JPH0648757Y2 - Electrolyte circulation type laminated battery device - Google Patents

Electrolyte circulation type laminated battery device

Info

Publication number
JPH0648757Y2
JPH0648757Y2 JP1988157005U JP15700588U JPH0648757Y2 JP H0648757 Y2 JPH0648757 Y2 JP H0648757Y2 JP 1988157005 U JP1988157005 U JP 1988157005U JP 15700588 U JP15700588 U JP 15700588U JP H0648757 Y2 JPH0648757 Y2 JP H0648757Y2
Authority
JP
Japan
Prior art keywords
battery
electrolytic solution
stack
storage container
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988157005U
Other languages
Japanese (ja)
Other versions
JPH0277862U (en
Inventor
武 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP1988157005U priority Critical patent/JPH0648757Y2/en
Publication of JPH0277862U publication Critical patent/JPH0277862U/ja
Application granted granted Critical
Publication of JPH0648757Y2 publication Critical patent/JPH0648757Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【考案の詳細な説明】 A.産業上の利用分野 この考案は、循環する電解液の液漏洩を防止するように
した積層電池装置に関する。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention relates to a laminated battery device which prevents leakage of circulating electrolyte.

B.考案の概要 本考案は、電解液を循環しながら使用するようにした積
層電池において、 電極板等の電池構成部材を積層一体化して成る電池積層
体を、所定気圧の圧搾気体を充填した、収納容器内に収
容密封することにより、 長年使用中に電池積層体の積層部分が変形しても電解液
漏れを防止するようにしたものである。
B. Outline of the Invention The present invention is a laminated battery in which an electrolytic solution is circulated and used, and a battery laminated body formed by integrally laminating battery constituent members such as electrode plates is filled with compressed gas at a predetermined pressure. By containing and sealing in the storage container, even if the laminated portion of the battery laminate is deformed during many years of use, leakage of the electrolytic solution is prevented.

C.従来の技術 近時、電池電力貯蔵システムの開発が促進されており、
その一環として第2図及び第3図に例示する如き電解液
循環型亜鉛−臭素積層二次電池が開発されている。
C. Conventional technology Recently, the development of battery power storage system has been promoted,
As a part of this, an electrolyte circulating zinc-bromine stacked secondary battery as illustrated in FIGS. 2 and 3 has been developed.

これは、第2図の構成原理図に示すように、電池本体1
をイオン交換膜または多孔質膜からなるセパレータ2で
正極室3と負極室4とに区画し、この両極室にそれぞれ
電解液を循環させるための送液管5,6と返液管7,8により
接続それた電解液タンク9,10を設け、臭化亜鉛(ZnB
r2)の電解液をそれぞれの電極室に循環させるようにし
たものである。尚、11は正極、12は負極、13,14は共に
送液ポンプ、15は弁である。
As shown in the structural principle diagram of FIG.
Is divided into a positive electrode chamber 3 and a negative electrode chamber 4 by a separator 2 composed of an ion exchange membrane or a porous membrane, and liquid feed pipes 5 and 6 and liquid return pipes 7 and 8 for circulating an electrolytic solution in the positive electrode chamber 3 and the negative electrode chamber 4, respectively. The electrolytic solution tanks 9 and 10 connected by the
The electrolyte solution of r 2 ) is circulated in each electrode chamber. In addition, 11 is a positive electrode, 12 is a negative electrode, 13 and 14 are both liquid feed pumps, and 15 is a valve.

