JPH0648382Y2 - Measuring device for dissolved gas in oil - Google Patents

Measuring device for dissolved gas in oil

Info

Publication number
JPH0648382Y2
JPH0648382Y2 JP12680988U JP12680988U JPH0648382Y2 JP H0648382 Y2 JPH0648382 Y2 JP H0648382Y2 JP 12680988 U JP12680988 U JP 12680988U JP 12680988 U JP12680988 U JP 12680988U JP H0648382 Y2 JPH0648382 Y2 JP H0648382Y2
Authority
JP
Japan
Prior art keywords
gas
oil
sensor
extractor
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12680988U
Other languages
Japanese (ja)
Other versions
JPH0247544U (en
Inventor
勝 神庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP12680988U priority Critical patent/JPH0648382Y2/en
Priority to US07/333,401 priority patent/US4944178A/en
Priority to CA000596784A priority patent/CA1339796C/en
Priority to EP89303764A priority patent/EP0338744B1/en
Priority to KR1019890004899A priority patent/KR910006228B1/en
Publication of JPH0247544U publication Critical patent/JPH0247544U/ja
Priority to US07/510,845 priority patent/US5127962A/en
Application granted granted Critical
Publication of JPH0648382Y2 publication Critical patent/JPH0648382Y2/en
Priority to CA000616985A priority patent/CA1338870C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) この考案は油中溶存ガス測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an apparatus for measuring dissolved gas in oil.

(従来の技術) 油中に溶存しているガスを測定するのに、バブリングガ
スたとえば空気を、電気機器から採油してきた供試油に
気泡にして導入し、油中に溶存するガスを気泡中に取り
込み、その抽出ガスをガス回収容器へ回収して、回収ガ
スに存在しているガスを半導体式のガスセンサによって
計測するとともに、計測後のガスを再び抽出器に戻すこ
とによって回収ガスを循環させるようにした測定装置
が、別途提案されている。
(Prior art) To measure the gas dissolved in oil, bubbling gas, such as air, is introduced into the sample oil taken from electric equipment as bubbles, and the gas dissolved in the oil is bubbled. And collect the extracted gas in a gas recovery container, measure the gas present in the recovered gas with a semiconductor gas sensor, and circulate the recovered gas by returning the measured gas to the extractor again. Such a measuring device has been separately proposed.

このような循環方式によると、短時間でしかも低濃度ま
で計測できるようになって都合がよい。
According to such a circulation method, it is possible to measure even a low concentration in a short time, which is convenient.

(考案が解決しようとする課題) しかしこのような半導体式のガスセンサは、測定中に検
出対象のガスを消費する性質がある。したがって測定時
に濃度が大きく変化してしまい、測定誤差が著しく現れ
ることがある。
(Problems to be solved by the invention) However, such a semiconductor gas sensor has a property of consuming a gas to be detected during measurement. Therefore, the concentration may change greatly during measurement, and a measurement error may appear significantly.

この考案は供試油中のガスの測定精度を向上させること
を目的とする。
This invention aims at improving the measurement accuracy of the gas in the sample oil.

(課題を解決するための手段) この考案はガスセンサによる測定対象ガスの消費量が、
ガス抽出に必要な時間内に20%以下となるように、測定
系の空間量を設定したことを特徴とする。
(Means for Solving the Problems) This device is designed to reduce the consumption of gas to be measured by the gas sensor.
It is characterized in that the space volume of the measurement system is set so as to be 20% or less within the time required for gas extraction.

(作用) バブリングによって抽出された回収ガスを循環させて測
定するにあたり、ガスセンサによる測定対象ガスの消費
量が、ガス抽出に必要な時間内に20%以下となるよう
に、測定系の空間量を設定しておくと、対象ガスの濃度
保持率が80%以上に保証されるようになり、これによっ
て測定精度を向上させることができるようになる。
(Function) When circulating the recovered gas extracted by bubbling and measuring, set the space volume of the measurement system so that the consumption of the gas to be measured by the gas sensor is 20% or less within the time required for gas extraction. If set, the concentration retention rate of the target gas will be guaranteed to be 80% or higher, which will improve the measurement accuracy.

