equal to the diameter of a circle of the same area, and the diameter of the conduit is equal to the diameter of the nozzle. It is within the range of 2 to 20 times.

更(こ、好適には、導管の直径がノズルの直径の3〜12倍の範囲内にある。Furthermore, preferably the diameter of the conduit is within the range of 3 to 12 times the diameter of the nozzle.

曝気される液体は、下方に移動するジェット内をノズルを介して導管の上端部に 流れる液体か、或は導管の下端が浸される液体とすることが出来る。多くの場合 に、導管の上部に出る液体は液体中の液体と同一にするよう出来る。The liquid to be aerated is passed through a nozzle in a downwardly moving jet to the upper end of the conduit. It can be a flowing liquid or a liquid in which the lower end of the conduit is immersed. In many cases In addition, the liquid exiting the top of the conduit can be made to be the same as the liquid inside.

この発明が実施できる例は次の通りである。Examples in which this invention can be implemented are as follows.

(a)有害成分を除去して下水や川に放出する前に生化学的酸素要求を減少する よう使用される微生物の成長のための酸素を生じるよう廃水中に微細な泡の分散 を生じるよう所要される廃水の溜りゃ流れのエアレーション。(a) remove harmful components and reduce biochemical oxygen demand before discharging into sewage or rivers; Dispersion of microscopic bubbles in wastewater to generate oxygen for the growth of microorganisms used as Aeration of wastewater pools and streams required to produce.

(b)微細に分散した油滴を含む水や流れを処理するために、油滴自体を泡に付 着させて溜りや容器内の液体の水面へと上昇させて液体の主要部分がら油滴を除 去して浄化する処理。(b) Adding the oil droplets themselves to the foam to treat water or streams containing finely dispersed oil droplets. Remove oil droplets from the main part of the liquid by letting it rise to the surface of the liquid in a pool or container. A process of removing and purifying.

泡の微細な分散は、垂直な管内の高密度の泡沫の柱に突入する液体ジェットの作 用によって大体垂直である導管または管内に生じられる。泡は液体の高速ジェッ トと比較的靜がな高密度泡沫の間の剪断作用によって少なくとも一部発生される 。The fine dispersion of bubbles results in the creation of a liquid jet that plunges into a column of dense foam in a vertical tube. Occurs in a conduit or tube that is generally vertical depending on the application. Bubbles are high-speed jets of liquid. generated at least in part by the shearing action between the foam and the relatively quiet dense foam. .

ジェットの速度は、最大で約500ミクロンの大きさの非常に小さな泡にて高密 度の泡沫に搬送される空気を分散するよう十分に速い。更に、大きな泡が無いと 、発生される2相混合物が実質的に均質な安定な混合流体として流れて吸収と浮 遊と同質工程等の有利な環境を造るのが見られる。The speed of the jet is high, with very small bubbles up to about 500 microns in size. Fast enough to disperse the air conveyed into the foam. Furthermore, if there are no large bubbles , the two-phase mixture generated flows as a substantially homogeneous stable mixed fluid to absorb and float. It can be seen that it creates an advantageous environment such as play and homogeneous processes.

液体のジェットは垂直な管の頂部に供給されるので、管内に生じられた2相混合 物は下方に移動するよう押しやられて、大きな容器内に放出される様に成る。1 ]1合物が平行な壁の垂直管の端部がら放出される時に、合成流れが最も有効に 使用される泡に伝えられないことが知られている。微細に分散された高密度泡沫 は、放出される液体の密度よりも密度が非常に小さい単一で均質な相として作用 するよう成り、従って、泡は垂直管の外壁の付着するよう成り容器内の液体の水 面に迅速に上昇する。Since the jet of liquid is fed into the top of the vertical tube, the two-phase mixing created within the tube The material is forced to move downwards and is released into a large container. 1 ]1 Compound flow is most effective when the compound is discharged from the end of a vertical tube with parallel walls. It is known that the foam used is not transferable. Finely dispersed high-density foam acts as a single, homogeneous phase whose density is much lower than that of the ejected liquid. Therefore, the bubbles become attached to the outer wall of the vertical pipe and the liquid water inside the container becomes Rise quickly to the surface.

垂直管の底部から流れる均質な泡沫が周囲の液体と混合するよう造られるならば 、泡の良好な利用が出来るので、泡は互いに分離されて多量の液体中に実際に有 るならば上昇するよう成る。非常に小さければ、個々の泡の上昇時間は垂直管の 底部から出る均質な混合物の上昇時間よりも一層長く、従って、泡を分散する分 子に有効な時間は非常に長くなる。If a homogeneous foam flowing from the bottom of a vertical tube is made to mix with the surrounding liquid , it allows better utilization of the foam, so that the foam can be separated from each other and actually present in a large amount of liquid. If it rises, it will rise. If very small, the rise time of individual bubbles is The rise time of the homogeneous mixture coming out of the bottom is longer and therefore the minute to disperse the bubbles. The effective time for the child will be very long.

この発明の1つの目的は、液体の容器内に放出される大体垂直な管内に制限され る高速液体ジェットの剪断作用を利用して高密度泡沫を形成するよう液体流れ中 に良好に混合される微細な泡の流れの中にガスを効果的に分散する装置を提供す ることにある。One object of this invention is to limit the discharge of liquid into a generally vertical tube into a container. The shearing action of high-speed liquid jets is used to form dense foam during liquid flow. To provide a device that effectively disperses gas in a stream of fine bubbles that are well mixed with There are many things.

この発明の別の目的は、水面にゆっくり上昇するよう互いに分離されるべき容器 内の泡と液体との間に大いに強化された時間を与えて、相の間の材料の変換また は泡による微細粒子の捕捉のための最大の機会を与えて、接触垂直管の底部から 出る大体均質な混合物の個々の泡のための簡単で有効な装置を提供することにあ る。Another object of this invention is to provide containers that are to be separated from each other so that they rise slowly to the surface of the water. Transformation of materials between phases also occurs, giving a greatly enhanced time between foam and liquid within contact vertically from the bottom of the tube, giving maximum opportunity for the capture of fine particles by the bubbles. The purpose of the present invention is to provide a simple and effective device for producing individual bubbles of a roughly homogeneous mixture. Ru.

「図面の簡単な説明」 この発明の範囲に含まれる他の実施例に拘わらず、この発明の1つの推奨実施例 とその変形例が添付図面を参照して以下に説明されよう。"Brief explanation of drawings" One preferred embodiment of this invention, regardless of other embodiments falling within the scope of this invention. and its variants will be explained below with reference to the accompanying drawings.

第1a図はこの発明に従った曝気装置の基本形における断面立面概要図、第1b 図はディフューザ、すなわちそらせ板の無い高密度の泡の浮遊柱の状態を示す第 1a図と同様な図、 第1c図は第1a図の曝気装置に関連したディフューザ、すなわちそらせ板の平 断面図、 第2a図はそらせ板の別の実施例を示す第1a図の曝気装置の一部を形成する導 管の下部の断面概要立面図、 第2b図は第2a図に示されるそらせ板の平面図、第3a図および第3b図はそ らせ板の別の実施例の断面概要立面図、第4a図は多数のノズルと導管内の内そ らせ板を有する曝気装置を示す断面概要立面図、 第4b図は第4a図に示されるノズルとそらせ板構造の平断面図、第5図は導管 内の吸出管と協同するこの発明の実施例の断面概要立面図、第6a図および第6 b図は吸出管の別の例を示す第5図と同様な図、第7図は別の吸出管構造を示す 第5図と同様な図である。Fig. 1a is a schematic cross-sectional elevational view of the basic form of the aeration device according to the present invention, Fig. 1b The figure shows the condition of a diffuser, a floating column of dense foam without a deflector. A diagram similar to Figure 1a, Figure 1c shows the flat surface of the diffuser or baffle plate associated with the aeration system of Figure 1a. cross section, Figure 2a shows an alternative embodiment of the baffle plate forming part of the aerator of Figure 1a. Cross-sectional schematic elevation of the lower part of the tube, Figure 2b is a plan view of the deflector shown in Figure 2a, Figures 3a and 3b are its top views; A cross-sectional schematic elevational view of another embodiment of the baffle plate, FIG. a cross-sectional schematic elevation showing an aeration device with baffles; Figure 4b is a plan sectional view of the nozzle and baffle plate structure shown in Figure 4a, and Figure 5 is a sectional view of the conduit. 6a and 6. Figure b is a diagram similar to Figure 5 showing another example of the suction pipe, and Figure 7 shows another suction pipe structure. This is a diagram similar to FIG. 5.

