JPH0649896B2 - Method of degassing and dephosphorizing molten steel - Google Patents

Method of degassing and dephosphorizing molten steel

Info

Publication number
JPH0649896B2
JPH0649896B2 JP63275481A JP27548188A JPH0649896B2 JP H0649896 B2 JPH0649896 B2 JP H0649896B2 JP 63275481 A JP63275481 A JP 63275481A JP 27548188 A JP27548188 A JP 27548188A JP H0649896 B2 JPH0649896 B2 JP H0649896B2
Authority
JP
Japan
Prior art keywords
vacuum
molten steel
ppm
degassing
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63275481A
Other languages
Japanese (ja)
Other versions
JPH02122013A (en
Inventor
修平 小野山
直人 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63275481A priority Critical patent/JPH0649896B2/en
Publication of JPH02122013A publication Critical patent/JPH02122013A/en
Publication of JPH0649896B2 publication Critical patent/JPH0649896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、極低りん鋼(例えば〔P〕<50ppm)を溶鋼
段階にて脱りんを行って製造する場合、或いは鋼材品質
上要求される〔P〕レベルに対して溶鋼の〔P〕レベル
が高く品質要求レベルまで溶鋼脱りんを行わざるを得な
い場合に、真空脱ガス設備において〔C〕レベルに応じ
て脱ガス槽内真空度を制御することによって溶鋼脱りん
を効率的に行う方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is required when an extremely low phosphorus steel (for example, [P] <50 ppm) is produced by dephosphorization in a molten steel stage, or in terms of steel quality. When the molten steel [P] level is higher than the [P] level and the molten steel must be dephosphorized to the required quality level, the degree of vacuum in the degassing tank is adjusted according to the [C] level in the vacuum degassing equipment. The present invention relates to a method for efficiently performing molten steel dephosphorization by controlling the.

(従来の技術) 従来の真空脱ガス槽を用いた溶鋼の脱りん方法として
は、特開昭62-205221号公報(溶鋼の脱ガス、脱燐方
法)記載の方法がある。これは、真空脱ガス槽内下部に
設けた粉体吹き込み羽口を通してフリー酸素100〜8
00ppmの溶鋼に粉体脱りん剤を吹き込む事を特徴とす
るものである。しかしながらこの方法によれば、真空脱
ガス設備の特性上、脱りん反応と同時に脱炭反応が生じ
る。すなわち、以下に示す様に脱炭反応・脱りん反応は
ともに酸化反応であるため脱ガス槽内で溶鋼中のフリー
酸素を互いに奪いあい、その結果として脱りん反応速度
が低下するという短所がある。
(Prior Art) As a conventional method for dephosphorizing molten steel using a vacuum degassing tank, there is a method described in JP-A-62-205221 (method for degassing and dephosphorizing molten steel). This is because the free oxygen is 100 to 8 through the powder blowing tuyere provided in the lower part of the vacuum degassing tank.
It is characterized by blowing powder dephosphorizing agent into molten steel of 00 ppm. However, according to this method, the decarburization reaction occurs simultaneously with the dephosphorization reaction due to the characteristics of the vacuum degassing equipment. That is, as shown below, since both the decarburization reaction and the dephosphorization reaction are oxidation reactions, there is a disadvantage that the free oxygen in the molten steel is deprived of each other in the degassing tank, and as a result, the dephosphorization reaction rate decreases. .

脱炭反応 C+O=CO 脱りん反応 4CaO+2P+50=4CaO・P2O5 (発明が解決しようとする課題) 本発明は、従来技術の有する脱炭反応と脱りん反応が同
時に起こり、互いに酸素を奪い合うことによって脱りん
速度が低下するという欠点に対して、脱りん剤吹き込み
時に脱ガス槽内の真空度を〔C〕レベルに応じて特定の
真空度範囲に制御することによって脱炭反応と脱りん反
応が互いに競合しない条件下で優先的に脱りんを行うこ
とによって克服するものである。
Decarburization reaction C + O = CO 2 Dephosphorization reaction 4CaO + 2P + 50 = 4CaO · P 2 O 5 (Problems to be solved by the invention) In contrast to the disadvantage that the dephosphorization rate is reduced by competing for oxygen, the decarburization reaction is controlled by controlling the vacuum degree in the degassing tank within a specific vacuum degree range according to the [C] level when the dephosphorizing agent is blown. It is overcome by preferentially performing dephosphorization under the condition that the and dephosphorization reactions do not compete with each other.