しかして、充電時には、電解液が図の矢印の方向に循環
し、負極12ではZn+++2e-→Zn、正極11では2Br-→Br2
+2eの反応を生じ、正極11で生成された臭素は分子とな
り、電解液中に混じり、一部溶解し、大部分は正極液中
の錯化剤によって錯化物となり、正極室側の電解液タン
ク10内に沈澱して蓄積される。又、放電時には、電解液
が循環した状態で各電極11,12ではそれぞれ前記反応式
と逆の反応を生じ、析出物(Zn,Br2)が各電極11,12上
で消費(酸化,還元)され、電気エネルギーが放出され
るようにしたものである。
Then, during charging, the electrolyte circulates in the direction of the arrow in the figure, Zn ++ + 2e → Zn for the negative electrode 12 and 2Br → Br 2 for the positive electrode 11.
+ 2e reaction occurs, and the bromine generated in the positive electrode 11 becomes a molecule, mixes in the electrolytic solution, partially dissolves, and most of it becomes a complexed product by the complexing agent in the positive electrode solution, and the electrolytic solution tank on the positive electrode chamber side. Accumulates within 10 and accumulates. During discharge, the electrolyte 11 circulates in each electrode 11 and 12 in the state of being circulated, and a reaction opposite to the above reaction occurs, and the precipitate (Zn, Br 2 ) is consumed (oxidation, reduction) on each electrode 11 and 12. ), The electrical energy is released.

また、上述のような構成原理の亜鉛−臭素電池には、第
3図に例示するような多数のセル積層構造の電池積層体
(以下本明細書ではスタックという)が用いられてい
る。これは、スタック全体を両側端間に挿通し、螺合さ
れたボルト,ナットを用いて挟むように押さえるための
一対の締付端板16,16と、そのそれぞれの内側に配置す
る押さえ部材である積層端板17,17との間に、例えば30
セル積層して構成する。すなわち、一方のカーボンプラ
スチックの端板電極18の集電メッシュ19の次にパッキン
20を介してセパレータ板21を重ね、所定間隔保持用のス
ペーサメッシユ22を重ね、カーボンプラスチック製平板
中間電極23を重ね、さらにパッキン20を重ねるといった
順序で積層し、最後に他方のカーボンプラスチック製端
板電極18を重ねて、全体で30セル積層する。
A battery stack having a large number of cell stack structures (hereinafter referred to as a stack in the present specification) as illustrated in FIG. 3 is used for the zinc-bromine battery having the above-described configuration principle. This consists of a pair of tightening end plates 16 and 16 for inserting the entire stack between both ends and holding them with bolts and nuts that are screwed together, and a holding member arranged inside each of them. Between the laminated end plates 17, 17, for example, 30
It is configured by stacking cells. That is, the packing mesh is provided next to the collecting mesh 19 of the end plate electrode 18 of one carbon plastic.
The separator plates 21 are stacked with the spacers 20 interposed therebetween, the spacer mesh 22 for holding a predetermined distance is stacked, the flat plate intermediate electrodes 23 made of carbon plastic are stacked, and further the packing 20 is stacked. The end plate electrodes 18 are overlapped, and a total of 30 cells are laminated.

次に、各締付端板16の周辺近傍部所定位置に複数穿孔さ
れた各通し孔27に、それぞれボルト28を挿通し、ナット
29を螺合し、スタック全体を挟み付け、液漏れのないよ
うに固締して構成する。
Next, the bolts 28 are respectively inserted into the through holes 27 formed at predetermined positions in the vicinity of the periphery of each tightening end plate 16, and the nuts are inserted.
29 is screwed together, the whole stack is sandwiched, and it is tightened so as not to leak liquid.

このように積層構成したスタックには、第3図に示すよ
うに、その四隅角部に流液孔である正極マニホールド24
と負極マニホールド25とを穿設する。
As shown in FIG. 3, the stack thus laminated has a positive electrode manifold 24 having flow holes at its four corners.
And a negative electrode manifold 25.