「発明を実施するための最良の形態」 第1a図に示されるこの発明の実施例において、液体は入口管1と、垂直に下方 を向いたオリフィス2に終わっているノズル装置22とを通って入る。ノズル装 置22は垂直な導管、すなわち管3の頂部に取付けられる。作動中、液体は管3 を通って下方に移動出来る高速ジェットの形でオリフィス2がら出る。"Best mode for carrying out the invention" In the embodiment of the invention shown in FIG. 1a, the liquid enters the inlet tube 1 vertically downward It enters through a nozzle arrangement 22 terminating in an orifice 2 oriented toward the periphery. Nozzle equipment The housing 22 is attached to the top of the vertical conduit or tube 3. During operation, liquid flows through tube 3 It exits the orifice 2 in the form of a high-velocity jet that can travel downwards through it.

垂直な管3は支持部材3aによって取付けられているので、下端が液体4の容器 内に浸けられる。液体は入口管1を通って入る液体と同じでも同じでなくても良 い。The vertical tube 3 is attached by a support member 3a so that its lower end is a container for liquid 4. Immersed inside. The liquid may or may not be the same as the liquid entering through inlet tube 1. stomach.

先ず、作動を始める前、容器内と垂直な管3の中の水位は同じである。高速液体 ジェットがオリフィス2によって最初に形成される時に、ジェットは管3を通っ て下方に移動して液体の中に入り、管3の内側に有るガスを運んで管3の下端部 5の外に運び出して微細な泡の形で容器内を上昇する様に成る。垂直な管3は供 給液体中に分散される高密度泡沫の泡で迅速に満たされ、管3の頭部空間内の圧 力は管3の外の周囲圧力以下に低下する。従って、−a的ではあるが、空気を必 要としない新しいガスが空気人口1f6を通って管3内に吸入される。First, before starting operation, the water level in the container and in the vertical pipe 3 are the same. high speed liquid When the jet is first formed by orifice 2, it passes through tube 3. moves downward and enters the liquid, carrying the gas inside the tube 3 to the lower end of the tube 3. 5 and rise inside the container in the form of fine bubbles. Vertical pipe 3 is The pressure in the head space of tube 3 quickly fills with bubbles of dense foam dispersed in the feed liquid. The force drops below the ambient pressure outside the tube 3. Therefore, although it is -a, it is necessary to Unwanted new gas is sucked into the tube 3 through the air volume 1f6.

ガスの流れは普通に設けられた制御弁7や他の適宜な部材によって調整されるの で、空気入口管6を通って入る空気の量は、噴射ジェット8によって運ばれる最 大量よりも少ない。この様な具合に、垂直な管3は、ガスおよび液体相間の相互 作用のための良好な環境を設ける高密度な泡で満たされて残る。The gas flow is regulated by a normally provided control valve 7 or other suitable member. , the amount of air entering through the air inlet pipe 6 is the maximum amount carried by the injection jet 8. Less than a lot. In this way, the vertical tube 3 provides mutual protection between the gas and liquid phases. It remains filled with dense foam that provides a good environment for its action.

泡混合物が形成される垂直な管3は大体垂直、すなわち垂線に対して15゜内が 好適である。高密度な泡が管出口5に向がって下方に移動するよう管3内にて行 われる泡の合体度合に基づいて、説明した制限よりも垂線から更に離れて輪心が 位置する時に曝気装置を成る場合に良好に実施するよう出来る。もし、泡が合体 すると、泡は、内部ガスの形で再循環する時に、傾斜した管の最上部内のガスの 大きなスラッジの形で管3の頭部空間に上昇する。管3内の頭部空間に到達する と、泡は高密度の泡に変わり、管内の泡混合物の崩壊を生じる。The vertical tube 3 in which the foam mixture is formed is approximately vertical, i.e. within 15° to the perpendicular. suitable. The process is carried out in the tube 3 so that high-density bubbles move downward toward the tube outlet 5. Based on the degree of coalescence of the bubbles that are It can be carried out well if an aeration device is installed at the time of installation. If the bubbles coalesce The bubbles then recirculate in the form of internal gas, which increases the amount of gas in the top of the sloping tube. It rises into the head space of tube 3 in the form of large sludge. Reach the head space in tube 3 Then, the foam turns into a dense foam, resulting in the collapse of the foam mixture inside the tube.

従って、管3は、もし管が大体垂直ならば最良に作用する。Therefore, tube 3 works best if the tube is generally vertical.

この発明が円形の管3に就いて説明されるが、この円形の形に制限されるもので はなく、どの様な断面の垂直なダクトにも管を取換え出来るよう意図されるもの である。併し、最良の結果は正多角形や、大がら小までの横軸の比が相和して成 る断面にて見い出される。Although the invention will be described with reference to a circular tube 3, it is not limited to this circular shape. The pipe is intended to be interchangeable with vertical ducts of any cross-section. It is. However, the best results are achieved by regular polygons and the ratio of horizontal axes from large to small. It is found in the cross section.

高速液体ジェットの作用による高密度泡混合物中にガスのエントレインメントに よって液体中のガス泡の分散を形成することに就いて曝気装置が説明されている 。成る利用では、ガスはエントレインメント法によって専ら供給される。Entrainment of gas into dense foam mixtures by the action of high-speed liquid jets Thus, an aeration device is described for forming a dispersion of gas bubbles in a liquid. . In this application, the gas is supplied exclusively by the entrainment method.

併し、微細粒子の浮選において、高速ジェットにより生じられる泡の形だけでな く過飽和供給溶液からの成長によってガスを供給するのが好適である。液体が噴 射ノズルを通る時に、圧力の実質的な低下が有る。従って、ノズルを通過する前 に浮選ガスで供給液体が飽和されると、ノズルの下流側が過飽和に成り溶解され たガスが非常に微細な泡の形で溶液が放出される。この様な泡の存在は、泡の単 位容積当たりの表面積が非常に大きなためと、浮遊するよう所要される微細疎水 粒子の表面に泡が優先的に付着できるために浮選方法を助ける。However, in flotation of fine particles, not only the shape of bubbles produced by high-speed jets is important. Preferably, the gas is supplied by growth from a supersaturated feed solution. Liquid gushes There is a substantial drop in pressure as it passes through the injection nozzle. Therefore, before passing through the nozzle When the feed liquid is saturated with flotation gas, the downstream side of the nozzle becomes supersaturated and dissolved. The solution is released in the form of very fine gas bubbles. The existence of such bubbles is due to the presence of bubbles. Because the surface area per volume is very large and the microscopic hydrophobicity required for floating The flotation process is aided by the ability of bubbles to preferentially attach to the surface of the particles.

