JPH0649287A - Ethylenic polymer composition - Google Patents

Ethylenic polymer composition

Info

Publication number
JPH0649287A
JPH0649287A JP22328692A JP22328692A JPH0649287A JP H0649287 A JPH0649287 A JP H0649287A JP 22328692 A JP22328692 A JP 22328692A JP 22328692 A JP22328692 A JP 22328692A JP H0649287 A JPH0649287 A JP H0649287A
Authority
JP
Japan
Prior art keywords
ethylene
elution
component
temperature
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22328692A
Other languages
Japanese (ja)
Other versions
JP3372057B2 (en
Inventor
Toshifumi Morimoto
敏文 森本
Noboru Ikegami
昇 池上
Kunimichi Kubo
国道 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP22328692A priority Critical patent/JP3372057B2/en
Publication of JPH0649287A publication Critical patent/JPH0649287A/en
Application granted granted Critical
Publication of JP3372057B2 publication Critical patent/JP3372057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide an ethylenic polymer composition comprising three components consisting of specific ethylene homopolymers, specified ethylene-alpha- olefin copolymers, etc., wide in its mol.wt. distribution, and excellent in the balance between its melt elasticity, flow characteristics, etc. CONSTITUTION:The objective composition comprises (A) ultra-high mol.wt. ethylene homopolymer or ethylene-alpha-olefin copolymer having an intrinsic viscosity (eta1) of 9-45dl/g, a density (d) of 0.890-0.935g/cm<3>, (B) ethylene homopolymer having eta2 of 0.3-3.0dl/g, a (d2) of 0.890-0.980g/cm<3>, an area ratio (S1) of equation I between an area under the curved line in the elusion temperature range of >=90 deg.C and an area under the curved line in the elusion temperature range of 25-90 deg.C in the graph of the elusion temperature-elusion amount curved line, and an o-dichlorobenzene soluble content of <=W1wt.% of equation II at 25 deg.C, etc., and (C) an ethylene-alpha-3-18C olefin copolymer having eta2 of <1.2-9.0dl/g, an area ratio (S2) of equation III, and a soluble content (W2) of equation IV, the total amount of the components being 100wt.%, and has eta of 1.0-6.0dl/g, d of 0.890-0.970g/cm<3>, and an N-value of formula V of 1.7-3.0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融弾性(メルトテン
ション、ダイスウェル比等)、流動特性(加工特性
等)、機械特性(耐衝撃性、引張強度等)等に優れ、分
子量分布のきわめて広いエチレン重合体組成物に関し、
特に流動特性および低温時の機械的特性に優れ、メルト
テンション、ダイスウェル比が大きいところから、ガソ
リンタンクなどの大型中空成形品、大口径パイプなどの
押出成形品等に適するエチレン重合体組成物に関する。
INDUSTRIAL APPLICABILITY The present invention is excellent in melt elasticity (melt tension, die swell ratio, etc.), flow characteristics (processing characteristics, etc.), mechanical characteristics (impact resistance, tensile strength, etc.), and has an extremely high molecular weight distribution. With respect to a wide ethylene polymer composition,
In particular, it relates to an ethylene polymer composition suitable for large hollow molded products such as gasoline tanks and extruded products such as large diameter pipes because of its excellent flow properties and mechanical properties at low temperatures, and large melt tension and die swell ratio. .

【0002】[0002]