また、各セパレータ板21は、微多孔質膜より成るセパレ
ータ2の周囲にパッキンとしても機能する枠体21aを一
体成形して構成したもので、その両平面部上下にはそれ
ぞれ表裏対称形状にマイクロチャンネル26を設置して成
る。この一側面の実験で示すマイクロチャンネル26は、
それぞれ対角線上の正極マニホールド24から導入した電
解液を均一に広げてセパレータ2の全面に流し、又はこ
れより液を回収する。また、他側面の破線で示すマイク
ロチャンネル26は、負極マニホールド25からの電解液を
導入,回収するものである。
Each separator plate 21 is formed by integrally molding a frame body 21a that also functions as a packing around the separator 2 made of a microporous film. Channel 26 is installed. The microchannel 26 shown in this one-sided experiment is
The electrolytic solution introduced from each of the diagonal positive electrode manifolds 24 is uniformly spread and flowed over the entire surface of the separator 2, or the solution is recovered from this. The microchannel 26 shown by the broken line on the other side is for introducing and collecting the electrolytic solution from the negative electrode manifold 25.

このようにして、各セパレータ板21の両側面部にそれぞ
れ配置された電極との間において、第2図に例示した単
位電池となるセルを構成し、スタックとしては、このセ
ルが30個直列接続されるよう構成するものである。
In this way, between the electrodes arranged on both side surfaces of each separator plate 21, the unit battery cell illustrated in FIG. 2 is constructed, and 30 cells are connected in series as a stack. It is configured to.

D.考案が解決しようとする課題 上述のような従来の電池本体としての電池積層体すなわ
ちスタックでは、長期に亘って使用していると、その内
部積層体である各セルにおける枠板部分等がクリープ変
形したり、電解液や温度によって劣化し、防水上の機能
が弱まって、電解液が漏れ出し、漏電することがある等
の問題があった。
D. Problems to be Solved by the Invention In a conventional battery stack, that is, a stack as a battery main body as described above, when used for a long period of time, the frame plate portion of each cell, which is the internal stack, may be There have been problems such as creep deformation, deterioration due to electrolyte and temperature, weakening of waterproof function, leakage of electrolyte, and leakage of electricity.

また、上述の如き電解液の液漏れ対策として、定期的に
メンテナンスを行うことが望ましいが、電力用の大形電
池では、液漏れを発見するのが困難で、その作業も危険
を伴うものであるため、メンテナンスの実施が困難であ
るという問題があった。
In addition, it is desirable to perform regular maintenance as a measure against electrolyte leakage as described above, but it is difficult to detect leakage with large-sized batteries for electric power, and its work is also dangerous. Therefore, there is a problem that it is difficult to perform maintenance.

本考案は、上述の点に鑑み、電池積層体から、電解液が
漏れないように漏洩防止した電解液循環型積層電池装置
を新たに提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to newly provide an electrolytic solution circulation type laminated battery device in which the electrolytic solution is prevented from leaking from the battery laminated body.

E.課題を解決するための手段 本考案の電解液循環型積層電池装置は、電極板等の電池
構成部材を積層一体化して構成した電池積層全体を収納
容器内に収容密封し、この収納容器内に圧搾空気を充填
して所定圧力に保持するようにしたことを特徴とする。
E. Means for Solving the Problems The electrolytic solution circulating type laminated battery device of the present invention is configured such that an electrode stack and other battery constituent members are integrally laminated, and the entire battery stack is housed and sealed in a housing container. It is characterized in that it is filled with compressed air so as to be maintained at a predetermined pressure.

F.作用 上述のように構成することにより、電池を長期に亘って
使用するうち、電池積層体の電極板等の電池構成部材の
枠体が変形したり、われを生じたりして隙間を生ずる等
の場合に、圧搾空気が、この隙間から電解液が漏れるの
を押し止めて、漏液を防止するという作用を奏する。
F. Action With the above-described configuration, when the battery is used for a long period of time, the frame of the battery component such as the electrode plate of the battery stack is deformed or cracked to form a gap. In this case, the compressed air prevents the electrolyte solution from leaking through the gap, and thus has the effect of preventing the leakage.