従って、泡により微細粒子を浮遊する能力は過飽和に成った供給液体の使用によ って強化される。Therefore, the ability to suspend fine particles by foam is reduced by the use of a supersaturated feed liquid. It will be strengthened.

浮選方法を強化するよう溶解ガスが使用される時に、噴射ジェットの剪断作用に より生じられる通常直径が約500ミクロンの泡と、過飽和溶液からの成長によ り生じられた直径が20〜50ミクロンの範囲に時に有る泡との間に相乗効果が 有る。後者の泡が非常に小さいために、泡の上昇速度が小さく、従って、円形の 管3の底部から出た後に液体の表面にまで泡が上昇するよう所要される時間を非 常に長く出来る。併し、泡の寸法が混じっている時には、平均的に大きな直径の 泡を遣るよう小さい泡と大きな泡の間に合体が起こるので、表面までの上昇時間 を短く出来、従って、管3が放出する容器の容積がまた減少できる。When dissolved gas is used to enhance the flotation process, the shearing action of the injection jet bubbles, typically about 500 microns in diameter, produced by There is a synergistic effect between the bubbles produced by Yes. Because the latter bubbles are very small, the rising speed of the bubbles is small, and therefore the circular The time required for the bubbles to rise to the surface of the liquid after leaving the bottom of the tube 3 is non-trivial. You can always do it for a long time. However, when the bubble sizes are mixed, the average diameter is As coalescence occurs between small and large bubbles, the rise time to the surface increases. can be shortened, so that the volume of the container into which the tube 3 discharges can also be reduced.

成る利用において、ガスの供給だけがノズル装置22を通って流れる液体中の溶 解したガスによってガスの供給だけが出来る。導管、すなわち管3の頂部は閉鎖 でき、入口管6を省できる。In applications where the only gas supply is the solution in the liquid flowing through the nozzle arrangement 22, Only gas can be supplied using the released gas. The top of the conduit, i.e. tube 3, is closed Therefore, the inlet pipe 6 can be omitted.

垂直な管3内に形成されたガス液体混合物は容積で約60%までの空隙を有し、 容器4内の液体よりも密度が小さい均質流体として振る舞う、従って、特別な用 心が無いと、浮遊水柱として上昇するよう成し、管3の外壁を抱き締めて第1b 図に示される様に水面9にまで迅速に上昇する。従って、水柱内の泡は容器内の 液体は容器内の液体と良好に混合せず、この液体と泡の最大接触の恐れが損失さ れる。水柱の形成を防止するために、垂直な管3の外側に遮蔽、すなわちそらせ 板10を取付けるのが好適で、この様なそらせ板10は、管出口5から出る高密 度の泡沫を破壊してガスの泡が水柱よりも容器4内の液体中を個々に上昇するよ う出来る効果を有している。The gas-liquid mixture formed in the vertical tube 3 has a void of up to about 60% by volume; behaves as a homogeneous fluid with a lower density than the liquid in the container 4, and therefore has special uses. If there is no mind, it will rise as a floating water column, hugging the outer wall of pipe 3 and forming part 1b. As shown in the figure, it quickly rises to the water surface 9. Therefore, bubbles in the water column are The liquid does not mix well with the liquid in the container and the maximum risk of contact between this liquid and foam is that it is lost. It will be done. To prevent the formation of a water column there is a shield, i.e. a deflection, on the outside of the vertical pipe 3. Preferably, a plate 10 is installed, such a baffle plate 10 This causes gas bubbles to rise individually through the liquid in container 4 above the water column. It has the effect that it can be used.

泡ディフューザ、すなわちそらせ板は、幅広い端部が最上部にある逆截頭円錐形 に板材から好適に造ることが出来る。円錐体第1C図に示される様に多数の孔が 設けられる。作用においては、垂直な管3の出口5がら出た浮遊水柱は上昇して ディフューザ、すなわちそらせ板1oの下側に分散してそらせ板1゜の個々の孔 11を通る0個々の孔11を通った後に、ガスの泡は第1a図に示される様に容 器4内の液体の中を夫々上昇する。Foam diffusers, or baffles, have an inverted truncated conical shape with a wide end at the top It can be suitably made from board material. As shown in Fig. 1C of the cone, there are many holes. provided. In action, the floating water column exiting the outlet 5 of the vertical pipe 3 rises. Diffuser, i.e. the individual holes of the baffle plate 1° distributed on the underside of the baffle plate 1o 0 through 11 After passing through the individual holes 11, the gas bubbles become capacitated as shown in Figure 1a. Each rises in the liquid in the container 4.

第1c図に示される円錐そらせ板10の直径は管3の外径の1.5〜10倍の範 囲内に在り、円錐直径が管外径の2〜3倍の時に良好な結果が得られる。The diameter of the conical baffle plate 10 shown in FIG. 1c ranges from 1.5 to 10 times the outer diameter of the tube 3. Good results are obtained when the cone diameter is 2 to 3 times the tube outer diameter.

截頭部が形成される円錐体の角度は30”〜60”の範囲が好適である。孔11 の直径は1〜30−謡の範囲にすることが出来、表面の1〜15%の範囲内の開 口部分を形成するよう円錐面の上に孔が均等に配分されるべきである。The angle of the cone at which the truncated head is formed is preferably in the range of 30'' to 60''. Hole 11 The diameter of the surface can range from 1 to 30 mm, with an open area within 1 to 15% of the surface. The holes should be evenly distributed on the conical surface to form the mouth part.

そらせ板は必ずしも円錐形にする必要はない。管の軸心がらの径方向の間隔が増 大する時に常に増大するよう垂直な管3の出口5の上方にそらせ板の下側の直立 部を設ける等の他の形状が良好に出来る。もし、そらせ板表面の下側が水平であ ったり或は垂直な管からの径方向の間隔が増大するよう下方に落ちるよう成れば 、泡をこの部分に集めて合体する傾向を成すので、単位ガス容積当たり少ない面 積に形成して、ガスと液体の間の接触作用の効率を減少するよう成す。The baffle plate does not necessarily have to be conical. The radial spacing from the tube axis increases. Upright the underside of the baffle plate above the outlet 5 of the vertical tube 3 so that it always increases when increasing. Other shapes, such as having a section, can be made well. If the lower side of the deflector surface is horizontal, or if it falls downward so that the radial distance from the vertical tube increases , bubbles tend to gather in this area and coalesce, so there is less surface area per unit gas volume. This is done to reduce the efficiency of the contact between the gas and the liquid.

そらせ板の別の形が第2a、2b図に示されており、そらせ板12は円形の皿形 をしていて孔13が皿部分に設けられている0皿部分の曲率半径は垂直な管3の 直径の2〜20倍の範囲が好適であり、第2b図に示されるそらせ板12の直径 は管3の外径1.5〜20倍の範囲内に有り、そらせ板の直径が管の外径の2〜 3倍の時に良好な結果が得られる。孔13の直径は1〜30mmの範囲内にする ことが出来、孔の全面積がそらせ板表面の1〜20%の範囲内に有る様にそらせ 板の表面の上に均等に孔が配分されるのが好適である。Another shape of the baffle plate is shown in Figures 2a and 2b, in which the baffle plate 12 has a circular dish shape. The radius of curvature of the 0 plate part where the hole 13 is provided in the plate part is the same as that of the vertical pipe 3. A range of 2 to 20 times the diameter of the baffle plate 12 is preferred, as shown in Figure 2b. is within the range of 1.5 to 20 times the outer diameter of the tube 3, and the diameter of the baffle plate is within the range of 2 to 20 times the outer diameter of the tube. Good results are obtained at 3x. The diameter of the hole 13 should be within the range of 1 to 30 mm. The deflector can be deflected so that the total area of the hole is within 1 to 20% of the deflector plate surface. Preferably, the holes are evenly distributed over the surface of the plate.