(課題を解決するための手段) 本発明の要旨とするところは、真空脱ガス槽内の未脱酸
溶鋼(フリー酸素>100ppm)に脱りん剤を吹き込
み、〔C〕レベルに応じて脱ガス槽内真空度を制御して
脱ガス・脱りん処理を行うに際して、〔C〕レベルに応
じた脱ガス槽内真空度を以下に示す範囲に制御すること
を特徴とする溶鋼の脱ガス・脱りん方法にある。
(Means for Solving the Problem) The gist of the present invention is that a dephosphorizing agent is blown into undeoxidized molten steel (free oxygen> 100 ppm) in a vacuum degassing tank to degas according to the [C] level. When performing degassing / dephosphorization treatment by controlling the degree of vacuum in the tank, the degree of vacuum in the degassing tank according to the [C] level is controlled within the following range. There is a phosphorus method.

〔C〕<40ppmの場合 真空度>{307.7×log〔C〕(ppm)-454.5} torr 〔C〕≧40ppmの場合 真空度>{100.0×log〔C〕(ppm)-120.0} torr 即ち、本発明は以上に述べた従来技術が有する問題点
を、脱りん剤を吹き込み溶鋼の脱ガス・脱りんを行う際
に、溶鋼の〔C〕レベルに応じて脱りん剤吹き込み中の
脱ガス槽内の真空度を特定の範囲に制御し、脱炭反応と
脱りん反応の競合を避け、脱りん速度の向上を図ること
によって解決するものである。
[C] <40 ppm Vacuum degree> {307.7 x log [C] (ppm) -454.5} torr [C] ≥ 40 ppm Vacuum degree> {100.0 x log [C] (ppm) -120.0} torr The present invention has the above-described problems with the prior art. When performing degassing and dephosphorization of molten steel by injecting a dephosphorizing agent, the degassing tank during injecting the dephosphorizing agent according to the [C] level of the molten steel. The solution is to control the degree of vacuum in a certain range to avoid the competition between the decarburization reaction and the dephosphorization reaction and to improve the dephosphorization rate.

次に第1図に基づいて、本発明の一例について詳細をの
べる。
Next, an example of the present invention will be described in detail with reference to FIG.

第1図はRH真空脱ガス設備での例を示すもので、1は
真空脱ガス槽、2は排気孔、3は溶鋼、4は取鍋、5は
粉体脱りん剤吹き込み羽口、6は粉体供給配管、7は脱
りん剤供給装置、8はキャリアーガス体、9は脱ガス槽
内真空度測定装置、10は真空排気設備である。
FIG. 1 shows an example of the RH vacuum degassing equipment. 1 is a vacuum degassing tank, 2 is an exhaust hole, 3 is molten steel, 4 is a ladle, 5 is a powder dephosphorizing agent blowing tuyere, 6 Is a powder supply pipe, 7 is a dephosphorizing agent supply device, 8 is a carrier gas body, 9 is a degassing tank vacuum degree measuring device, and 10 is a vacuum exhaust facility.