【従来の技術】従来、流動特性を改良する目的でエチレ
ン・α−オレフィン共重合体の分子量分布を広くする方
法が報告されている(例えば特開昭57−21409号
公報、特公昭63−47741号公報等)が、このよう
に単に分子量分布を広くするのみでは、溶融弾性や機械
的特性、特に低温時の機械的特性は改善されず、かえっ
て大幅に低下する。また機械的特性および流動特性の改
良については、高分子量成分と低分子量成分とからなる
エチレン・α−オレフィン共重合体の高分子量成分の短
鎖分岐度を特定し、かつ高分子量成分に短鎖分岐を多く
導入して、機械的特性、流動性のみならず、耐環境応力
亀裂性(ESCR)も改良する試みがなされている(特
開昭54−100444号公報、特公昭64−7096
号公報)。しかし、これらにおいても機械的特性、特に
低温時の機械的特性や溶融弾性は満足し得るものではな
い。更に、特開平2−305811号公報においては、
耐衝撃性、ESCR、ピンチオフ融着性を改良する目的
で、触媒と2段重合の重合条件を特定する方法が提案さ
れているが、この方法では、ESCRや溶融弾性の点で
若干の改良がみられるが、機械的特性、特に低温時の機
械的特性を改良するには不十分である。その他にも、中
空成形用ポリエチレン組成物として、耐ドローダウン
性、ダイスウェルやESCRを改良したもの(特開昭5
9−89341号、特開昭60−20946号公報等)
が開示され、また2段重合法の欠点を改善する方法とし
て3段重合法が提案されている(特公昭59−1072
4号、特開昭62−25105号、同62−25106
号、 同62−25107号、 同62−25108号、
同62−25109号公報等)。これらにおいても、前
記溶融弾性や流動特性の改善は未だ不十分であり、特に
低温時の機械的特性には改善がみられない。
2. Description of the Related Art Heretofore, a method of broadening the molecular weight distribution of an ethylene / α-olefin copolymer has been reported for the purpose of improving flow characteristics (for example, JP-A-57-21409 and JP-B-63-47741). However, melt elasticity and mechanical properties, especially mechanical properties at low temperatures, are not improved by merely broadening the molecular weight distribution in this way, but rather greatly decrease. In addition, regarding the improvement of mechanical properties and flow properties, the short chain branching degree of the high molecular weight component of the ethylene / α-olefin copolymer consisting of the high molecular weight component and the low molecular weight component was specified and Attempts have been made to improve not only mechanical properties and fluidity but also environmental stress crack resistance (ESCR) by introducing a large number of branches (Japanese Patent Laid-Open No. 54-10044, Japanese Patent Publication No. 64-7096).
Issue). However, even in these cases, the mechanical properties, especially the mechanical properties at low temperature and the melt elasticity are not satisfactory. Further, in JP-A-2-305811,
For the purpose of improving impact resistance, ESCR, and pinch-off fusion bondability, a method of specifying the polymerization conditions of the catalyst and the two-stage polymerization has been proposed, but this method is slightly improved in terms of ESCR and melt elasticity. However, it is insufficient to improve the mechanical properties, especially at low temperatures. In addition, a polyethylene composition for blow molding, which has improved drawdown resistance, die swell and ESCR (Japanese Patent Laid-Open No. Sho 5)
9-89341, JP-A-60-20946, etc.)
Is disclosed, and a three-step polymerization method has been proposed as a method for improving the drawbacks of the two-step polymerization method (Japanese Patent Publication No. 59-1072).
4, JP-A Nos. 62-25105 and 62-25106.
No. 62-25107, No. 62-25108,
62-25109, etc.). Even in these cases, the improvement of the melt elasticity and the flow characteristics is still insufficient, and the mechanical characteristics are not improved especially at low temperatures.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、溶融弾性(メルトテンション、ダイスウェル比等)、
流動特性(加工特性等)、機械特性(耐衝撃性、引張強
度等)等の各種物性のバランスに優れ、分子量分布のき
わめて広いエチレン重合体組成物であって、特に流動特
性および低温時の機械的特性に優れ、メルトテンショ
ン、ダイスウェル比が大きいため、ガソリンタンクなど
の大型中空成形品、大口径パイプなどの押出成形品等に
適する組成物を提供することを目的とするものである。
In view of the above points, the present invention is directed to melt elasticity (melt tension, die swell ratio, etc.),
An ethylene polymer composition that has an excellent balance of physical properties such as flow characteristics (processing characteristics) and mechanical characteristics (impact resistance, tensile strength, etc.), and has an extremely wide molecular weight distribution. It is an object of the present invention to provide a composition suitable for large hollow molded products such as gasoline tanks and extruded molded products such as large diameter pipes because of its excellent physical properties and large melt tension and die swell ratio.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記の目的
に沿って鋭意検討した結果、超高分子量成分、高分子量
成分であって、かつ分子間の短鎖分岐分布がきわめて広
い特定のエチレン・α−オレフィン共重合体、および分
子間の短鎖分岐分布がきわめて広い特定のエチレン・α
−オレフィン共重合体または短鎖分岐の存在しないエチ
レン単独重合体からなる低分子量成分を配合することに
より、溶融弾性、流動特性、機械的特性等の各種物性の
バランスに優れ、特に流動特性および低温時の機械的特
性に優れたエチレン重合体組成物が得られることを見出
して本発明に到達した。すなわち本発明は、(I)下記
(a)および(b)を満足する超高分子量のエチレン単独重
合体またはエチレン・α−オレフィン共重合体1〜50
重量%、(a)極限粘度(η1)9〜45dl/g、(b)密度
(d1)0.890〜0.935g/cm3、(II)下記(c)〜
(f)を満足するエチレン単独重合体またはエチレン・α
−オレフィン共重合体5〜94重量%、(c)極限粘度
(η2)0.3〜3.0dl/g、(d)密度(d2)0.890
〜0.980g/cm3、(e)連続昇温溶出分別法による溶出
温度−溶出量曲線において、 溶出温度90℃以上の曲
線下の面積Iaに対する溶出温度25〜90℃の該面積
Ibの比S(Ib/Ia)が次式から計算されるS1
下、 S1=20η2 -1exp[−50(d2−0.900)] (f)25℃オルソジクロロベンゼン可溶分 W重量%が
次式から計算されるW1以下、 W1=100η2 -0.5exp[−50η2 0.5(d2−0.900)]、なら
びに(III)下記 (g)〜(j)を満足するエチレンと炭素
数3〜18のα−オレフィンとの共重合体5〜94重量
%、(g)極限粘度(η3)1.2dl/g以上、9.0dl/g未
満、(h)密度(d3)0.890〜0.940g/cm3、(i)
連続昇温溶出分別法による溶出温度−溶出量曲線におい
て、 溶出温度90℃以上の曲線下の面積Iaに対する
溶出温度25〜90℃の該面積Ibの比S(Ib/I
a)が次式から計算されるS2以下、 S2=20η3 -1exp[−50(d3−0.900)] (j)25℃オルソジクロロベンゼン可溶分 W重量%が
次式から計算されるW2以上、 W2=20exp(−η3) からなり、かつ前記成分(I)、(II)および(III)の
合計は100重量%であり、各成分(I)〜(III)の極
限粘度がそれぞれ互いに異なる混合物であって、該混合
物の極限粘度が1.0〜6.0dl/g、 密度が0.890〜
0.970g/cm3および次式数2から計算されるN−値が
1.7〜3.0であるエチレン重合体組成物を提供するも
のである。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors in view of the above-mentioned objects, the inventors have found that they are ultra-high molecular weight components, high molecular weight components and have a very wide distribution of short-chain branches between molecules. Ethylene / α-olefin copolymers and specific ethylene / α with extremely wide distribution of short chain branches between molecules
-By blending a low molecular weight component consisting of an olefin copolymer or an ethylene homopolymer having no short chain branching, excellent balance of various physical properties such as melt elasticity, flow properties and mechanical properties, especially flow properties and low temperature The present invention has been accomplished by finding that an ethylene polymer composition having excellent mechanical properties at the time is obtained. That is, the present invention includes (I)
Ultrahigh molecular weight ethylene homopolymers or ethylene / α-olefin copolymers 1 to 50 satisfying (a) and (b)
% By weight, (a) intrinsic viscosity (η 1 ) 9 to 45 dl / g, (b) density (d 1 ) 0.890 to 0.935 g / cm 3 , (II) (c) to
Ethylene homopolymer or ethylene / α that satisfies (f)
-Olefin copolymer 5 to 94% by weight, (c) intrinsic viscosity (η 2 ) 0.3 to 3.0 dl / g, (d) density (d 2 ) 0.890
˜0.980 g / cm 3 , (e) In the elution temperature-elution amount curve by the continuous temperature elution fractionation method, the ratio of the area Ib at the elution temperature of 25 to 90 ° C. to the area Ia under the curve at the elution temperature of 90 ° C. or more. S (Ib / Ia) is S 1 or less calculated from the following equation, S 1 = 20 η 2 −1 exp [−50 (d 2 −0.900)] (f) 25 ° C. ortho-dichlorobenzene soluble content W% by weight is W 1 or less calculated from the formula, W 1 = 100 η 2 −0.5 exp [−50 η 2 0.5 (d 2 −0.900)], and (III) ethylene and carbon number 3 satisfying the following (g) to (j): 5 to 94% by weight of a copolymer of 18 to 18 with α-olefin, (g) intrinsic viscosity (η 3 ) of 1.2 dl / g or more and less than 9.0 dl / g, (h) density (d 3 ) of 0.9. 890 to 0.940 g / cm 3 , (i)
In the elution temperature-elution amount curve by the continuous temperature elution fractionation method, the ratio S (Ib / I) of the area Ib at the elution temperature of 25 to 90 ° C to the area Ia under the curve at the elution temperature of 90 ° C or more.
a) is S 2 or less calculated from the following equation, S 2 = 20η 3 −1 exp [−50 (d 3 −0.900)] (j) 25 ° C. ortho-dichlorobenzene soluble content W weight% is calculated from the following equation. that W 2 or more, made of W 2 = 20exp (-η 3) , and wherein component (I), the sum is 100% by weight of (II) and (III), of each component (I) ~ (III) A mixture having different intrinsic viscosities, each having an intrinsic viscosity of 1.0 to 6.0 dl / g and a density of 0.890.
The present invention provides an ethylene polymer composition having an N-value of 1.7 to 3.0 calculated from 0.970 g / cm 3 and the following formula.

【0005】[0005]

【数2】 [Equation 2]

【0006】以下に本発明の内容を詳述する。本発明の
超高分子量成分(I)とは、 エチレン単独重合体または
エチレン・α−オレフィン共重合体であり、同共重合体
のα−オレフィンとしては、炭素数3〜18のものが用
いられ、特に炭素数4〜10のものが機械的特性の点か
ら好ましい。具体的には、1−ブテン、1−ペンテン、
1−ヘキセン、4−メチル−1−ペンテン、1−オクテ
ン、1−ノネン、1−デセン等が挙げられる。なおα−
オレフィンは2種以上併用しても差し支えない。
The details of the present invention will be described below. The ultrahigh molecular weight component (I) of the present invention is an ethylene homopolymer or an ethylene / α-olefin copolymer, and as the α-olefin of the copolymer, those having 3 to 18 carbon atoms are used. Particularly, those having 4 to 10 carbon atoms are preferable from the viewpoint of mechanical properties. Specifically, 1-butene, 1-pentene,
1-hexene, 4-methyl-1-pentene, 1-octene, 1-nonene, 1-decene and the like can be mentioned. Α-
Two or more olefins may be used in combination without any problem.