第1a図と第2a図に示される様なそらせ板構造において見られる困難は、容器 4内の液体に懸濁される固体物質がそらせ板10.12の上面に溜まって孔11 .13を塞いでしまう厚い層に堆積されることである。この様な困難は、そらせ 板10.12と管3の壁との間に環状の間隙15(第3a、3b図)が設けられ るようそらせ板10.12を取付けることによって除去できる。円錐形のそらせ 板は、上面の上に堆積し易い固体物質が円錐中心に向がって滑るよう落ちるべく 水平面に対して一定角度の面を設けるのために、この様な利用に好適である。そ らせ板が截頭円錐形である円錐の角度は、固体物質が軸心に向かって滑って環状 の間隙を通って落下するよう成すべきである。A difficulty seen in baffle plate constructions such as those shown in Figures 1a and 2a is that the container The solid material suspended in the liquid in the baffle plate 10.12 accumulates on the top surface of the baffle plate 10. .. 13 is deposited in a thick layer that blocks it. Difficulties like this are a distraction. An annular gap 15 (Figs. 3a, 3b) is provided between the plate 10.12 and the wall of the tube 3. can be removed by installing baffle plates 10.12 to conical deflection The plate is designed to allow solid materials that tend to accumulate on the top surface to slide down towards the center of the cone. Since the surface is provided at a constant angle with respect to the horizontal plane, it is suitable for such uses. So The angle of the cone where the baffle plate is a truncated cone is the angle at which the solid material slides toward the axis and forms an annular shape. It should be made to fall through the gap.

環状の間隙15に関連して転換リング14を用いるのが好適である。転換リング 14の目的は、管3の開口端部5から上昇した高密度泡沫が環状の間隙15に入 ってそらせ板10.12を避けることを防止するよう成すことである。Preferably, a diversion ring 14 is used in conjunction with the annular gap 15. conversion ring The purpose of 14 is to allow the dense foam rising from the open end 5 of the tube 3 to enter the annular gap 15. This is to prevent the deflection plate 10.12 from being avoided.

転換リング14は垂直な管3の外壁に取付けられ、第3a図に示される様な三角 形の断面や、第3b図に示される様な半円形断面の転換リング16にすることが 好適に出来る。The diversion ring 14 is attached to the outer wall of the vertical tube 3 and forms a triangular shape as shown in Figure 3a. The conversion ring 16 can have a circular cross section or a semicircular cross section as shown in FIG. 3b. Can be done well.

第1図に示される液体ジェット8の作用を改良する別の実施例がいま説明されよ う。曝気装置が作動中の時に、ジェットは垂直な管3を充填している高密度の泡 沫内に突入し、入口管6から入ったガスはジェットの縁部における剪断作用によ って高密度の泡沫に搬送される。ジェットの速度は3〜40メ一トル/秒の範囲 内にすべきである。もし、速度が遅過ぎると、供給される液体の容積に対して搬 送させることが出来る空気の容積は非常に少なくなり、また、速度が早過ぎると 、エネルギの需要が過度になる。良好な実際の作動速度は12〜20メ一トル/ 秒の範囲である。Another embodiment that improves the action of the liquid jet 8 shown in FIG. 1 will now be described. cormorant. When the aerator is in operation, the jet is filled with dense foam filling the vertical tube 3. The gas that enters the droplet and enters from the inlet pipe 6 is absorbed by the shearing action at the edge of the jet. It is transported in a dense foam. Jet speed ranges from 3 to 40 m/s It should be done within. If the speed is too slow, the volume of liquid being delivered The volume of air that can be sent becomes very small, and if the speed is too high, , the demand for energy becomes excessive. Good actual working speed is 12-20 meters/ It is in the range of seconds.

ジェットの直径は、もし小さ過ぎれば供給液体の偶発的材料によって塞さがれる 恐れを実際に考慮することによって決められる。最小直径は懸濁される物質が通 過するよう成すべきである。垂直な管3の直径はジェット直径の2〜20倍の範 囲内にすべきで、ジェット直径の3〜12倍の範囲内において好適な作用が見ら れる。If the diameter of the jet is too small, it will be blocked by incidental material in the feed liquid. Determined by practical considerations of fear. The minimum diameter is the diameter that allows the suspended material to pass through. It should be done in such a way that the The diameter of the vertical tube 3 ranges from 2 to 20 times the jet diameter. A suitable effect is seen within a range of 3 to 12 times the jet diameter. It will be done.

突入するジェットにより生じられる泡は、ジェットと、ジェットが突入する高密 度泡沫との間の速度差によって生じられる剪断力によって発生される。泡の最終 寸法の重要な決定は、発生装置に包含される流体の単位容積当たり消費される出 力である。この容積を決めるために、突き当たるジェットが高密度泡沫内を下方 に移動する時に分散するよう成って前方モーメントを与え、成る点で膨張するジ ェットが垂直な管3の壁と接触するように成ることが見られるよう用いられる。The bubbles created by the incoming jet are created by the jet and the dense area into which the jet enters. The degree is generated by the shear force caused by the velocity difference between the foam and the foam. bubble final An important dimension decision is the power consumed per unit volume of fluid contained in the generator. It is power. To determine this volume, the impinging jet moves downwards within the dense foam. When moving to the point, it spreads out and gives a forward moment, and the expanding jig at the point where it becomes It is used to see that the jet comes into contact with the wall of the vertical tube 3.

ジェットは包含した角度が10〜20°の範囲内にある円錐として膨張されるよ う見られる。従って、この目的のために、ジェットに含まれるエネルギが実際に 消費される容積は、ジェットの流入点と、ジェットが垂直な管3の壁に丁度触れ る点との間の垂直な管3内に含まれる流体の容積として決めることが出来る。The jet is expanded as a cone with an included angle in the range of 10 to 20 degrees. I can see it. Therefore, for this purpose, the energy contained in the jet is actually The volume consumed is at the inlet point of the jet and when the jet just touches the wall of the vertical tube 3. It can be determined as the volume of fluid contained in the vertical tube 3 between the point

ジェットの流入点と、ジェットが丁度垂直な管の璧に触れるよう始める点との間 の間隔は、突入間隔として説明され、制限する垂直な管3の長さが突入間隔より も大きいことが所要される。この時に、ジェットの初期モーメントは管の断面を 横切って拡張され、実質的に均質である2相混合物が生じられる。Between the point of entry of the jet and the point at which the jet just begins to touch the walls of the vertical tube. The distance is described as the plunge distance, and the length of the limiting vertical tube 3 is less than the plunge distance. is also required to be large. At this time, the initial moment of the jet changes the cross section of the tube. A two-phase mixture is created which is expanded across and is substantially homogeneous.

ジェットがオリフィス2から間隔を置いてゆっくりと膨張されるので、突入間隔 、従って、垂直な管3の高さが過度に成ることが明らかであろう。この問題に対 する1つの解決は、単一の垂直管内に多数のノズルを使用して、多数の、ノズル またはオリフィスから出る前に液体が入口管1を通って室17に供給されるべく 第4a図に示される様にノズル間の流れを分けるよう成す。ジェットの数は、ジ ェットの数が多いと、与えられた流量におけるジェット直径が小さくなって液体 中に懸濁される固体によって塞がれないように最小ジェット寸法が成すべく実際 の配慮によって決められる。ジェット速度は室17内の圧力によって決められ、 従って、各ジェットにおいて同じである。Since the jet is slowly expanded at intervals from orifice 2, the plunge interval , it will therefore be clear that the height of the vertical tube 3 becomes excessive. For this problem One solution is to use multiple nozzles in a single vertical tube to or for the liquid to be supplied to the chamber 17 through the inlet tube 1 before exiting the orifice. The flow is divided between the nozzles as shown in FIG. 4a. The number of jets is A large number of jets reduces the jet diameter at a given flow rate and In practice, the minimum jet size should be such that it is not blocked by solids suspended in it. determined by consideration. The jet velocity is determined by the pressure within the chamber 17; Therefore, it is the same for each jet.