本発明は、真空脱ガス処理中に脱りん剤供給装置7から
粉体供給配管6を経由して粉体吹き込み羽口5より溶鋼
3中へ脱りん剤を吹き込み溶鋼脱りんを行う際に、溶鋼
の〔C〕レベルに応じて真空排気設備10(エゼクター
等)をON・OFFし、吸引ガス量を加減することによ
って槽内真空度測定装置9にて測定される真空度を制御
するものである。この際、フリー酸素レベルは100〜
800ppmにするのが反応効率上、又、耐火物溶損防止
の観点から望ましい。
According to the present invention, when the dephosphorizing agent is blown into the molten steel 3 from the powder blowing tuyere 5 from the dephosphorizing agent supply device 7 through the powder supply pipe 6 during the vacuum degassing process, The vacuum degree measured by the in-vessel vacuum degree measuring device 9 is controlled by turning on / off the vacuum exhaust equipment 10 (ejector etc.) according to the [C] level of the molten steel and adjusting the suction gas amount. is there. At this time, the free oxygen level is 100-
800 ppm is desirable from the viewpoint of reaction efficiency and prevention of refractory melting damage.

第2図は〔C〕レベルと槽内真空度の最適制御範囲を示
すもので、その制御範囲は〔C〕<40ppmの場合は 真空度>{307.7×log〔C〕ppm-454.5}torr〔C〕≧4
0ppmの場合は 真空度>{100.0×log〔C〕ppm-120.0}torrに制御す
るものである。即ち、〔C〕<40ppmの極低炭素レベ
ルにおいては、高真空状態でも脱炭反応が停滞するた
め、脱りん反応は高真空状態でも効率的に起こる。しか
し、40ppm≦〔C〕の範囲では低真空状態でも脱炭反
応が起こるため脱りん反応を効率的に行うためには真空
度を低く制御する必要がある。ここで、高〔C〕材(例
えば〔C〕=0.15%)に関しては、真空度を制御しても
脱炭反応を皆無にすることは不可能であり、脱りん剤吹
き込み終了後に加炭剤によって加炭せざるを得ない。こ
の際、加炭剤を脱りん剤吹き込み中に添加すると溶鋼中
のフリー酸素レベルを低下させることになるため、脱り
ん速度は低下する。
Fig. 2 shows the optimum control range for the [C] level and the degree of vacuum in the tank. When the control range is [C] <40 ppm, the degree of vacuum is {307.7 x log [C] ppm-454.5} torr [ C] ≧ 4
In the case of 0 ppm, the degree of vacuum is controlled to be {100.0 × log [C] ppm-120.0} torr. That is, at an extremely low carbon level of [C] <40 ppm, the decarburization reaction stagnates even in a high vacuum state, so that the dephosphorization reaction occurs efficiently even in a high vacuum state. However, in the range of 40 ppm ≦ [C], the decarburization reaction occurs even in a low vacuum state, so that the vacuum degree must be controlled to be low in order to efficiently perform the dephosphorization reaction. Here, for a high [C] material (for example, [C] = 0.15%), it is impossible to completely eliminate the decarburizing reaction even if the vacuum degree is controlled. I have no choice but to refuel. At this time, if the carburizing agent is added during the blowing of the dephosphorizing agent, the free oxygen level in the molten steel will be lowered, and the dephosphorizing rate will be lowered.

従って、高〔C〕材については脱りん中の真空度は低け
れば低い程好ましい。一方では粉体吹き込み羽口は溶鋼
に浸漬していなければ吹き込んだ粉体が溶鋼表面に浮遊
したり、真空排気設備に吸引されて脱りん反応に寄与し
ないため、脱りん効率が悪化する。従って、脱ガス槽の
下方部に配置した粉体吹き込み羽口が、該脱ガス槽内を
真空排気したことによって取鍋内の溶鋼が浸漬管を介し
て上昇して脱ガス槽内に至り、上記羽口が浸漬された状
態の溶鋼深さとなる時の真空度が最低真空度となる。従
って、該羽口の設置位置によって若干相違が生じるが、
設置位置を下方とすることにより真空度制御範囲が拡大
される。
Therefore, for the high [C] material, the lower the degree of vacuum during dephosphorization is, the more preferable. On the other hand, if the powder blowing tuyere is not immersed in the molten steel, the blown powder floats on the surface of the molten steel or is sucked by the vacuum exhaust equipment and does not contribute to the dephosphorization reaction, so that the dephosphorization efficiency deteriorates. Therefore, the powder blowing tuyere arranged in the lower part of the degassing tank, the molten steel in the ladle rises through the dip pipe by evacuating the inside of the degassing tank and reaches the degassing tank, The minimum degree of vacuum is the degree of vacuum when the molten steel depth in the state where the tuyere is immersed is reached. Therefore, although there are some differences depending on the installation position of the tuyere,
The vacuum degree control range is expanded by setting the installation position downward.