【0007】上記超高分子量成分(I)であるエチレン単
独重合体またはエチレン・α−オレフィン共重合体は、
(a)極限粘度(η1)が9〜45dl/g、好ましくは10〜
40dl/g、更に好ましくは12〜40dl/gの範囲のもの
が用いられる。 η1が9dl/g未満では、得られた組成物
の溶融弾性および機械的特性が劣り、また45dl/gを超
えると、成形品の表面荒れやフィッシュアイが発生する
など成形加工性が低下する。また成分(I)の(b)密度
(d1)は、 0.890〜0.935g/cm3の範囲、好ま
しくは0.890〜0.930g/cm3が用いられる。d1
0.890g/cm3未満のものは製造が困難である上に、得
られた組成物のベタつきの原因となるため好ましくな
い。 一方d1が0.935g/cm3を超えるときは、組成物
の機械的特性、特に低温時の機械的特性が低下するため
好ましくない。
The above-mentioned ultrahigh molecular weight component (I), an ethylene homopolymer or an ethylene / α-olefin copolymer, is
(a) Intrinsic viscosity (η 1 ) is 9 to 45 dl / g, preferably 10
It is preferably 40 dl / g, more preferably 12 to 40 dl / g. When η 1 is less than 9 dl / g, the melt elasticity and mechanical properties of the obtained composition are poor, and when it is more than 45 dl / g, the molding processability is deteriorated, such as the surface roughness of the molded product and fish eyes. . The components (I) (b) Density (d 1) is in the range of 0.890~0.935g / cm 3, is preferably 0.890~0.930g / cm 3 is used. Those having d 1 of less than 0.890 g / cm 3 are not preferable because they are difficult to produce and cause stickiness of the obtained composition. On the other hand, when d 1 exceeds 0.935 g / cm 3 , the mechanical properties of the composition, particularly at low temperature, are deteriorated, which is not preferable.

【0008】本発明の成分(II)はエチレン単独重合体
またはエチレン・α−オレフィン共重合体である。エチ
レン・α−オレフィン共重合体のα−オレフィンとして
は、成分(I)の場合と同様に炭素数3〜18のものが
使用され、好ましくは炭素数4〜10であり、特に前記
同様1−ブテン、1−ペンテン、1−ヘキセン、4−メ
チル−1−ペンテン、1−オクテン、1−ノネン、1−
デセン等が機械的特性などの点で好ましい。なおα−オ
レフィンは2種以上併用しても差し支えない。
The component (II) of the present invention is an ethylene homopolymer or an ethylene / α-olefin copolymer. As the α-olefin of the ethylene / α-olefin copolymer, those having 3 to 18 carbon atoms are used as in the case of the component (I), preferably 4 to 10 carbon atoms, and particularly 1- Butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-nonene, 1-
Decene and the like are preferable in terms of mechanical properties and the like. It should be noted that two or more α-olefins may be used in combination.

【0009】上記成分(II)の (c)極限粘度(η2)は
0.3〜3.0dl/gの範囲であり、好ましくは0.6〜3.
0dl/gの範囲である。η2が0.3dl/g未満では、得られ
た組成物の機械的特性、特に低温時の機械的特性が劣
り、一方3.0dl/gを超えると、その流動特性が低下する
のでいずれも好ましくない。また成分(II)の(d)密度
(d2)は、0.890〜0.980g/cm3の範囲、好まし
くは0.900〜0.975g/cm3の範囲が用いられる。
2が0.890g/cm3未満のものは製造が困難である上
に、得られた組成物のベタつきの原因となるので好まし
くない。他方0.980g/cm3を超えるときは、製造が困
難であるのみならず、得られた組成物の機械的特性が低
下するため同様に好ましくない。
The intrinsic viscosity (η 2 ) of component (II) (c) is in the range of 0.3 to 3.0 dl / g, preferably 0.6 to 3.0.
It is in the range of 0 dl / g. When η 2 is less than 0.3 dl / g, the mechanical properties of the obtained composition, particularly at low temperature, are poor, and when it exceeds 3.0 dl / g, the flow properties are deteriorated, and therefore, in any case. Not preferable. The components (II) (d) Density (d 2) is in the range of 0.890~0.980g / cm 3, preferably in the range of 0.900~0.975g / cm 3 is used.
Those having d 2 of less than 0.890 g / cm 3 are not preferable because they are difficult to produce and cause stickiness of the obtained composition. On the other hand, when it exceeds 0.980 g / cm 3 , not only is it difficult to produce, but also the mechanical properties of the obtained composition deteriorate, which is also not preferable.

【0010】本発明で用いる成分(II)に関する前記
(e)の条件は、短鎖分岐を多く含む高分岐度成分は溶剤
中へ低温で溶解するが、短鎖分岐の少ない低分岐度成分
は高温でなければ溶剤に溶解しない性質を利用して、分
岐分布を定量的に規定したものである。 すなわち溶剤
への溶解温度から分岐分布を測定する L. Wild らの連
続昇温溶出分別法(Temperature Rising Elution Fract
ionation(TREF);Journalof Polymer Science:Polyme
r Physics Edition, Vol.20, 441-455(1982))による溶
出温度−溶出量曲線において、溶出温度90℃以上の曲
線下の面積Iaと溶出温度25〜90℃の同面積Ibと
の間に特定の関係が成立することが必要であり、本発明
においては図1の模式図に示される面積比S=Ib/I
aの値が、次式から求められるS1以下でなければなら
ない。 S1=20η2 -1exp[−50(d2−0.900)] Sの値がS1を超えると、分岐分布がほぼ均一に近づく
結果、 機械的特性、特に低温時の機械的特性に対して
きわめて有効な高分岐度成分が相対的に減少することと
なり好ましくない。
The above regarding the component (II) used in the present invention
The condition (e) is that the high branching component containing many short chain branches dissolves in the solvent at a low temperature, but the low branching component containing few short chain branches does not dissolve in the solvent unless it is at a high temperature. , The branch distribution is quantitatively defined. That is, L. Wild et al.'S continuous elevated temperature elution fractionation method (Temperature Rising Elution Fract
ionation (TREF) ; Journal of Polymer Science: Polymer
r Physics Edition, Vol. 20, 441-455 (1982)), in the elution temperature-elution amount curve, between the area Ia under the curve at an elution temperature of 90 ° C or higher and the same area Ib at an elution temperature of 25 to 90 ° C. It is necessary for a specific relationship to be established, and in the present invention, the area ratio S = Ib / I shown in the schematic diagram of FIG.
The value of a must be less than or equal to S 1 obtained from the following equation. S 1 = 20 η 2 -1 exp [−50 (d 2 −0.900)] When the value of S exceeds S 1 , the branch distribution becomes almost uniform, resulting in mechanical properties, especially at low temperature. The extremely effective high branching component is relatively decreased, which is not preferable.

【0011】本発明で使用する成分(II)の(f)25℃
オルソジクロロベンゼン可溶分は、溶出温度が低過ぎて
上記の連続昇温溶出分別法では定量され得ない程度に、
きわめて多量の分岐を有する成分の量を表すもので、極
限粘度および密度に対応した特定の値であることが必要
である。しかしながら、これはまた有用でない低分子量
成分の存在を示すものでもあり、この低分子量成分はで
きるだけ排除することが必要である。このためには、同
可溶分 W重量%が次式から求められるW1以下でなけれ
ばならない。好ましくはW3以下である。 W1=100η2 -0.5exp[−50η2 0.5(d2−0.900)] W3= 90η2 -0.5exp[−50η2 0.5(d2−0.900)] Wの値がW1以上では、 きわめて多量の分岐を有する成
分の外に有用でない低分子量成分が存在することを示し
ており、機械的特性、特に低温時の機械的特性が劣るこ
とになる。
Component (II) (f) 25 ° C. used in the present invention
The ortho-dichlorobenzene-soluble content is so low that the elution temperature is too low to be quantified by the continuous temperature-rising elution fractionation method described above.
It represents the amount of a component having an extremely large amount of branching, and needs to be a specific value corresponding to the intrinsic viscosity and the density. However, this also indicates the presence of a non-useful low molecular weight component, which should be eliminated as much as possible. For this purpose, the same soluble content W% by weight must be W 1 or less obtained from the following equation. It is preferably W 3 or less. W 1 = 100 η 2 -0.5 exp [−50 η 2 0.5 (d 2 −0.900)] W 3 = 90 η 2 −0.5 exp [−50 η 2 0.5 (d 2 −0.900)] When the value of W is W 1 or more, it is extremely high. It shows that in addition to the components having a large amount of branching, there is a non-useful low-molecular weight component, resulting in poor mechanical properties, especially at low temperatures.