第4a、4b図に示される様に、内部垂直ダク■〜内の各ジェットを区画するよ う多ジェット装置に垂直そらせ板を設けることによって一層の改良が成し得る。As shown in Figures 4a and 4b, each jet in the internal vertical duct is divided into Further improvements can be made by providing vertical baffles to the multi-jet device.

この様なそらせ板が無いと、各ジェットは隣接のジェットの乱れた流体によって 主に区画され、部分的には区画すも管3の壁によって区画される。垂直そらせ板 20は各ジェット周りのエネルギ消費領域を固定する固体の物理的境界を形成し 、微細泡内への搬送ガスの分流を行うよう助ける。垂直そらせ板20によって区 画される管の断面の各断面積21は大体同じである。Without such a baffle, each jet would be affected by the turbulent fluid of the adjacent jet. It is mainly partitioned, and partially partitioned by the wall of the partition pipe 3. vertical deflector 20 form a solid physical boundary that fixes the energy consuming region around each jet. , which helps to divert the carrier gas into the microbubbles. separated by vertical baffle plate 20. Each cross-sectional area 21 of the defined tube cross-section is approximately the same.

第4a図に注意されるように、ノズル2は短い管22の下端に取付けられるよう 図示されており、第1a図に示される単一オリフィスの場合の構造と同様である 。管22の目的は、空気入口管6の下にある管3内の水位でジェットが始まるこ とを可能にしている。作動中、管3はジェットの流入点の位置にまで高密度泡沫 で満たすよう出来、従って、液体は固体が沈積できる空気入口管6を助けて流れ るよう出来る。従って、空気入口管6の下に各液体噴射ノズル2が位置するのが 好適である。As noted in FIG. 4a, the nozzle 2 is attached to the lower end of the short tube 22. The structure is similar to that for the single orifice case shown in FIG. 1a. . The purpose of tube 22 is to initiate a jet at the water level in tube 3 below air inlet tube 6. This makes it possible. During operation, tube 3 is filled with dense foam up to the point of entry of the jet. so that the liquid flows with the aid of the air inlet tube 6 where the solids can settle. I can do it like that. Therefore, each liquid injection nozzle 2 is positioned below the air inlet pipe 6. suitable.

泡分散装置の実施は、ガス液体装置の界面特性に基づいて種々な具合に強調出来 る。垂直管3わ満たすよう安定な2相混合物のために、泡が出口5に向かって流 れるよう強制されるよう泡の合体が少ないことが必要である。合体が起こると、 非常に小さな泡が他の泡とくっついて大きな泡に成長して、泡が垂直管3を橋絡 し、垂直管内の2相混合物の破壊を生じる。The implementation of the foam dispersion device can be emphasized in various ways based on the interfacial properties of the gas-liquid device. Ru. Bubbles flow towards outlet 5 for a stable two-phase mixture to fill vertical tube 3. It is necessary that there is little coalescence of the bubbles so that they are forced to form. When a merger occurs, Very small bubbles combine with other bubbles and grow into large bubbles, and the bubbles bridge the vertical tube 3. , resulting in the destruction of the two-phase mixture in the vertical tube.

合体は塩や溶解物質、特に液体中に溶解した界面活性剤の存在と、固体粒子や油 およびグリースの様な不溶解性液体の存在によって防止、すなわち阻止される。Coalescence is caused by the presence of salts and dissolved substances, especially surfactants dissolved in the liquid, and by the presence of solid particles and oils. and is prevented or inhibited by the presence of an insoluble liquid such as grease.

各ガス液体装置の特性が異なるので、単一の泡分散装置が全ての場合に好適であ り、個々の状況によって処理するよう設計を変更すべく必要とされることは有り 得ない。多数の変更が有効に使用できるよう説明される。Because the characteristics of each gas-liquid device are different, a single foam dispersion device is suitable in all cases. However, it may be necessary to modify the design to handle individual circumstances. I don't get it. A number of modifications are explained for effective use.

第5図は、少なくとも上述した突入点まで垂直管の軸心の下方に延びる端部が開 いた円形の形の吸出管30によってジェットが囲まれ、ジェットが吸出管の全断 面積を占めるようジェットが拡張される構成を示している。吸出管30の目的は 、垂直管3内に小さな泡を導く単位容積当たりの流体をエネルギが消費される割 合を強めるようジェットの近傍のガス液体混合物の容積を制限するよう成すこと である。吸出管の直径はジェットの直径の2〜10倍の範囲に適宜することが出 来、良好な作動はジェットの直径の3〜8倍の範囲で見られる。FIG. The jet is surrounded by the circular suction pipe 30, and the jet covers the entire section of the suction pipe. A configuration is shown in which the jet is expanded to occupy an area. The purpose of the suction pipe 30 is , the fluid per unit volume that guides the small bubbles into the vertical tube 3 is divided by the amount of energy consumed. to limit the volume of the gas-liquid mixture in the vicinity of the jet to enhance the It is. The diameter of the suction pipe can be set within a range of 2 to 10 times the diameter of the jet. Since then, good performance has been found in the range of 3 to 8 times the jet diameter.

吸出管30の上端部は適宜に開口を設けたり構成を簡単にすることが出来、第5 図に示される様に管3の頭部に取付けられた円形の管の形に造ることができ、連 通ずる開口31を液体ジェットの入口の位置に設けて吸出管の周りにガスを再循 環するよう出来る。The upper end of the suction pipe 30 can be provided with an opening as appropriate or the configuration can be simplified. It can be made in the form of a circular tube attached to the head of tube 3 as shown in the figure, and connected A communicating opening 31 is provided at the inlet of the liquid jet to recirculate the gas around the suction tube. It can be done in a circular manner.

この実施例の変形として、第5図に示される様に管の外表面の20%まで占める よう吸出管に孔32をもうけることが出来る。この孔の目的は、泡の合体に基づ いて垂直管3の頭部空間に戻るべくガスが循環できるよう成すと同時に、管内の 流体に実質的な閉塞作用を成すよう吸出管に十分な保全を設けることである。In a variation of this embodiment, as shown in FIG. A hole 32 can be provided in the suction tube. The purpose of this hole is based on bubble coalescence. to allow gas to circulate back to the head space of the vertical tube 3, while at the same time Sufficient security should be provided in the evacuation tube to provide a substantial occlusion to the fluid.