G.実施例 以下本考案の電解液循環型積層電池装置の一実施例を第
1図によって説明する。なお、この第1図において、前
述した第2図及び第3図に示す従来例に対応する部分に
は同一符号を付すこととし、その詳細な説明を省略す
る。
G. Example An example of the electrolytic solution circulating type laminated battery device of the present invention will be described below with reference to FIG. In FIG. 1, parts corresponding to those of the conventional example shown in FIGS. 2 and 3 are given the same reference numerals, and detailed description thereof will be omitted.

第1図の部分断面概略斜視図で、1は電池本体、5,6は
送液管、7,8は返液管、9,10は電解液タンク、13,14は送
液ポンプである。
1 is a battery main body, 5 and 6 are liquid sending pipes, 7 and 8 are liquid returning pipes, 9 and 10 are electrolyte tanks, and 13 and 14 are liquid sending pumps.

この電池本体1を構成するセパレータ板21、中間電極23
等を積層一体化して成る電池積層体すなわちスタック30
全体を、収納容器31内に納める。
Separator plate 21 and intermediate electrode 23 constituting the battery body 1
A battery stack, that is, a stack 30 formed by integrally stacking etc.
The whole is stored in the storage container 31.

収納容器31は、気密を保持でき、かつ内部の気圧を高め
られるようにしたものである。さらに、収納容器31に
は、通気管32を設置し、この通気管32に接続する図示し
ない圧力ポンプから、圧搾空気を、この収納容器31内に
充填し、図示しないコックを閉じてその内部気圧を所定
値に保持できるようにする。
The storage container 31 can keep airtightness and can increase the internal air pressure. Further, a ventilation pipe 32 is installed in the storage container 31, compressed air is filled into the storage container 31 from a pressure pump (not shown) connected to the ventilation pipe 32, and a cock (not shown) is closed to close the internal pressure of the storage container 31. Can be held at a predetermined value.

この収納容器31内の加圧値は、電池の大きさ等の条件に
応じ、それぞれ適正な圧力をかけるようにする。すなわ
ち、下記表に示す如くである。
An appropriate pressure is applied to the pressure value in the storage container 31 according to conditions such as the size of the battery. That is, as shown in the table below.

また、収納容器31の一部には、内部の気圧を測定表示す
るための圧力計33を設置する。
Further, a pressure gauge 33 for measuring and displaying the internal atmospheric pressure is installed in a part of the storage container 31.

上述の如く構成した本例装置では、圧搾空気を充填した
収納容器31内のスタック30に、このスタック30内での電
解液の循環により、内部の流体回路の圧力損失等を加味
した圧力よりも高い所定圧力を受ける。よって、電池を
長期に亘って運転中に、スタック30の積層構成部材であ
るセパレータ板21と中間電極23の相互に圧接された枠体
が変形して生ずる隙間から、電解液が漏れるのを防止で
きる。
In the device of the present example configured as described above, in the stack 30 in the storage container 31 filled with compressed air, the circulation of the electrolytic solution in the stack 30 causes the pressure to be lower than the pressure considering the pressure loss of the internal fluid circuit. Subject to high predetermined pressure. Therefore, while the battery is in operation for a long period of time, the electrolyte solution is prevented from leaking from the gap generated by the deformation of the frame body of the stack plate 30 that is a laminated component of the stack 30 and the intermediate electrodes 23 that are pressed against each other. it can.

また、スタック30に電解液の液漏れ発生の因子があった
場合にも、収納容器31内の圧搾空気の圧力作用によっ
て、液漏れを回避するようにさせることができる。
Further, even if the stack 30 has a factor that causes liquid leakage of the electrolyte, the pressure leakage of the compressed air in the storage container 31 can prevent the liquid leakage.