(実施例) この考案の実施例を図によって説明する。第1図におい
て、1はガス抽出器で、ここには供試油2が入れられて
ある。また内部にボールフィルタ、気泡発生管などから
なる気泡発生器3が設置されてある。測定時にはガス抽
出器1を密閉し、気泡発生器3にポンプ4を介し、外部
からバブリングガスたとえば空気を導入する。
(Embodiment) An embodiment of this invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 is a gas extractor in which a sample oil 2 is put. Further, a bubble generator 3 including a ball filter, a bubble generating tube and the like is installed inside. At the time of measurement, the gas extractor 1 is hermetically closed, and a bubbling gas such as air is introduced into the bubble generator 3 from the outside via the pump 4.

この空気によって気泡が発生する。気泡の中には供試油
2内に溶存しているガスが含まれている。この抽出ガス
はセンサチャンバー5に送られ、ここでガスセンサ6に
よってガスが検出される。その検出値は電気信号に変換
され、増幅器7によって増幅される。そしてメータ8に
検出量が指示される。ガスセンサ6として、たとえばSn
O2,ZnO,などの金属酸化物のような半導体センサを使用
する。
Bubbles are generated by this air. The gas contained in the sample oil 2 is contained in the bubbles. This extracted gas is sent to the sensor chamber 5, where the gas is detected by the gas sensor 6. The detected value is converted into an electric signal and amplified by the amplifier 7. Then, the detected amount is instructed to the meter 8. As the gas sensor 6, for example, Sn
A semiconductor sensor such as a metal oxide such as O 2 or ZnO is used.

ところでこの種のガスセンサは通常、測定容積を制限し
ない状態で使用されるのであるが、前記したような油中
ガス分析では、定容することが不可欠である。しかしこ
のように定容するには、容積が制限させることから、ガ
スセンサにより検出ガスが消費されれば、負の測定誤差
が生ずるようになる。
By the way, this type of gas sensor is usually used in a state where the measurement volume is not limited, but it is indispensable that the gas sensor has a constant volume in the analysis of gas in oil as described above. However, in such a constant volume, since the volume is limited, if the detection gas is consumed by the gas sensor, a negative measurement error will occur.

したがってこの測定誤差を少なくするためには、油中溶
存ガスの絶対量を増やせばよいが、その量は測定装置の
小型化、測定時間の短縮化を考慮するとき、自ずと限界
がある。
Therefore, in order to reduce this measurement error, it is sufficient to increase the absolute amount of the dissolved gas in oil, but the amount is naturally limited when considering downsizing of the measuring device and shortening of the measuring time.

ここでガスセンサによるガス消費量について検討する。
周知のように半導体式のガスセンサは、n型半導体であ
り、水素などの還元性のガスに触れることにより、電子
を供与され、抵抗値が低下する原理となっている。
Here, the gas consumption by the gas sensor will be examined.
As is well known, a semiconductor-type gas sensor is an n-type semiconductor, and it is a principle that an electron is donated and a resistance value is reduced by contact with a reducing gas such as hydrogen.

このときたとえば水素は、ガスセンサに電子を供与した
あと、空気中の酸素と化合し、水となって消費される。
これによって少量の雰囲気の水素濃度が低下するように
なるのである。
At this time, for example, hydrogen donates electrons to the gas sensor and then combines with oxygen in the air to be consumed as water.
As a result, the hydrogen concentration in a small amount of the atmosphere is lowered.

以上の現象を確認するために行なった実験の結果を示し
たのが第2図である。同図において空間量とは、測定系
全体の空間量を意味する。具体的には第1図におけるガ
ス抽出器1内の空間、センサチャンバー5内の空間およ
び各配管内の空間の量を合算した値を意味する。
FIG. 2 shows the result of an experiment conducted to confirm the above phenomenon. In the figure, the space quantity means the space quantity of the entire measurement system. Specifically, it means a value obtained by adding up the amounts of the space inside the gas extractor 1, the space inside the sensor chamber 5 and the space inside each pipe in FIG.

同図から明らかなように、空間量が少ない程、短時間内
に水素ガスが消費され、測定誤差が大きくなることが判
明する。したがって測定開始後、どの時点でメータの指
示値を読みとればよいのかが測定者にとって重要な問題
となる。
As is clear from the figure, the smaller the space amount, the more hydrogen gas is consumed within a short time, and the larger the measurement error becomes. Therefore, after the start of measurement, it becomes an important issue for the measurer as to when to read the indicated value of the meter.

通常前記した循環バブリングによる油中溶存ガスの抽出
を行なう場合、その抽出時間として約2分程度を必要と
する。したがってこの抽出時間中に、測定対象ガスのガ
スセンサによる消費量が問題にならない程度にすること
が必要となる。
Usually, when the dissolved gas in oil is extracted by the above-mentioned circulation bubbling, about 2 minutes is required as the extraction time. Therefore, during this extraction time, it is necessary to make the consumption of the gas to be measured by the gas sensor insignificant.