有効性が認められる別の実施例が第6a図に示されており、垂直管3内に取付け られた吸出管を示している。吸出管の頂部は出口オリフィス2の近くに位置し、 管41の上部の側面は傾斜しているので、垂直管3の下方に間隔を1いた点にま で管41の面積が増大している。適宜な点42で、吸出管の面積は管の下方に向 かって縮径し始め、管の下部43が適宜な点で終わっていて、管出口面積が同じ 高さの液体ジェットの断面積よりも大きく成っている。始めに断面積が大きく成 り、次いで面積が縮小する吸出管のこの形の目的は、泡が上昇してジェットを避 けるよう垂直管3の下方に形成される大きな泡やガスのスラグを許すよう為し、 従って、入口45を通って再び搬送される。この種の吸出管の別の形が第6b図 に示されており、吸出管44は最も太い所で垂直管3の内壁に対してシール係合 している。従って、管3の壁に沿って上昇する大きな泡は吸出管44と垂直管3 の間の環状空間に捕らえられ、吸出管44の最も太い所の直ぐ下に位置する開口 45の輪を通って再び搬送される。Another successful embodiment is shown in FIG. The drawn suction tube is shown. The top of the suction tube is located near the outlet orifice 2; Since the upper side of the pipe 41 is sloped, it is possible to reach a point 1 space below the vertical pipe 3. The area of the tube 41 is increased. At a suitable point 42, the area of the suction tube is Once the diameter begins to decrease, the lower part 43 of the tube ends at a suitable point, and the tube outlet area remains the same. The height is greater than the cross-sectional area of the liquid jet. Initially, the cross-sectional area grows large. The purpose of this shape of the suction tube, which increases in size and then reduces its area, is to allow the bubbles to rise and avoid the jet. to allow large bubbles and gas slugs to form below the vertical pipe 3. Therefore, it is conveyed again through the inlet 45. Another form of this type of suction tube is shown in Figure 6b. , the suction pipe 44 is in sealing engagement with the inner wall of the vertical pipe 3 at its thickest point. are doing. Therefore, the large bubbles rising along the wall of the tube 3 are removed from the suction tube 44 and the vertical tube 3. An opening located immediately below the thickest part of the suction pipe 44, which is caught in the annular space between It is conveyed again through 45 rings.

第7図に示される別の実施例は、合体を少なく行って垂直管3内の2相媒体の崩 壊を生じるほどに泡が大きく成らないが、高速度ジェットに更に露呈される利点 と成ることを意図している。この実施例において、吸出管51は垂直管3の下方 に向かうに従って先ず断面積が縮径して点52で最小に成り、その下は断面積が 大きく成っている。点52における開放管の断面積はこの点52で膨張する液体 ジエ’yトの断面積より6大きくなければならない、環状空間53.54が吸出 管と垂直管3の内壁の間に形成でき、また、吸出管を垂直管3の壁にシール係合 させるよう出来る。Another embodiment, shown in FIG. The advantage is that the bubbles do not grow large enough to cause damage, but are more exposed to high-velocity jets. is intended to become. In this embodiment, the suction pipe 51 is located below the vertical pipe 3. The cross-sectional area first decreases as it moves toward , reaching its minimum at point 52, and below that the cross-sectional area decreases. It's grown big. The cross-sectional area of the open tube at point 52 is The annular space 53.54 must be 6 larger than the cross-sectional area of the jet. It can be formed between the tube and the inner wall of the vertical tube 3, and the suction tube can be sealingly engaged with the wall of the vertical tube 3. I can make it happen.

ジェットの直径に対する垂直管3の寸法は泡分散装置の作動における重要な事項 である。十分な作動のために、垂直管3の直径はジェット直径の2〜20倍の範 囲内に有って、十分な作動はジェット直径の3〜12倍の範囲内に有ることが見 られる。The dimensions of the vertical tube 3 relative to the diameter of the jet are important considerations in the operation of the foam dispersion device. It is. For sufficient operation, the diameter of the vertical tube 3 should range from 2 to 20 times the jet diameter. It has been found that sufficient operation is within the range of 3 to 12 times the jet diameter. It will be done.

多くの場きに、作動ガスは大気圧の空気であり、ブロワ−や圧縮機を必要とする ことなく大気から空気を吸い込むことによって分散装置が作動できるのが好適で ある。これは、ジェットオリフィス2の近傍の圧力が大気圧よりも低い場合に達 成できる。In many cases, the working gas is air at atmospheric pressure, requiring a blower or compressor. It is preferred that the dispersion device be able to operate by drawing air from the atmosphere without be. This is reached when the pressure near jet orifice 2 is lower than atmospheric pressure. Can be done.

併し、別の状況ににおいて、ブロワ−や圧縮機を介して圧力空気を導管、すなわ ち垂直管3の上部に供給できる。この構成は、泡沫が管内を下方に移動して液体 4の圧力水頭に対して下端部5から出るよう垂直管3の頂部内に大きな゛水頭パ を必要とするよう液体4中に多く垂直管3を浸すよう所要される場合に適用でき る。However, in other situations, compressed air may be conduited through a blower or compressor, i.e. In other words, it can be supplied to the upper part of the vertical pipe 3. This configuration allows the foam to move downward in the tube and A large water head is installed in the top of the vertical pipe 3 to exit from the lower end 5 for a pressure head of 4. It can be applied when it is required to immerse the vertical pipe 3 in the liquid 4 as much as necessary. Ru.

ガスを゛エアレーション゛するために空気を用いる一推奨実施例に就いてこの発 明が説明されたが、空気以外の他のガスで液体を“エアレーション”するよう所 要される場合に他のガスを使用できることが明らかであろう。This publication describes one preferred embodiment of using air to "aerate" the gas. However, there are some places where liquids can be “aerated” with other gases than air. It will be clear that other gases can be used if desired.

また、この発明が廃水のエアレーションに就いて説明されたが、水中に懸濁され た鉱物の貴重な鉱物質を微細な泡に接触させることによって所要しない廃棄物質 から貴重な鉱物質を除去する鉱物粒子の浮選に適しており、従って、除去するよ う所要される粒子が液体に湿潤されず、液体中に残されるよう成る粒子が液体に よって湿潤される成っている。従って、貴重な粒子は微細な泡の表面に付着され て泡と一緒に水面に上昇して泡として鉱物質粒子を除去できる。Also, although the invention was described with respect to aeration of wastewater, it was also Removes unwanted waste materials by bringing precious minerals into contact with microscopic bubbles Suitable for flotation of mineral particles to remove valuable minerals from Particles that are required to be removed are not wetted by the liquid and are left in the liquid. Therefore, it becomes moist. Therefore, valuable particles are attached to the surface of microscopic bubbles. The mineral particles can be removed as bubbles by rising to the surface of the water along with the bubbles.

NNX T NTERNAT+NA RHRNNNANPPA 17NNX T NTERNAT+NA RHRNNNANPPA 17

Claims (17)