【0012】本発明の成分(III)のエチレン・α−オ
レフィン共重合体は成分(I)および(II)の場合と同
様に、エチレンと炭素数3〜18のα−オレフィンとの
共重合体からなり、好ましくは炭素数4〜10のものが
機械的特性などの点で好ましい。具体的には1−ブテ
ン、1−ペンテン、1−ヘキセン、4−メチル−1−ペ
ンテン、1−オクテン、1−ノネン、1−デセン等が挙
げられる。なおα−オレフィンは2種以上併用しても差
し支えない。
The ethylene / α-olefin copolymer of the component (III) of the present invention is a copolymer of ethylene and an α-olefin having 3 to 18 carbon atoms as in the case of the components (I) and (II). And preferably having 4 to 10 carbon atoms in terms of mechanical properties and the like. Specific examples include 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-nonene, 1-decene. It should be noted that two or more α-olefins may be used in combination.

【0013】上記成分(III)の(g)極限粘度(η3)は
1.2dl/g以上、9.0dl/g未満の範囲が用いられ、好ま
しくは1.4〜8.5dl/g、更に好ましくは1.6〜8.0
dl/gの範囲である。η3が1.2dl/g未満では得られた組
成物の溶融弾性および機械的特性が劣り、一方、9.0d
l/gを超えると、 成形品の表面荒れやフィッシュアイが
発生するなど成形加工性が低下する。
The (g) intrinsic viscosity (η 3 ) of the above component (III) is in the range of 1.2 dl / g or more and less than 9.0 dl / g, preferably 1.4 to 8.5 dl / g. More preferably 1.6 to 8.0
It is in the range of dl / g. When η 3 is less than 1.2 dl / g, the melt elasticity and mechanical properties of the obtained composition are inferior, while 9.0 d
If it exceeds l / g, the molding processability will deteriorate, such as the surface roughness of the molded product and the generation of fish eyes.

【0014】また成分(III)の (h)密度(d3)は0.
890〜0.940g/cm3の範囲が用いられ、好ましくは
0.900〜0.935g/cm3の範囲である。d3が0.8
90g/cm3未満のものは製造が困難である上に、 得られ
た組成物のベタつきの原因となるので好ましくない。他
方0.940g/cm3を超えるときは、機械的特性が低下す
る。
The (h) density (d 3 ) of the component (III) is 0.
Range is used 890~0.940g / cm 3, preferably in the range of 0.900~0.935g / cm 3. d 3 is 0.8
If it is less than 90 g / cm 3 , it is not preferable because it is difficult to manufacture and causes stickiness of the obtained composition. On the other hand, when it exceeds 0.940 g / cm 3 , mechanical properties deteriorate.

【0015】本発明で用いる成分(III)は、前記(i)
に示す通り、 成分(II)の(e)と同様に、前記連続昇
温溶出分別法における溶出温度−溶出量曲線の面積比S
=Ib/Iaの値が、次式から求められるS2以下でな
ければならない。 S2=20η3 -1exp[−50(d3−0.900)] Sの値がS2を超えると、 分岐分布がほぼ均一に近づく
結果、機械的特性、特に低温時の機械的特性に対してき
わめて有効な高分岐度成分が相対的に減少することとな
り好ましくない。
The component (III) used in the present invention is the above-mentioned (i)
As shown in (e) of the component (II), the area ratio S of the elution temperature-elution amount curve in the continuous temperature rising elution fractionation method was
The value of = Ib / Ia must be S 2 or less obtained from the following equation. S 2 = 20 η 3 -1 exp [−50 (d 3 −0.900)] When the value of S exceeds S 2 , the branch distribution becomes almost uniform, resulting in mechanical characteristics, especially at low temperature. The extremely effective high branching component is relatively decreased, which is not preferable.

【0016】本発明で使用する成分(III)の(j)25
℃オルソジクロロベンゼン可溶分は、前記のように、溶
出温度が低過ぎて上記の連続昇温溶出分別法では定量さ
れ得ない程度にきわめて高い分岐度を有する成分である
ため、特定の値以上であることが必要である。すなわ
ち、同可溶分 W重量%が、次式から求められるW2以上
でなければならない。好ましくはW4以上である。 W2=20exp(−η3) W4=22exp(−η3) Wの値がW2未満では、 機械的特性、特に低温時の機械
的特性に対してきわめて有効な高分岐度成分が過少とな
り、前記と同様に好ましくない。
Component (III) (j) 25 used in the present invention
As described above, since the elution temperature is too low, the ortho-dichlorobenzene-soluble component is a component having an extremely high degree of branching that cannot be quantified by the continuous temperature-rising elution fractionation method as described above, and therefore, the specific temperature is not less than a certain value. It is necessary to be. That is, the same soluble content W% by weight must be W 2 or more obtained from the following equation. It is preferably W 4 or more. W 2 = 20exp (−η 3 ) W 4 = 22exp (−η 3 ) If the value of W is less than W 2 , the highly effective high branching component is too small for mechanical properties, especially at low temperatures. And is not preferable as described above.

【0017】本発明における成分(I)、(II)および
(III)の配合割合は、成分(I)1〜50重量%、成分
(II)5〜94重量%および成分(III)5〜94重量%
であり、好ましくはそれぞれ(I)5〜40重量%、(I
I)5〜90重量%および(III)5〜90重量%であ
り、ただし成分(I)、(II)および(III)の合計量は1
00重量%であって、組成物に対する要求性能によりこ
れらの配合割合が選択される。上記成分のうち、 特に
成分(I)が本発明において重要な役割をもつことか
ら、成分(I)の特性を考慮して組成物の配合割合を選
択することが好ましい。成分(I)の量が1重量%未満
では、 溶融弾性および機械的特性、特に低温時の機械
的特性が十分でなく、一方、50重量%を超えるときは
流動特性が低くなる。なお、 成分(I)から成分(IV)
の極限粘度はそれぞれ互いに異なることが肝要であり、
これが満足されない場合には、本発明の目的の1つであ
る低温時の機械特性を向上することができない。
The proportions of the components (I), (II) and (III) in the present invention are 1 to 50% by weight of the component (I), 5 to 94% by weight of the component (II) and 5 to 94 of the component (III). weight%
And preferably (I) 5 to 40% by weight, (I
I) 5 to 90% by weight and (III) 5 to 90% by weight, provided that the total amount of components (I), (II) and (III) is 1
It is 00% by weight, and these compounding ratios are selected according to the performance required for the composition. Among the above components, since the component (I) plays an important role in the present invention, it is preferable to select the blending ratio of the composition in consideration of the characteristics of the component (I). When the amount of the component (I) is less than 1% by weight, melt elasticity and mechanical properties, particularly mechanical properties at low temperature, are insufficient, while when it exceeds 50% by weight, flow properties become poor. In addition, from component (I) to component (IV)
It is essential that the intrinsic viscosities of are different from each other,
If this is not satisfied, the mechanical properties at low temperature, which is one of the objects of the present invention, cannot be improved.

【0018】本発明のエチレン重合体組成物は、上記の
ように(I)、(II)および(III)成分の配合により得
られ、同組成物の極限粘度は1.0〜6.0dl/gであり、
好ましくは1.5〜5.0dl/gである。 極限粘度が1.0
dl/g未満では溶融粘度および機械的特性、特に低温時の
機械的特性が不十分であり、 一方、6.0dl/gを超える
ときは流動特性が低くなるため、いずれも好ましくな
い。上記組成物の密度は0.890〜0.970g/cm3
あり、好ましくは0.900〜0.970g/cm3である。
密度が0.890g/cm3未満では製造が困難である上に同
組成物のベタつきの原因となり、また0.970g/cm3
超えるときは、機械的特性が低くなる。更に、同組成物
のN−値が1.7〜3.0であることが必要であり、好ま
しくは1.7〜2.8である。N−値が1.7未満では高
速成形性が低く、3.0を超えるときはメルトフラクチ
ャーが生じやすくなる。
The ethylene polymer composition of the present invention is obtained by blending the components (I), (II) and (III) as described above, and the intrinsic viscosity of the composition is 1.0 to 6.0 dl / g,
It is preferably 1.5 to 5.0 dl / g. Intrinsic viscosity is 1.0
If it is less than dl / g, the melt viscosity and mechanical properties, especially at low temperature, are insufficient, while if it exceeds 6.0 dl / g, the flow properties are poor, so both are not preferable. Density of the composition is 0.890~0.970g / cm 3, preferably 0.900~0.970g / cm 3.
If the density is less than 0.890 g / cm 3, it is difficult to produce and the composition becomes sticky, and if it exceeds 0.970 g / cm 3 , the mechanical properties are low. Further, it is necessary that the N-value of the composition is 1.7 to 3.0, and preferably 1.7 to 2.8. When the N-value is less than 1.7, the high speed moldability is low, and when it exceeds 3.0, melt fracture tends to occur.