(実施例) 下記条件において、従来技術と本発明方法の脱りん速度
を比較した例を第3図に示す。本実施例は品質要求
〔C〕レベル50ppmの250tの溶鋼(フリー酸素=
450ppm)に対し、脱りん剤(65%CaO・35%Ca
F2)を100Nm3/hのArガスにて100kg/minの速度で
4kg/t吹き込んだ場合の脱りん挙動を真空度を1torrに
制御した場合と本発明に基づき80torrに制御した場合
とを各々2回ずつ行い比較したものである。
(Example) An example comparing the dephosphorization rates of the conventional technique and the method of the present invention under the following conditions is shown in FIG. In this embodiment, 250t of molten steel with a quality requirement [C] level of 50ppm (free oxygen =
Dephosphorizing agent (65% CaO / 35% Ca) against 450 ppm
The dephosphorization behavior when F 2 ) was blown in 4 kg / t at a rate of 100 kg / min with 100 Nm 3 / h of Ar gas was controlled depending on whether the vacuum degree was controlled to 1 torr or 80 torr based on the present invention. It is a comparison made twice each.

第3図に示す様に、本発明を適用し真空度制御を実施す
ることによって、大幅な脱りん速度向上効果を得ること
ができる。これによって、従来よりも初期〔P〕が高い
状態でも安定して脱りんすることが可能となり又同一脱
りん効果を得るために必要となる脱りん剤原単位が少な
くなると同時に脱りん剤による溶鋼の温度下がりも少な
くなる上、脱りん剤吹き込み時間も短くてすむためRH
処理時間も短縮でき、溶鋼脱りんコストを大幅に削減す
ることが可能となる。
As shown in FIG. 3, by applying the present invention and controlling the degree of vacuum, it is possible to obtain a significant effect of improving the phosphorus removal rate. As a result, it becomes possible to dephosphorize stably even in a state where the initial [P] is higher than before, and the basic unit of dephosphorizing agent required to obtain the same dephosphorizing effect is reduced, and at the same time molten steel by the dephosphorizing agent is used. RH because the temperature drop of the
The processing time can be shortened, and the molten steel dephosphorization cost can be significantly reduced.

(発明の効果) 本発明によれば、真空脱ガス装置において溶鋼脱りんを
行う際に、従来方法と比較して少ない脱りん剤で効率的
に脱りんを行うことができるため、脱りん剤原単位削減
およびこれに伴う溶鋼温度低下代の低減・RH処理時間
の短縮が可能となり、脱りん処理コストの大幅な削減が
可能となる。
(Effect of the Invention) According to the present invention, when performing demelting of molten steel in a vacuum degassing apparatus, dephosphorization can be efficiently performed with a smaller dephosphorizing agent as compared with the conventional method. It is possible to reduce the basic unit and the accompanying decrease in molten steel temperature lowering cost and shorten the RH treatment time, and it is possible to significantly reduce the phosphorus removal treatment cost.