そこで第2図の結果から、初期濃度保持時間と空間量と
の関係を求めると、第3図のような結果が得られる。
Therefore, when the relationship between the initial density holding time and the space amount is obtained from the result shown in FIG. 2, the result shown in FIG. 3 is obtained.

この結果から、初期濃度保持率を良くするためには、空
間量を大きくすればよく、また抽出時間が長くなる場合
も、空間量を大きくする必要がある。たとえばここに使
用したSnO2からなる水素ガス用のガスセンサを使用した
場合、80%濃度保持率で2分間抽出とすれば、空間量は
65mlが必要とされることが理解される。
From this result, in order to improve the initial density retention rate, it is sufficient to increase the space amount, and also when the extraction time becomes long, it is necessary to increase the space amount. For example, when using the gas sensor for hydrogen gas consisting of SnO 2 used here, if the extraction is performed for 2 minutes at 80% concentration retention rate, the space amount will be
It is understood that 65 ml is needed.

ここでこの濃度保持率を低下させた場合、たとえば70%
保持率で行なうと、測定精度が低下してしまって好まし
くない。その例を変動係数(%)として次の表に示す。
If you lower the density retention rate here, for example, 70%
If the retention rate is used, the measurement accuracy will decrease, which is not preferable. An example is shown in the following table as a coefficient of variation (%).

油温0℃ 油温25℃ 油温80℃ 80%保持率 20% 10% 20% 70%保持率 35% 25% 35% したがって濃度保持率を80%以上とすることが必要であ
る。
Oil temperature 0 ℃ Oil temperature 25 ℃ Oil temperature 80 ℃ 80% Retention rate 20% 10% 20% 70% Retention rate 35% 25% 35% Therefore, it is necessary to set the concentration retention rate to 80% or more.

以上の結果、ガスセンサによる測定対象ガスの消費量
が、ガス抽出に必要な時間内に、20%以下となるよう
に、空間量を設定すれば、測定精度の指標である変動係
数を±20%以下に維持することができるようになる。
As a result, if the space amount is set so that the consumption of the gas to be measured by the gas sensor is 20% or less within the time required for gas extraction, the coefficient of variation, which is an index of measurement accuracy, is ± 20%. You will be able to keep below.

(考案の効果) 以上詳述したようにこの考案によれば、油中に溶存して
いるガスの濃度を、抽出ガスを循環させながら計測する
にあたり、使用するガスセンサのガス消費量、ガス抽出
時間から濃度保持が可能な容積を求め、その容積中で濃
度を計測するようにしたので、高精度で測定することが
できるようになるといった効果を奏する。
(Effect of device) As described in detail above, according to this device, when measuring the concentration of gas dissolved in oil while circulating the extracted gas, the gas consumption of the gas sensor used and the gas extraction time are used. Since the volume capable of holding the concentration is obtained from the above and the concentration is measured in the volume, it is possible to perform the measurement with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案の実施例を示す配置図、第2図は抽出
時間に対する濃度変化率を示す特性曲線図、第3図は空
間量に対する保証時間を示す特性曲線図である。 1…ガス抽出器、2…供試油、3…気泡発生器、4…ポ
ンプ、5…センサチャンバー、6…ガスセンサ、
FIG. 1 is a layout diagram showing an embodiment of the present invention, FIG. 2 is a characteristic curve diagram showing a concentration change rate with respect to extraction time, and FIG. 3 is a characteristic curve diagram showing a guaranteed time with respect to a space amount. 1 ... Gas extractor, 2 ... Sample oil, 3 ... Bubble generator, 4 ... Pump, 5 ... Sensor chamber, 6 ... Gas sensor,