【0019】本発明のエチレン重合体組成物を製造する
方法について、特に制限はない。例えば成分(I)、成
分(II)および成分(III)をそれぞれ1段重合で単独
に製造した後、公知の方法で両者を混合してもよく、ま
たは2段もしくはそれ以上の多段重合により、公知の重
合方法で製造してもよい。前者の混合により製造する場
合には、一軸もしくは二軸押出機またはバンバリーミキ
サーなどで混練する方法、あるいは溶液混合法など公知
の方法を使用することができる。
There is no particular limitation on the method for producing the ethylene polymer composition of the present invention. For example, after the components (I), (II) and (III) are each independently produced by one-step polymerization, they may be mixed by a known method, or by two-step or more multi-step polymerization, It may be produced by a known polymerization method. In the case of producing by the former mixing, a known method such as a method of kneading with a single-screw or twin-screw extruder or a Banbury mixer, or a solution mixing method can be used.

【0020】後者の多段重合による方法とは、複数個の
反応器を使用して重合を行うものであり、例えば2段重
合の場合であれば、 第1段の反応器を成分(I)を製造
する重合条件に保持し、第2段の反応器を成分(II)の
重合条件に保持して、第1段で生成した重合体を連続的
に第2段に流通させエチレン重合体組成物を製造するこ
とができる。 この場合に(I)および(II)の各成分は
いずれの反応器において製造されてもよく、製造順序・
段数は特に限定されるものではない。上記いずれの場合
も、反応形式については特に制限はなく、スラリー法、
気相法、溶液法、高圧イオン法など各種の方法を用いる
ことができる。
The latter method by multi-stage polymerization is one in which the polymerization is carried out using a plurality of reactors. For example, in the case of two-stage polymerization, the first stage reactor is charged with the component (I). An ethylene polymer composition is prepared by maintaining the polymerization conditions for production, maintaining the second stage reactor under the polymerization conditions of component (II), and continuously flowing the polymer produced in the first stage to the second stage. Can be manufactured. In this case, the components (I) and (II) may be produced in any reactor,
The number of stages is not particularly limited. In any of the above cases, the reaction form is not particularly limited, and the slurry method,
Various methods such as a gas phase method, a solution method and a high pressure ion method can be used.

【0021】また重合触媒も特に制限はなく、例えば、
チタンおよび/またはバナジウム等の遷移金属を主体と
するチグラー型触媒、クロム系触媒を主体とするフィリ
ップス型触媒、メタロセン等を主体とするカミンスキー
型触媒などいずれも使用することができる。触媒のうち
で特に好ましいのは固体担体に担持された高活性を有す
るチグラー型触媒であり、以下にその詳細を述べる。
The polymerization catalyst is also not particularly limited, and for example,
Any of a Ziegler type catalyst mainly composed of a transition metal such as titanium and / or vanadium, a Phillips type catalyst mainly composed of a chromium-based catalyst, a Kaminsky type catalyst mainly composed of a metallocene and the like can be used. Among the catalysts, a Ziegler type catalyst having a high activity, which is supported on a solid support, is particularly preferable, and the details thereof will be described below.

【0022】高活性チグラー型触媒は、無機質固体担
体、例えば金属マグネシウム、水酸化マグネシウム、炭
酸マグネシウム、酸化マグネシウム、各種アルミナ、シ
リカ、シリカアルミナ、塩化マグネシウム等、またはマ
グネシウムと、ケイ素、アルミニウム、カルシウムから
選ばれる元素とを含む複塩、複酸化物、含水炭酸塩、含
水ケイ酸塩等、更にはこれらの無機質固体担体を含酸素
化合物、含硫黄化合物、炭化水素、ハロゲン含有物質で
処理または反応させたものなどの無機質固体担体に、遷
移金属化合物、例えばチタン、バナジウム、ジルコニウ
ム、クロム等の金属のハロゲン化物、アルコキシハロゲ
ン化物、酸化物、ハロゲン化酸化物等を担持させたもの
を固体成分として用い、 これに第 I〜IV 族金属の有機
化合物、好ましくは亜鉛またはアルミニウムの有機金属
化合物を組み合わせたもの、あるいはこれらを更にα−
オレフィンと接触させて前処理したものなどであり、通
常触媒活性が 50g-ポリマー/g-触媒・hr・kg/cm2ーオレ
フィン圧 以上、 好ましくは100g-ポリマー/g-触媒
・hr・kg/cm2ーオレフィン圧 以上のものである。以上の中
でも、ハロゲン化マグネシウムを含む高活性のチーグラ
ー型触媒が特に好ましい。
The highly active Ziegler type catalyst is an inorganic solid support such as magnesium metal, magnesium hydroxide, magnesium carbonate, magnesium oxide, various aluminas, silica, silica-alumina, magnesium chloride or the like, or magnesium and silicon, aluminum or calcium. Double salts containing selected elements, double oxides, hydrous carbonates, hydrous silicates, etc., and further these inorganic solid carriers are treated or reacted with oxygen-containing compounds, sulfur-containing compounds, hydrocarbons, halogen-containing substances. As a solid component, an inorganic solid carrier such as a metal oxide, a transition metal compound, for example, a metal halide such as titanium, vanadium, zirconium, or chromium supported thereon, an alkoxy halide, an oxide, or a halogenated oxide is used. , An organic compound of a Group I-IV metal, preferably Or Combinations of aluminum organometallic compounds of, or of these further α-
Pretreated by contacting with olefin, etc., and usually has a catalytic activity of 50 g-polymer / g-catalyst · hr · kg / cm 2 -olefin pressure or higher, preferably 100 g-polymer / g-catalyst · hr · kg / cm 2- Olefin pressure or higher. Among the above, a highly active Ziegler type catalyst containing magnesium halide is particularly preferable.

【0023】本発明のエチレン重合体組成物において
は、本発明の要旨を逸脱しない範囲で他のオレフィン系
重合体、ゴム等または酸化防止剤、紫外線吸収剤、光安
定剤、滑剤、帯電防止剤、防曇剤、ブロッキング防止
剤、加工助剤、着色顔料、架橋剤、発泡剤、無機・有機充
填剤、難燃剤等の公知の添加剤を配合して用いることが
できる。
In the ethylene polymer composition of the present invention, other olefinic polymers, rubbers or the like, antioxidants, ultraviolet absorbers, light stabilizers, lubricants, antistatic agents are included within the scope of the present invention. Well-known additives such as anti-fog agents, anti-blocking agents, processing aids, color pigments, cross-linking agents, foaming agents, inorganic / organic fillers, flame retardants and the like can be blended and used.