また、この電池の電解液タンク9,10内の圧力は、外気圧
と略同等であるので、この所定圧力の空気を充填した収
納容器31内のスタック30に隙間やわれ等を生じた場合、
圧搾空気がこの隙間からスタック30内に入り、電解液タ
ンク9,10から逃げることになる。これにより、収納容器
31内の空気圧が低下し、これを、圧力計33の表示で検出
できるので、液漏れの有無を圧力計の数値で管理し、判
断できる。このように液漏れを生じた場合には、すぐに
修理,メンテナンスを実行すればよく、常時検査を繰り
返す手間を省略でき、メンテナンスの時期を容易に判断
できる。
Further, since the pressure in the electrolytic solution tanks 9 and 10 of this battery is approximately equal to the external atmospheric pressure, when a gap or a crack is generated in the stack 30 in the storage container 31 filled with air of the predetermined pressure,
Compressed air enters the stack 30 through this gap and escapes from the electrolytic solution tanks 9 and 10. This allows the storage container
Since the air pressure inside 31 decreases and this can be detected by the display of the pressure gauge 33, the presence or absence of liquid leakage can be judged by controlling the value of the pressure gauge. When liquid leakage occurs in this way, repair and maintenance can be performed immediately, the time and effort of repeating inspections can be omitted, and the time for maintenance can be easily determined.

また、スタック30から電解液が漏れても、収納容器で受
けるので、この漏れた電解液により、漏電したり、短絡
事故を起こしたりすることを有効に防止できる。
Further, even if the electrolytic solution leaks from the stack 30, it is received by the storage container, so that it is possible to effectively prevent the leakage of the electrolytic solution and the occurrence of a short circuit accident due to the leaked electrolytic solution.

H.考案の効果 以上詳述したように、本考案の電解液循環型積層電池装
置によれば、電極板等の電池構成部材を積層一体化して
成る電池積層体を収納容器内に収容密封し、この収納容
器内に圧搾空気を充填して所定圧力に保持するようにし
たので、電池を長期に亘って使用するうち、電池積層体
の電極板やその枠体が変形したり、われを生じたりして
隙間を生ずる等の場合に、圧搾空気が、この隙間から電
解液が漏れるのを押し止めるので、漏液を防止できると
いう効果がある。
H. Effect of the Invention As described above in detail, according to the electrolytic solution circulating type laminated battery device of the present invention, the battery laminated body formed by integrally laminating the battery component members such as the electrode plate is housed and sealed in the container. Since the storage container is filled with compressed air and kept at a predetermined pressure, the electrode plate of the battery stack and its frame may be deformed or cracked while the battery is used for a long period of time. In the case where a gap is created due to the compressed air, the compressed air prevents the electrolytic solution from leaking from the gap, so that there is an effect that the leakage can be prevented.

さらに、圧搾空気の圧力によって、液漏れ発生の因子を
制御することができるという効果がある。
Furthermore, there is an effect that the factor of liquid leakage can be controlled by the pressure of the compressed air.