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】溶存ガスを含む供試油を入れたガス抽出器
と、前記ガス抽出器内で気泡を発生させる気泡発生器
と、前記気泡発生器に送り込まれるバブリングガスによ
ってバブリングされたガスを回収し、前記溶存ガスを計
測するガスセンサを備えているセンサチャンバーと、前
記センサチャンバー内の回収ガスを前記ガス抽出器に送
って循環させるポンプとを備え、 前記ガスセンサによる測定対象ガスの消費量が、ガス抽
出に必要な時間内に20%以下となるように、測定系の空
間量を設定してなる油中溶存ガス測定装置。
1. A gas extractor containing a sample oil containing a dissolved gas, a bubble generator for generating bubbles in the gas extractor, and a gas bubbled by a bubbling gas sent to the bubble generator. A sensor chamber provided with a gas sensor that collects and measures the dissolved gas, and a pump that sends the collected gas in the sensor chamber to the gas extractor and circulates it, and the consumption amount of the measurement target gas by the gas sensor is A device for measuring dissolved gas in oil, in which the amount of space in the measurement system is set so that it is 20% or less within the time required for gas extraction.
JP12680988U 1988-04-18 1988-09-27 Measuring device for dissolved gas in oil Expired - Lifetime JPH0648382Y2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP12680988U JPH0648382Y2 (en) 1988-09-27 1988-09-27 Measuring device for dissolved gas in oil
US07/333,401 US4944178A (en) 1988-04-18 1989-04-05 Apparatus and method for measuring dissolved gas in oil
CA000596784A CA1339796C (en) 1988-04-18 1989-04-14 Apparatus and method for measuring dissolved gas in oil
EP89303764A EP0338744B1 (en) 1988-04-18 1989-04-17 Apparatus and method for measuring dissolved gas in oil
KR1019890004899A KR910006228B1 (en) 1988-04-18 1989-07-03 Apparatus for method for measuring dissolved gas in oil
US07/510,845 US5127962A (en) 1988-04-18 1990-04-18 Method for cleaning apparatus used for measuring dissolved gas in oil
CA000616985A CA1338870C (en) 1988-04-18 1995-02-16 Method of cleaning apparatus for measuring dissolved gas in oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12680988U JPH0648382Y2 (en) 1988-09-27 1988-09-27 Measuring device for dissolved gas in oil

Publications (2)

Publication Number Publication Date
JPH0247544U JPH0247544U (en) 1990-03-30
JPH0648382Y2 true JPH0648382Y2 (en) 1994-12-12

Family

ID=31378665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12680988U Expired - Lifetime JPH0648382Y2 (en) 1988-04-18 1988-09-27 Measuring device for dissolved gas in oil

Country Status (1)

Country Link
JP (1) JPH0648382Y2 (en)

Also Published As

Publication number Publication date
JPH0247544U (en) 1990-03-30

Similar Documents

Publication Publication Date Title
EP0338744B1 (en) Apparatus and method for measuring dissolved gas in oil
JPS5841486Y2 (en) Fractionation device
Astrup et al. Apparatus for anaerobic determination of the pH of blood at 38 degrees centigrade
JPH0648382Y2 (en) Measuring device for dissolved gas in oil
US5250171A (en) Sensor for carbon monoxide
Sato et al. Mount Etna and the 1971 eruption-Oxygen and sulphur fugacities of magmatic gases directly measured in active vents of Mount Etna
Sahbaz et al. Determination of ascorbic acid in fruit and vegetables using normal polarography
Meites et al. Studies in the Theory of the Polarographic Diffusion Current. I. The Effects of Gelatin on the Diffusion Current Constants of Cadmium and Bismuth
CN114018755A (en) Method for detecting content of free carbon dioxide in water body
Lindqvist A differential galvanic atmospheric ozone monitor
JPH0648381Y2 (en) Measuring device for dissolved gas in oil
Pitsch et al. Characterization of deep underground fluids–Part II: Redox potential measurements
Hozumi et al. Centimilligram determination of organic nitrogen with sealed tube combustion
CN111929224B (en) Method, device, equipment and storage medium for determining particle content in infrared cell detection
Peterson et al. Evaluation of Inert Gas Fusion Method for Rapid Determination of Oxygen in Steel
Roxburgh Determination of oxygen utilization in fermentations by gas chromatography
CA1338870C (en) Method of cleaning apparatus for measuring dissolved gas in oil
RU1577506C (en) Method of determining concentration of oxygen in metals and alloys
CN216449381U (en) Detection apparatus for free carbon dioxide content in water
JPH0631414Y2 (en) Measuring device for dissolved gas in oil
Stewart et al. Determination of Total Nitrogen by a Combined Dumas-Gas Chromatographic Technique.
Knapp Internal Electrolysis-Coulometric Method for Determination of Small Quantities of Oxygen. Application to Individual Samples
Gunther et al. Continuous Chloride-Ion Combustion Method Applied to Determination of Organochlorine Insecticide Residues.
CN208766011U (en) The dynamic collection device of one plant volatilization ammonia
Clarkson et al. Simple and rapid determination of mercury in urine and tissues by isotope exchange