【0024】[0024]

【実施例】次に本発明を実施例によって詳細に説明する
が、本発明はそれらに限定されるものではない。まず、
本発明で使用する試験法を示す。 (1)極限粘度 135℃デカリン溶液中で[η]を測定した。 (2)密度 JIS K6760の規定による密度勾配管法(23
℃)で測定した。 (3)連続昇温溶出分別法(TREF) 前記の通り、L. Wild らの方法に従った。測定法の詳細
は次の通りである。 〔測定法〕セライト545を充填した容量 8.5リット
ルのステンレス鋼製カラム内に、試料を濃度 0.05重
量%となるように135℃で加熱溶解して調製したオル
ソジクロロベンゼン溶液5ml を注入した後、4℃/min
の冷却速度で25℃まで冷却し、試料をセライト表面に
沈着する。次にこのカラムにオルソジクロロベンゼンを
1ml/min の一定速度で流しながら50℃/hr の一定速
度で昇温し、 試料を順次溶出させる。この際、溶剤中
に溶出する試料について、メチレンの非対称伸縮振動の
波数2925cm-1に対する吸収を赤外検出器で検出し、
記録することにより溶出温度と溶出量の関係すなわち組
成分布を求める。 (4)連続昇温溶出分別法による面積比(S) 前記および図1の通り。 (5)25℃オルソジクロロベンゼン可溶分(W) 試料 0.5g を20ml のオルソジクロロベンゼン(O
DCB) 中において、135℃で2時間加熱し、試料
を完全に溶解した後、25℃まで2時間で冷却する。こ
の溶液を25℃で一晩放置後、テフロン製フィルターで
濾過して濾液を採取し、赤外分光光度計でメチレンの非
対称伸縮振動の波数2950cm-1に対する吸収を測定
し、この結果からあらかじめ作成した検量線により濾液
中の試料濃度を定量する。 (6)N−値 高化式フローテスター(島津製作所製)を使用し樹脂温
度210℃で2mmφ×40mm のダイから押出し、 低位
試験圧力20kg/cm2および高位試験圧力150kg/cm2
の見かけの剪断速度を求め、次式数3により算出する。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited thereto. First,
The test methods used in the present invention are shown. (1) Intrinsic viscosity [η] was measured in a decalin solution at 135 ° C. (2) Density Density gradient tube method (23
(° C). (3) Continuous temperature rising elution fractionation method (TREF) As described above, the method of L. Wild et al. Was followed. The details of the measuring method are as follows. [Measurement Method] 5 ml of an orthodichlorobenzene solution prepared by heating and dissolving the sample at 135 ° C. to a concentration of 0.05% by weight was injected into a 8.5 liter stainless steel column filled with Celite 545. After 4 ℃ / min
The sample is deposited on the surface of Celite by cooling to 25 ° C at a cooling rate of. Next, while ortho-dichlorobenzene is flown through this column at a constant rate of 1 ml / min, the temperature is raised at a constant rate of 50 ° C./hr to elute the samples sequentially. At this time, with respect to the sample eluted in the solvent, the absorption at a wave number of 2925 cm −1 of the asymmetric stretching vibration of methylene was detected by an infrared detector,
By recording, the relationship between the elution temperature and the elution amount, that is, the composition distribution is obtained. (4) Area ratio (S) by continuous temperature rising elution fractionation method As described above and in FIG. (5) Orthodichlorobenzene-soluble matter (W) at 25 ° C. 0.5 g of a sample was added to 20 ml of orthodichlorobenzene (O).
In DCB), heat at 135 ° C. for 2 hours to completely dissolve the sample and then cool to 25 ° C. in 2 hours. This solution was left overnight at 25 ° C, then filtered through a Teflon filter to collect the filtrate, and the absorption of the methylene asymmetric stretching vibration at a wave number of 2950 cm -1 was measured with an infrared spectrophotometer. The sample concentration in the filtrate is quantified by the calibration curve obtained. (6) N-value Using a Koka type flow tester (manufactured by Shimadzu Corporation), extruding from a die of 2 mmφ × 40 mm at a resin temperature of 210 ° C., and appearance at low test pressure of 20 kg / cm 2 and high test pressure of 150 kg / cm 2. The shear rate of is calculated and calculated by the following equation 3.

【数3】 (7)ハイロードメルトフロレート(HLMFR) JIS K6760に準拠して測定。(測定温度190
℃、荷重21.6kg) (8)引張降伏強さ(YTS) JIS K6760の規定による。(引張速度50mm/mi
n、試験片厚み2mm) (9)引張衝撃値(TIS) ASTM D1822に準拠して測定。(試験片厚み1.
5mm) (10)アイゾット衝撃値(IIS) JIS K7110に準拠し、−40℃で以下の方法に
より測定した。試料からプレスにより、厚み3mm のシ
ートを作製する。 試験片の形状は2号Aとする。 試料
の調整はいずれも23℃、湿度50%で88時間行った
後、 更に−40℃に温度調節された低温室中に約3時
間保持した後、低温室内で−40℃で測定する。試験片
はそれぞれ5個作製し、5回の測定の平均値を用いる。 (11)メルトテンション(MT) 東洋精機(株)製のメルトテンションテスターにより測
定。(測定温度190℃) (12)ダイスウェル比(DSR) 高化式フローテスターを用いて温度210℃で試料を押
出し、ストランドの径とダイの内径との比を求める。
剪断速度が100sec-1に相当する押出速度で測定し
た。 (13)臨界剪断速度(γc) INTESCO(株)製のキャピラリーレオメーターによ
り測定した。 (測定温度190℃) (14)耐環境応力亀裂性(ESCR) JIS K6760による定ひずみESCRのF50の値
を求める。
[Equation 3] (7) High load melt flow rate (HLMFR) Measured in accordance with JIS K6760. (Measurement temperature 190
(° C, load 21.6 kg) (8) Tensile yield strength (YTS) According to JIS K6760. (Pulling speed 50mm / mi
n, test piece thickness 2 mm) (9) Tensile impact value (TIS) Measured in accordance with ASTM D1822. (Test piece thickness 1.
5 mm) (10) Izod impact value (IIS) Based on JIS K7110, measured at -40 ° C by the following method. A sheet having a thickness of 3 mm is produced from the sample by pressing. The shape of the test piece is No. 2A. The sample is adjusted at 23 ° C. and humidity of 50% for 88 hours, held in a low temperature room controlled at −40 ° C. for about 3 hours, and then measured at −40 ° C. in the low temperature room. Five test pieces are prepared, and the average value of five measurements is used. (11) Melt tension (MT) Measured with a melt tension tester manufactured by Toyo Seiki Co., Ltd. (Measurement temperature: 190 ° C.) (12) Die swell ratio (DSR) A sample is extruded at a temperature of 210 ° C. using a high-performance flow tester, and the ratio between the strand diameter and the die inner diameter is determined.
The shear rate was measured at an extrusion rate corresponding to 100 sec -1 . (13) Critical shear rate (γc) It was measured by a capillary rheometer manufactured by INTESCO. (Measurement temperature 190 ° C.) (14) Environmental stress crack resistance (ESCR) The value of F 50 of constant strain ESCR according to JIS K6760 is obtained.

【0025】〔成分(I)、(II)および(III)の製
造〕まず、内容積50リットルの撹拌型反応器を使用
し、無水塩化マグネシウムを一成分とする固体担体に四
塩化チタンを担持した固体触媒とトリエチルアルミニウ
ム(TEA)の助触媒とを用いて、 窒素雰囲気下で1
段重合を行ない、 成分(I)の重合物A1およびA2なら
びに成分(II)の重合物B1〜B3を製造した。それらの
重合条件および得られた重合物の物性を表1に示す。
[Production of Components (I), (II) and (III)] First, titanium tetrachloride is supported on a solid carrier containing anhydrous magnesium chloride as one component using a stirring reactor having an internal volume of 50 liters. 1 in a nitrogen atmosphere using the solid catalyst prepared above and a co-catalyst of triethylaluminum (TEA).
Stage polymerization was carried out to prepare polymer A1 and A2 of component (I) and polymer B1 to B3 of component (II). Table 1 shows the polymerization conditions and the physical properties of the obtained polymer.