【特許請求の範囲】[Claims] 1.下端が液体中に浸された下方に延びる導管の上部内に下方に移動するジェッ トとして液体を通し、導管内に泡を形成し、下方に移動する泡を生じて導管の下 端から液体中に出るように為す工程から液体を曝気する方法。1. A jet moving downward into the top of a downwardly extending conduit whose lower end is immersed in liquid. The fluid passes through the conduit as a gas, forming bubbles within the conduit, causing bubbles to move downwards and A method of aerating the liquid from the process of allowing it to enter the liquid from the end. 2.ガスが導管の上部に供給されて泡を形成するジェット内に搬送されることを 特徴とする請求の範囲第1項記載の方法。2. Gas is fed into the top of the conduit and transported into a jet that forms bubbles. A method according to claim 1, characterized in that: 3.導管の上部が閉鎖され、ガスが大気圧で且つ流量制御制限付きで供給される ことを特徴とする請求の範囲第2項記載の方法。3. The top of the conduit is closed and gas is supplied at atmospheric pressure and with flow control restrictions. 3. A method according to claim 2, characterized in that: 4.導管の上部が閉鎖され、圧力ガスがブロワーや圧縮機によって供給されるこ とを特徴とする請求の範囲第2項記載の方法。4. The top of the conduit is closed and pressure gas is supplied by a blower or compressor. The method according to claim 2, characterized in that: 5.導管の上部を通過する液体が、液体中の過飽和溶液中のガスと協同されるこ とを特徴とする請求の範囲第1項乃至第4項いずれか1項記載の方法。5. The liquid passing through the top of the conduit is allowed to cooperate with the gas in the supersaturated solution in the liquid. A method according to any one of claims 1 to 4, characterized in that: 6.下端が開口した垂直に大体延びる導管と、導管内に下方に噴射された液体の ジェットを形成するよう導管の上部に設けられた下方を向いたノズルに液体を圧 力供給するよう設けられた液体供給装置と、液体中に下端が浸された導管を支持 するよう設けられた支持装置とから成る液体を曝気する装置。6. A conduit extending generally vertically with an open bottom end and a liquid jetted downward into the conduit. Pressure liquid into a downwardly directed nozzle at the top of the conduit to form a jet. a liquid supply device arranged to supply force and support a conduit whose lower end is immersed in the liquid a device for aerating a liquid, comprising a support device arranged to 7.導管の外から外方に延び液体中に浸されるべく設けられたそらせ坂が導管に 設けられ、泡が液体中を上昇するよう導管から外方に導管の下端から出る泡を分 散するようそらせ板が設けられたことを特徴とする請求の範囲第6項記載の装置 。7. The conduit has a diversion ramp extending outward from the outside of the conduit and immersed in the liquid. is provided to separate bubbles exiting from the lower end of the conduit outwardly from the conduit so that the bubbles rise through the liquid. The device according to claim 6, characterized in that it is provided with a baffle plate for scattering. . 8.導管を取り囲み導管の外部の予定位置から上外方に延びる板からそらせ板が 成ることを特徴とする請求の範囲第7項記載の装置。8. A deflector plate is formed from a plate surrounding the conduit and extending upwardly and outwardly from a predetermined location on the exterior of the conduit. 8. A device according to claim 7, characterized in that it comprises: 9.予定された流量の泡が各孔を通るよう大きさが決められた複数個の孔が板に 設けられたことを特徴とする請求の範囲第8項記載の装置。9. The plate has multiple holes sized to allow a predetermined flow rate of bubbles to pass through each hole. 9. Device according to claim 8, characterized in that it is provided. 10.板の内周と導管のクト間の間に間隙が設けられたことを特徴とする請求の 範囲第8項または第9項いずれか記載の装置。10. A claim characterized in that a gap is provided between the inner circumference of the plate and the duct of the conduit. The device according to any one of scope 8 or 9. 11.転換リングが、間隙の下の導管の外面上に、導管から外方に上方に動く泡 を導管と板の間の間隙から離れるよう偏向すべく設けられたことを特徴とする請 求の範囲第10項記載の装置。11. The diversion ring causes the bubbles to move outward and upward from the conduit onto the outer surface of the conduit below the gap. The claim is characterized in that it is provided to deflect the material away from the gap between the conduit and the plate. The device according to claim 10. 12.導管の軸心に平行な軸心を有し導管内のガスの流れを指向して導管内のジ ェットを抑制するよう形成された吸出管が導管の内部に設けられたことを特徴と する請求の範囲第6項乃至第11項いずれか1項記載の装置。12. It has an axis parallel to the axis of the conduit and directs the flow of gas in the conduit. A suction pipe formed to suppress jets is provided inside the conduit. The apparatus according to any one of claims 6 to 11. 13.孔を通って吸出管に再入するよう導管と吸出管の間にてガスが導管内を上 昇するよう1つ以上の孔を吸出管を有することを特徴とする請求の範囲第12項 記載の装置。13. Gas moves up the conduit between the conduit and the suction tube so that it re-enters the suction tube through the hole. Claim 12, characterized in that the suction pipe has one or more holes so as to rise. The device described. 14.吸出管はノズルに隣接して位置された比較的幅狭い上端部を有して下外方 に比較的幅広い中間部に末広りに成り、下内方にテーパーに成っていて上端部よ りも幅広くて中間部よりも幅狭い開放下端部に終わっていることを特徴とする請 求の範囲第12項または第13項いずれか記載の装置。14. The suction tube has a relatively narrow upper end located adjacent to the nozzle and extends downwardly and outwardly. It is relatively wide in the middle, widens at the ends, tapers downward and inward, and tapers toward the upper end. The ribs are wide, terminating in an open lower end that is narrower than the middle part. The device according to claim 12 or 13. 15.吸出管はノズルに隣接して位置された比較的幅広い上端部を有して比較的 幅狭い中間部に下内方にテーパーに成っていて下外方に末広がりに成り開放下端 部に終わっていることを特徴とする請求の範囲第12項または第13項いずれか 記載の装置。15. The suction tube has a relatively wide upper end located adjacent to the nozzle and has a relatively wide upper end located adjacent to the nozzle. The narrow middle part tapers inwardly at the bottom and widens outwards at the bottom to open the lower end. Either claim 12 or 13, characterized in that: The device described. 16.導管は断面が大体円形か或は同一値の大小横軸を有する他の断面であり、 同一面積の円の直径に等しい有効直径を有し、導管の直径がノズルの直径の2〜 20倍の範囲内にあることを特徴とする請求の範囲第7項乃至第15項いずれか 1項記載の装置。16. The conduit is generally circular in cross section or has other cross sections with large and small horizontal axes of the same value; It has an effective diameter equal to the diameter of a circle of the same area, and the diameter of the conduit is between 2 and the diameter of the nozzle. Any one of claims 7 to 15, characterized in that it is within the range of 20 times. The device according to item 1. 17.導管の直径がノズルの直径の3〜12倍の範囲内にあることを特徴とする 請求の範囲第16項記載の装置。17. characterized in that the diameter of the conduit is within a range of 3 to 12 times the diameter of the nozzle Apparatus according to claim 16.
JP3513811A 1990-08-27 1991-08-27 liquid aeration Pending JPH06500260A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU1974 1990-08-27
AUPK197490 1990-08-27

Publications (1)

Publication Number Publication Date
JPH06500260A true JPH06500260A (en) 1994-01-13

Family

ID=3774921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3513811A Pending JPH06500260A (en) 1990-08-27 1991-08-27 liquid aeration

Country Status (8)

Country Link
EP (1) EP0546033A1 (en)
JP (1) JPH06500260A (en)
KR (1) KR930702065A (en)
CN (1) CN1060453A (en)
CA (1) CA2090619A1 (en)
MX (2) MX9100830A (en)
WO (3) WO1992003218A1 (en)
ZA (2) ZA916774B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102784A1 (en) * 2007-02-20 2008-08-28 Fuji Clean Co., Ltd. Bubble treatment device and water treatment device
JP2013081924A (en) * 2011-10-12 2013-05-09 Jfe Engineering Corp Spray nozzle and fluid atomizing device using the spray nozzle
JP2013081923A (en) * 2011-10-12 2013-05-09 Jfe Engineering Corp Spray nozzle and mixing method of gas and liquid