また、万一電池積層体から液漏れを生じても、これを収
納容器で受け、外部に漏れるのを防止できるので、漏
電,短絡等の事故を有効に防止できるという効果があ
る。
Further, even if a liquid leak occurs from the battery stack, it can be received by the storage container and prevented from leaking to the outside, so that there is an effect that an accident such as a leak or a short circuit can be effectively prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の電解液循環型積層電池装置の一実施例
を示す部分断面概略斜視図、第2図は従来の亜鉛−臭素
電池の原理の概略説明線図、第3図はその要部である電
池本体部分の拡大分解斜視図である。 1…電池本体、21…セパレータ板、23…中間電極、31…
収納容器、32…通気管、33…圧力計。
FIG. 1 is a partial cross-sectional schematic perspective view showing an embodiment of the electrolytic solution circulation type laminated battery device of the present invention, FIG. 2 is a schematic explanatory diagram of the principle of a conventional zinc-bromine battery, and FIG. It is an expansion disassembled perspective view of the battery main body part which is a part. 1 ... Battery main body, 21 ... Separator plate, 23 ... Intermediate electrode, 31 ...
Storage container, 32 ... Ventilation pipe, 33 ... Pressure gauge.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】電極等の電池構成素材板周囲に枠板を形成
した部材複数を、当該枠板部分を接合させて積重するこ
とにより電池積層体を形成し、上記枠板の貫通送液孔で
あるマニホールドから上記電極部分に形成した室である
電解槽に連通する溝状のマイクロチャンネルを形成し、
これを通じて上記電解槽内に電解液を循環させるように
構成した電解液循環型積層電池において、 前記電池積層体を収納容器内に収容し、 当該収納容器内に、前記電池積層体内を循環する電解液
の圧力より大きい、所定圧力の気体を充填密封して成る
ことを特徴とする電解液循環型積層電池装置。
1. A battery laminated body is formed by stacking a plurality of members, each having a frame plate formed around a battery constituent material plate such as an electrode, by joining the frame plate parts together, and liquid feeding through the frame plate. To form a groove-shaped microchannel that communicates from the manifold that is a hole to the electrolytic cell that is a chamber formed in the electrode part,
In an electrolytic solution circulation type laminated battery configured to circulate an electrolytic solution in the electrolytic cell through the above, an electrolytic solution in which the battery laminated body is housed in a storage container and is circulated in the battery laminated body in the storage container. An electrolytic solution circulating type laminated battery device, characterized by being filled and sealed with a gas having a predetermined pressure, which is higher than the pressure of the liquid.
JP1988157005U 1988-12-01 1988-12-01 Electrolyte circulation type laminated battery device Expired - Lifetime JPH0648757Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988157005U JPH0648757Y2 (en) 1988-12-01 1988-12-01 Electrolyte circulation type laminated battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988157005U JPH0648757Y2 (en) 1988-12-01 1988-12-01 Electrolyte circulation type laminated battery device

Publications (2)

Publication Number Publication Date
JPH0277862U JPH0277862U (en) 1990-06-14
JPH0648757Y2 true JPH0648757Y2 (en) 1994-12-12

Family

ID=31436062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988157005U Expired - Lifetime JPH0648757Y2 (en) 1988-12-01 1988-12-01 Electrolyte circulation type laminated battery device

Country Status (1)

Country Link
JP (1) JPH0648757Y2 (en)

Also Published As

Publication number Publication date
JPH0277862U (en) 1990-06-14

Similar Documents

Publication Publication Date Title
KR100876262B1 (en) Solid Polymer Electrolyte Fuel Cell
US10461342B2 (en) External manifold for minimizing external leakage of reactant from cell stack
KR102036388B1 (en) Systems and methods for assembling redox flow battery reactor cells
KR20140045552A (en) Battery cell module, method for operating a battery cell module and battery and motor vehicle
WO2004025753A2 (en) One piece sleeve gas manifold for cell stack assemblies such as fuel cells
JP2012099368A (en) Cell stack, cell frame, redox flow battery, and cell stack manufacturing method
CN107919487B (en) Frame body, cell frame, cell stack, and redox flow battery
JP2015072887A (en) Fuel cell stack
JP2018032514A (en) Fuel cell stack
CN110783590B (en) Fuel cell stack
JPH0648757Y2 (en) Electrolyte circulation type laminated battery device
JP2018156834A (en) Pouring jig and manufacturing method of electricity storage module
US20040214067A1 (en) Assembling sub-stacks of electrochemical cells
JPH067157U (en) Redox flow battery cell
JP3244779B2 (en) Fuel cell
CN215988852U (en) Fuel cell monomer and fuel cell stack
JP2020009618A (en) Power-storage module production method and feeding device
US11817609B2 (en) Systems and methods for electrode assembly for redox flow battery system
JPH0515320U (en) Stacked secondary battery
JP2522029B2 (en) Method for manufacturing end plate electrode in liquid circulation type laminated battery
JPH02148580A (en) Electrolyte circulation layer-built cell
JPH0566876U (en) Fuel cell separator
JPS6139457A (en) Fuel cell
JPH0648760Y2 (en) Electrode circulation type laminated battery electrode plate
JPH02135669A (en) Electrolyte circulating secondary battery