【0026】[0026]

【表1】 [Table 1]

【0027】内容積70リットルの撹拌型反応器を使用
し、上記と同様の触媒系を用いて表2に示す重合条件で
連続的に1段重合を行い、 成分(III)の重合物C1〜
C3を製造した。この際、反応器の重合圧力を全圧8.8
〜9.2kg/cm2G、液量を50リットルに保って重合し
た。これらの重合物の物性を評価した結果を表2に示
す。
Using a stirring type reactor having an internal volume of 70 liters and using the same catalyst system as described above, one-stage polymerization was continuously carried out under the polymerization conditions shown in Table 2 to obtain a polymer (C1) of component (III).
C3 was produced. At this time, the total polymerization pressure of the reactor is 8.8.
Polymerization was carried out while keeping the liquid volume at ˜9.2 kg / cm 2 G and 50 liters. The results of evaluating the physical properties of these polymers are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】次に、内容積2リットルのオートクレーブ
を用い、上記と同様の触媒を使用して窒素雰囲気下で1
段重合を行ない、成分(III)の重合物C4〜C7を製造
した。それらの重合条件および得られた重合物の物性を
表3に示す。
Next, using an autoclave having an internal volume of 2 liters and using the same catalyst as described above, 1
Stage polymerization was carried out to produce polymers C4 to C7 of component (III). Table 3 shows the polymerization conditions and the physical properties of the obtained polymer.

【0030】[0030]

【表3】 [Table 3]

【0031】〔組成物の調製〕前記重合物のうち、 成
分(I)と成分(II)とを溶液混合法により以下のブレ
ンド条件で混合調製した。 〈ブレンド条件〉 雰囲気: 窒素 溶 媒: キシレン(4.5リットル) 試料量: 合計200g 温 度: 200℃ 時 間: 2時間 析出溶媒:−20℃メタノール(8リットル) 洗浄溶媒:ヘキサン 洗 浄: キシレン臭がなくなるまで 乾 燥: 室温から110℃まで ポリマー回収率:ほぼ100% 更に、上記混合物と成分(III)の重合物とを窒素雰囲
気下において、 試料合計量70g、回転数20rpm、混
練時間7分間、混練温度160℃で混合し、実施例およ
び比較例の組成物を得た。
[Preparation of Composition] Of the above-mentioned polymer, the component (I) and the component (II) were mixed and prepared by the solution mixing method under the following blending conditions. <Blend conditions> Atmosphere: Nitrogen Solvent: Xylene (4.5 liters) Sample amount: Total 200g Temperature: 200 ° C Time: 2 hours Deposition solvent: -20 ° C Methanol (8 liters) Cleaning solvent: Hexane Cleaning: Until xylene odor disappears Drying: From room temperature to 110 ° C Polymer recovery rate: Almost 100% Further, the above mixture and the polymer of the component (III) are placed under a nitrogen atmosphere, the total amount of the sample is 70 g, the rotation speed is 20 rpm, and the kneading time is Mixing was carried out for 7 minutes at a kneading temperature of 160 ° C. to obtain the compositions of Examples and Comparative Examples.

【0032】<実施例1〜6>実施例の組成物の配合割
合および物性の評価結果を表4に示す。
<Examples 1 to 6> Table 4 shows the blending ratios of the compositions of Examples and the evaluation results of the physical properties.

【0033】[0033]

【表4】 [Table 4]

【0034】<比較例1〜6>比較例の組成物の配合割
合および物性の評価結果を表5に示す。
<Comparative Examples 1 to 6> Table 5 shows the blending ratios of the compositions of Comparative Examples and the evaluation results of the physical properties.

【0035】[0035]

【表5】 [Table 5]

【0036】次に、図1に示したTREFによる溶出温
度−溶出量曲線に、更にパラメータとして分子量を加
え、かつ溶出量を等高線で表した模式図を図2に示す。
同図において、 例えば分子量が10,000以上の範囲
について実施例と比較例とを対比すると、実施例の組成
物は比較例の組成物に比べて、分子量のより大きい領域
に、溶出温度が低い成分、すなわち短鎖分岐の多い成分
(25℃オルソジクロロベンゼン可溶分)をより多く含
有していることがわかる。この成分が本発明の組成物の
低温時における機械的特性およびESCRを向上させる
主な要因であると推定している。
Next, FIG. 2 shows a schematic diagram in which the molecular weight is further added as a parameter to the elution temperature-elution amount curve by TREF shown in FIG. 1 and the elution amount is represented by contour lines.
In the figure, when the examples and the comparative examples are compared in the range where the molecular weight is 10,000 or more, for example, the composition of the example has a lower elution temperature in a region where the molecular weight is larger than that of the composition of the comparative example. It can be seen that the component, that is, the component having many short-chain branches (25 ° C. ortho-dichlorobenzene-soluble component) is contained in a larger amount. It is presumed that this component is the main factor for improving the mechanical properties and ESCR at low temperature of the composition of the present invention.

【0037】[0037]

【発明の効果】本発明のエチレン重合体組成物は、超高
分子量成分、高分子量成分であって、かつ分子間の短鎖
分岐分布がきわめて広い特定のエチレン・α−オレフィ
ン共重合体、および分子間の短鎖分岐分布がきわめて広
い特定のエチレン・α−オレフィン共重合体または短鎖
分岐の存在しないエチレン単独重合体からなる低分子量
成分を配合することにより得られ、溶融弾性、流動特
性、機械特性等のバランスに優れた分子量分布の極めて
広い組成物であり、具体的には次の特徴を有する。 (1)低温アイゾット衝撃値などの低温時の機械的特
性、耐寒性に優れている。 (2)メルトテンション、ダイスウェル比等の溶融弾性
および臨界剪断速度などの流動特性に優れているため、
高速成形性などの成形加工性が良好である。 上記の長所を有する結果、各種フィルム、シート、パイ
プ、中空容器、各種被覆材料、発泡材料等に使用される
が、特に溶融弾性が著しく優れているため、ガソリンタ
ンク等の大型中空容器用組成物として有用である。
The ethylene polymer composition of the present invention comprises a specific ethylene / α-olefin copolymer which is an ultra-high molecular weight component, a high molecular weight component and has an extremely wide distribution of short chain branches between molecules, and Obtained by blending a low molecular weight component consisting of a specific ethylene / α-olefin copolymer having a very wide short chain branch distribution between molecules or an ethylene homopolymer having no short chain branch, melt elasticity, flow characteristics, It is a composition having an extremely wide molecular weight distribution with excellent balance of mechanical properties and the like, and specifically has the following features. (1) Excellent mechanical properties at low temperature such as low temperature Izod impact value and cold resistance. (2) Since it has excellent melt elasticity such as melt tension and die swell ratio, and excellent flow characteristics such as critical shear rate,
Good moldability such as high-speed moldability. As a result of having the above-mentioned advantages, it is used for various films, sheets, pipes, hollow containers, various coating materials, foaming materials, etc., but since it has extremely excellent melt elasticity, it is a composition for large hollow containers such as gasoline tanks. Is useful as

【図面の簡単な説明】[Brief description of drawings]

【図1】連続昇温溶出分別法(TREF)による溶出温
度−溶出量の関係を示す図である。
FIG. 1 is a diagram showing a relationship between an elution temperature and an elution amount by a continuous temperature rising elution fractionation method (TREF).