【図面の簡単な説明】 第1図は本発明を適用した装置例を示す図、第2図は本
発明の限定範囲を具体的に示す図、第3図は本発明の効
果を従来方法と比較したものである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an example of an apparatus to which the present invention is applied, FIG. 2 is a diagram specifically showing a limited range of the present invention, and FIG. It is a comparison.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】真空脱ガス槽内の未脱酸溶鋼(フリー酸素
>100ppm)に脱りん剤を吹き込み、〔C〕レベルに
応じて脱ガス槽内真空度を制御して脱ガス・脱りん処理
を行うに際して、〔C〕レベルに応じた脱ガス槽内真空
度を以下に示す範囲に制御することを特徴とする溶鋼の
脱ガス・脱りん方法。 〔C〕<40ppmの場合 真空度>{307.7×log〔C〕(ppm)-454.5}torr 〔C〕≧40ppmの場合 真空度>{100.0×log〔C〕(ppm)-120.0}torr
1. A dephosphorizing agent is blown into undeoxidized molten steel (free oxygen> 100 ppm) in a vacuum degassing tank, and the degree of vacuum in the degassing tank is controlled according to the level of [C] to perform degassing and dephosphorization. A method for degassing and dephosphorizing molten steel, characterized in that the degree of vacuum in the degassing tank according to the [C] level is controlled within the range shown below when performing the treatment. [C] <40 ppm Vacuum degree> {307.7 x log [C] (ppm) -454.5} torr [C] ≥ 40 ppm Vacuum degree> {100.0 x log [C] (ppm) -120.0} torr
JP63275481A 1988-10-31 1988-10-31 Method of degassing and dephosphorizing molten steel Expired - Lifetime JPH0649896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63275481A JPH0649896B2 (en) 1988-10-31 1988-10-31 Method of degassing and dephosphorizing molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63275481A JPH0649896B2 (en) 1988-10-31 1988-10-31 Method of degassing and dephosphorizing molten steel

Publications (2)

Publication Number Publication Date
JPH02122013A JPH02122013A (en) 1990-05-09
JPH0649896B2 true JPH0649896B2 (en) 1994-06-29

Family

ID=17556128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63275481A Expired - Lifetime JPH0649896B2 (en) 1988-10-31 1988-10-31 Method of degassing and dephosphorizing molten steel

Country Status (1)

Country Link
JP (1) JPH0649896B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316045C (en) 1999-06-16 2007-05-16 新日本制铁株式会社 Refining method and refining appts. of moten steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106603A (en) * 1977-03-02 1978-09-16 Nippon Steel Corp Treating apparatus for rh degassing
JPS62205221A (en) * 1986-03-04 1987-09-09 Nippon Steel Corp Method for degassing and dephosphorizing molten steel

Also Published As

Publication number Publication date
JPH02122013A (en) 1990-05-09

Similar Documents

Publication Publication Date Title
JP3176374B2 (en) Method for producing low carbon molten steel by vacuum degassing decarburization
JPH0649896B2 (en) Method of degassing and dephosphorizing molten steel
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
EP1757706B1 (en) Method for refining molten steel
JPH05171250A (en) Operation of rh degassing
JP3168437B2 (en) Vacuum refining method
JP2000212641A (en) High speed vacuum refining of molten steel
JPH0254714A (en) Method for adding oxygen in rh vacuum refining
JP2728184B2 (en) Oxygen top-blowing vacuum decarburization of molten steel
KR100232912B1 (en) Method for decarburizing steel in a vacuum chamber and vacuum chamber for implementing the method
JP3842857B2 (en) RH degassing method for molten steel
JPH0741828A (en) Method for vacuum-refining molten steel
JP3140852B2 (en) Refining method of ultra low carbon steel
JP3769779B2 (en) Method for melting ultra-low carbon Cr-containing steel
KR101896341B1 (en) Treatment method for molten metal
JPH10310817A (en) Decarburizing method in vacuum degassing apparatus
JPH08302419A (en) Refining method of molten steel
JP2962163B2 (en) Melting method of high clean ultra low carbon steel
RU2005107698A (en) METHOD AND DEVICE FOR DE-CARBONING OF STEEL MELT
JPH07138633A (en) Production of extra-low carbon steel by vacuum degassing
JPH10204521A (en) Vessel for vacuum-refining molten steel
JPH0617114A (en) Method and device for treating vacuum degassing of molten steel
JPH0873925A (en) Vacuum degassing decarburization method for molten steel
JPH02267213A (en) Method for vacuum-decarbonizing molten steel
JP3071445B2 (en) Methods for reducing nitrogen in vacuum refining of molten steel.