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE105510T1 (en) * 1986-09-25 1994-05-15 Univ Newcastle Res Ass COLUMN FLOTATION METHOD AND APPARATUS.
DE4309918C2 (en) * 1993-03-26 1994-09-15 Voith Gmbh J M Flotation cell with an injector
AUPN683795A0 (en) * 1995-11-27 1995-12-21 Burns Philp Food Holdings Pty Limited A device for entraining a gas into a liquid
AU9613498A (en) * 1997-12-09 1999-07-01 Multotec Process Equipment (Pty) Ltd A method and apparatus for aeration of liquids or slurries
JP2007111573A (en) * 2004-06-08 2007-05-10 Tetsuhiko Fujisato Aeration method, its apparatus and its system
US7476320B1 (en) 2004-11-12 2009-01-13 Leggette Brashears & Graham, Inc. Process for groundwater remediation
FI122973B (en) * 2005-06-17 2012-09-28 Metso Paper Inc Injector for flotation cell, nozzle part in injector for flotation cell, flotation cell and method for mixing fiber suspension strip and air with each other in injector for flotation cell
TWI580778B (en) * 2007-06-19 2017-05-01 再生海藻能源公司 Process for microalgae conditioning and concentration
US8544827B1 (en) 2009-04-28 2013-10-01 Nested Nozzle Mixers, Inc. Nested nozzle mixer
AT509812B1 (en) * 2010-05-10 2013-06-15 Ac2T Res Gmbh DEVICE AND METHOD FOR THE ARTIFICIAL AGING OF A FLUID
JP5535861B2 (en) * 2010-10-08 2014-07-02 三菱重工業株式会社 Aeration apparatus and seawater flue gas desulfurization apparatus equipped with the aeration apparatus
CN102351267B (en) * 2011-06-28 2013-05-08 福州威龙环保技术有限公司 Micro bubble and micro-nano bubble diffusing apparatus
CN102491510B (en) * 2011-12-06 2013-06-12 江南大学 Membrane up-flow aerobic bioreactor (MUAR)
US20160089679A1 (en) * 2013-05-23 2016-03-31 Dpsms Tecnologia E Inovacao Em Mineracao Ltda Automated system of froth flotation columns with aerators injection nozzles and process thereof
FR3018206A1 (en) 2014-03-07 2015-09-11 Degremont METHOD AND DEVICE FOR DISPERSION OF GAS IN A LIQUID
CN104291428A (en) * 2014-10-22 2015-01-21 无锡市通用机械厂有限公司 Pre-wetting device of PAM (polyacrylamide) dosing equipment
WO2016169493A1 (en) * 2015-04-22 2016-10-27 关广联 Water oxygenation device
CN109476519A (en) * 2016-05-09 2019-03-15 艾罗弗洛特控股有限公司 Aeration spray gun assembly and include the aeration spray gun assembly aeration tank
CN106745864A (en) * 2016-12-23 2017-05-31 重庆科创水处理设备有限公司 Water treatment aeration dispersal device
CN108339673B (en) * 2018-02-10 2023-11-21 内蒙古科灵时代矿业技术有限公司 Cavitation jet flow flotation bubble generator and flotation device
GB2582980A (en) * 2019-04-12 2020-10-14 Colin Howard Stanwell Smith Improvements to sewage treatment plants
CN110479127B (en) * 2019-07-18 2020-09-29 中国矿业大学 Micro-nano bubble generating device and method for generating micro-nano bubbles
CN112340823B (en) * 2020-10-27 2021-08-24 四川轻化工大学 Wastewater treatment device and treatment method thereof
CN114772773B (en) * 2022-06-23 2022-09-02 福建省粤华环保科技有限公司 Self-adaptive oil-water separation equipment

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB329013A (en) * 1929-02-07 1930-05-07 Ig Farbenindustrie Ag Improvements in and apparatus for the clarification of liquids and the separation of finely powdered solid substances
DE1484829A1 (en) * 1964-10-30 1969-05-29 Jakob Eckert Device for the biological clarification of waste water
GB1486697A (en) * 1975-03-25 1977-09-21 Dwars Ing Bureau Process and installation for the purification of sewage
CH600938A5 (en) * 1975-12-10 1978-06-30 Sulzer Ag
FR2338071A1 (en) * 1976-01-16 1977-08-12 Cem Comp Electro Mec METHOD AND DEVICE FOR THE FORMATION OF GAS BUBBLES, FOR EXAMPLE WITH A VIEW OF FLOTATION
FR2353489A1 (en) * 1976-06-02 1977-12-30 Arantes Rathsam Marius Purificn. of waste water and sewage - by air diffusion in presence of activated sludge (BR 28.6.77)
GB1545559A (en) * 1976-09-09 1979-05-10 Portals Water Treatment Ltd Aeration in a flotation process
FR2437866A1 (en) * 1978-10-03 1980-04-30 Carboxyque Francaise Gas diffuser e.g. for oxygenating or carbonating liquids - releases bubbles beneath deflector which extends bubble path to surface
US4564480A (en) * 1978-12-20 1986-01-14 Eduard Kamelmacher Aeration system and method
US4220612A (en) * 1979-04-23 1980-09-02 Envirotech Corporation Flotation cell feed duct
DE3008476A1 (en) * 1980-03-05 1981-09-17 Bayer Ag, 5090 Leverkusen METHOD FOR FLOTATION AND USE OF FUNNEL NOZZLES FOR FLOTATION
US4282172A (en) * 1980-09-11 1981-08-04 Howe-Baker Engineers, Inc. Gas to liquid diffuser
DE3144386C2 (en) * 1981-11-07 1983-12-29 J.M. Voith Gmbh, 7920 Heidenheim Injector flotation apparatus
ATE105510T1 (en) * 1986-09-25 1994-05-15 Univ Newcastle Res Ass COLUMN FLOTATION METHOD AND APPARATUS.
US4938899A (en) * 1988-09-30 1990-07-03 Oros Leo J Gas diffusion system
US4863644A (en) * 1988-11-04 1989-09-05 Enviroquip, Inc. Gas diffuser
EP0445169A1 (en) * 1988-11-22 1991-09-11 Dunne Miller Weston Limited Liquid-gas mixing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102784A1 (en) * 2007-02-20 2008-08-28 Fuji Clean Co., Ltd. Bubble treatment device and water treatment device
JP2008200604A (en) * 2007-02-20 2008-09-04 Fuji Clean Kogyo Kk Bubble treatment device and water treatment apparatus
JP2013081924A (en) * 2011-10-12 2013-05-09 Jfe Engineering Corp Spray nozzle and fluid atomizing device using the spray nozzle
JP2013081923A (en) * 2011-10-12 2013-05-09 Jfe Engineering Corp Spray nozzle and mixing method of gas and liquid

Also Published As

Publication number Publication date
KR930702065A (en) 1993-09-08
WO1992003219A1 (en) 1992-03-05
WO1992003220A1 (en) 1992-03-05
CN1060453A (en) 1992-04-22
CA2090619A1 (en) 1992-02-28
MX9100830A (en) 1992-04-01
MX9100829A (en) 1992-04-01
WO1992003218A1 (en) 1992-03-05
EP0546033A4 (en) 1994-02-02
ZA916775B (en) 1992-05-27
EP0546033A1 (en) 1993-06-16
ZA916774B (en) 1992-05-27

Similar Documents

Publication Publication Date Title
JPH06500260A (en) liquid aeration
US9919320B2 (en) Method and apparatus for contacting bubbles and particles in a flotation separation system
US4216085A (en) Flotation method and apparatus
JP2617502B2 (en) Gas purification method and apparatus
US8771520B2 (en) Fluid treatment apparatus
WO2000015343A1 (en) Internal recycle apparatus and process for flotation column cells
JP2015083302A (en) Exhaust nozzle device, manufacturing method of the same, fluid distribution method using the same, and fluid processing method using the same
US2616676A (en) Aerator
KR100975366B1 (en) Waste water treatment facilities having micro bubble generator
JP3086252B2 (en) Formation of gas particles
KR100967831B1 (en) Micro bubble generator
JP3582036B2 (en) Gas-liquid contact device
RU2162371C1 (en) Flotation machine
JP3316392B2 (en) Underwater aeration equipment
AU8398091A (en) Aeration of liquids
KR102211487B1 (en) High-rate daf using differential bubble size
JP4094694B2 (en) Jet bubbling reactor for flue gas desulfurization