【図2】組成物の溶出温度−分子量−溶出量等高線図で
ある。 (a)実施例1、(b)比較例1
FIG. 2 is a contour map of elution temperature-molecular weight-elution amount of a composition. (A) Example 1, (b) Comparative Example 1

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (I)下記 (a)および(b)を満足する超
高分子量のエチレン単独重合体またはエチレン・α−オ
レフィン共重合体1〜50重量%、(a)極限粘度
(η1)9〜45dl/g、(b)密度(d1)0.890〜0.
935g/cm3、 (II)下記(c)〜(f)を満足するエチレン単独重合体ま
たはエチレン・α−オレフィン共重合体5〜94重量
%、(c)極限粘度(η2)0.3〜3.0dl/g、(d)密度
(d2)0.890〜0.980g/cm3、(e)連続昇温溶出
分別法による溶出温度−溶出量曲線において、 溶出温
度90℃以上の曲線下の面積Iaに対する溶出温度25
〜90℃の該面積Ibの比S(Ib/Ia)が次式から
計算されるS1以下、 S1=20η2 -1exp[−50(d2−0.900)] (f)25℃オルソジクロロベンゼン可溶分 W重量%が
次式から計算されるW1以下、 W1=100η2 -0.5exp[−50η2 0.5(d2−0.900)]、なら
びに (III)下記 (g)〜(j)を満足するエチレンと炭素数3
〜18のα−オレフィンとの共重合体5〜94重量%、
(g)極限粘度(η3)1.2dl/g以上、9.0dl/g未満、
(h)密度(d3)0.890〜0.940g/cm3、(i)連続
昇温溶出分別法による溶出温度−溶出量曲線において、
溶出温度90℃以上の曲線下の面積Iaに対する溶出
温度25〜90℃の該面積Ibの比S(Ib/Ia)が
次式から計算されるS2以下、 S2=20η3 -1exp[−50(d3−0.900)] (j)25℃オルソジクロロベンゼン可溶分 W重量%が
次式から計算されるW2以上、 W2=20exp(−η3) からなり、かつ前記成分(I)、(II)および(III)の合
計は100重量%であり、各成分(I)〜(III)の極限
粘度がそれぞれ互いに異なる混合物であって、該混合物
の極限粘度が1.0〜6.0dl/g、 密度が0.890〜
0.970g/cm3および次式数1から計算されるN−値が
1.7〜3.0であるエチレン重合体組成物。 【数1】
(I) 1 to 50% by weight of an ultrahigh molecular weight ethylene homopolymer or ethylene / α-olefin copolymer satisfying the following (a) and (b), (a) intrinsic viscosity (η 1 ) 9-45 dl / g, (b) density (d 1 ) 0.890-0.
935 g / cm 3 , (II) 5 to 94% by weight of an ethylene homopolymer or an ethylene / α-olefin copolymer satisfying the following (c) to (f), (c) intrinsic viscosity (η 2 ) 0.3 ˜3.0 dl / g, (d) Density (d 2 ) 0.890 to 0.980 g / cm 3 , (e) Elution temperature-elution amount curve by continuous temperature elution fractionation method Elution temperature 25 for area Ia under the curve
The ratio S (Ib / Ia) of the area Ib at ˜90 ° C. is less than or equal to S 1 calculated from the following equation: S 1 = 20η 2 −1 exp [−50 (d 2 −0.900)] (f) 25 ° C. Chlorobenzene soluble content W weight% is W 1 or less calculated from the following formula, W 1 = 100 η 2 −0.5 exp [−50 η 2 0.5 (d 2 −0.900)], and (III) the following (g) to (j) ) And ethylene having 3 carbon atoms
A copolymer with an α-olefin of 5 to 94% by weight,
(g) Intrinsic viscosity (η 3 ) of 1.2 dl / g or more and less than 9.0 dl / g,
(h) Density (d 3 ) 0.890 to 0.940 g / cm 3 , (i) Elution temperature-elution amount curve by continuous temperature elution fractionation method,
The ratio S (Ib / Ia) of the area Ib at the elution temperature of 25 to 90 ° C. to the area Ia under the curve at the elution temperature of 90 ° C. or more is S 2 or less calculated from the following equation: S 2 = 20 η 3 −1 exp [ −50 (d 3 −0.900)] (j) 25 ° C. ortho-dichlorobenzene-soluble component W weight% is W 2 or more calculated from the following formula, W 2 = 20exp (−η 3 ), and the component (I ), (II) and (III) are 100% by weight, and the components (I) to (III) have different intrinsic viscosities from each other, and the intrinsic viscosity of the mixture is 1.0 to 6 0.0dl / g, density 0.890
An ethylene polymer composition having an N-value of 1.7 to 3.0 calculated from 0.970 g / cm 3 and the following formula 1. [Equation 1]
JP22328692A 1992-07-29 1992-07-29 Ethylene polymer composition Expired - Fee Related JP3372057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22328692A JP3372057B2 (en) 1992-07-29 1992-07-29 Ethylene polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22328692A JP3372057B2 (en) 1992-07-29 1992-07-29 Ethylene polymer composition

Publications (2)

Publication Number Publication Date
JPH0649287A true JPH0649287A (en) 1994-02-22
JP3372057B2 JP3372057B2 (en) 2003-01-27

Family

ID=16795757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22328692A Expired - Fee Related JP3372057B2 (en) 1992-07-29 1992-07-29 Ethylene polymer composition

Country Status (1)

Country Link
JP (1) JP3372057B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022920A1 (en) * 2001-09-06 2003-03-20 Mitsui Chemicals, Inc. Polyethylene resin composition
JP2015134902A (en) * 2013-12-16 2015-07-27 旭化成ケミカルズ株式会社 Ultrahigh molecular weight polyethylene resin composition, and production method and molding thereof
JP2015140369A (en) * 2014-01-27 2015-08-03 東ソー株式会社 Polyethylene composition of ultrahigh molecular weight, and compact made of the same
JP2016502046A (en) * 2012-12-17 2016-01-21 ボレアリス エージー Process for producing high density polyethylene blends
JP2016507601A (en) * 2012-12-17 2016-03-10 ボレアリス エージー Process for producing high density polyethylene blends
JP2016516873A (en) * 2013-05-01 2016-06-09 ボレアリス エージー Composition
JP2022166046A (en) * 2016-09-12 2022-11-01 タイ ポリエチレン カンパニー リミテッド Multimodal polyethylene composition and film comprising the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022920A1 (en) * 2001-09-06 2003-03-20 Mitsui Chemicals, Inc. Polyethylene resin composition
JP2016502046A (en) * 2012-12-17 2016-01-21 ボレアリス エージー Process for producing high density polyethylene blends
JP2016507601A (en) * 2012-12-17 2016-03-10 ボレアリス エージー Process for producing high density polyethylene blends
JP2016516873A (en) * 2013-05-01 2016-06-09 ボレアリス エージー Composition
JP2015134902A (en) * 2013-12-16 2015-07-27 旭化成ケミカルズ株式会社 Ultrahigh molecular weight polyethylene resin composition, and production method and molding thereof
JP2015140369A (en) * 2014-01-27 2015-08-03 東ソー株式会社 Polyethylene composition of ultrahigh molecular weight, and compact made of the same
JP2022166046A (en) * 2016-09-12 2022-11-01 タイ ポリエチレン カンパニー リミテッド Multimodal polyethylene composition and film comprising the same

Also Published As

Publication number Publication date
JP3372057B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
JP3045548B2 (en) Polyethylene composition
JPH0565373A (en) Polyethylene composition
CA2142733C (en) Impact modification of thermoplastics
EP0095253B1 (en) Polyethylene blend and film
AU762538B2 (en) Crystalline propylene copolymer compositions having improved sealability and optical properties and reduced solubility
US20090304966A1 (en) Bimodal polyethylene process and products
BRPI0706048A2 (en) high density polyethylene composition, method for producing a high density polyethylene composition, article, bottle cap closure, method for improving bottle cap closures, and method for producing an article
JP3372057B2 (en) Ethylene polymer composition
JP3372074B2 (en) Polyethylene composition
JP3375167B2 (en) Ethylene polymer composition
JP3375168B2 (en) Polyethylene composition
JP3375169B2 (en) Polyethylene resin composition
JP3989066B2 (en) Blow molding
JPS647096B2 (en)
JP3372059B2 (en) Ethylene / α-olefin copolymer composition
JP3375149B2 (en) Ethylene polymer composition
JP3372056B2 (en) Ethylene / α-olefin copolymer composition
JPS61243842A (en) Polypropylene composition
JP3372060B2 (en) Ethylene polymer composition
JPS5922946A (en) Ethylene-alpha-olefin copolymer type resin composition of high quality for casting film and preparation thereof
US11492429B2 (en) Long-chain branched ethylene copolymer with novel composition distribution and films formed from the same
JPH07196861A (en) Polyethylene composition
JPH0649288A (en) Polyethylene composition
JP3375150B2 (en) Ethylene resin composition
JP2001206994A (en) Thermoplastic elastomer composition and molded article

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081122

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees