JPH0631414Y2 - Measuring device for dissolved gas in oil - Google Patents

Measuring device for dissolved gas in oil

Info

Publication number
JPH0631414Y2
JPH0631414Y2 JP12680788U JP12680788U JPH0631414Y2 JP H0631414 Y2 JPH0631414 Y2 JP H0631414Y2 JP 12680788 U JP12680788 U JP 12680788U JP 12680788 U JP12680788 U JP 12680788U JP H0631414 Y2 JPH0631414 Y2 JP H0631414Y2
Authority
JP
Japan
Prior art keywords
gas
oil
extractor
concentration
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12680788U
Other languages
Japanese (ja)
Other versions
JPH0247555U (en
Inventor
勝 神庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP12680788U priority Critical patent/JPH0631414Y2/en
Priority to US07/333,401 priority patent/US4944178A/en
Priority to CA000596784A priority patent/CA1339796C/en
Priority to EP89303764A priority patent/EP0338744B1/en
Priority to KR1019890004899A priority patent/KR910006228B1/en
Publication of JPH0247555U publication Critical patent/JPH0247555U/ja
Priority to US07/510,845 priority patent/US5127962A/en
Application granted granted Critical
Publication of JPH0631414Y2 publication Critical patent/JPH0631414Y2/en
Priority to CA000616985A priority patent/CA1338870C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) この考案は油中溶存ガス測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an apparatus for measuring dissolved gas in oil.

(従来の技術) 油中に溶存しているガスを測定するのに、バブリングガ
スたとえば空気を、電気機器から採油してきた供試油に
気泡にして導入し、油中に溶存するガスを気泡中に取り
込み、その抽出ガスをガス回収容器へ回収して、ガスを
測定するようにしたもの(ガス回収方式)がある。
(Prior art) To measure the gas dissolved in oil, bubbling gas such as air is introduced into the sample oil taken from electric equipment as bubbles, and the gas dissolved in oil is bubbled. There is a method (gas recovery method) in which the extracted gas is taken in, and the extracted gas is recovered in a gas recovery container to measure the gas.

(考案が解決しようとする課題) 前記したような測定手段によるときは、抽出ガスを一定
容積だけ回収して測定することが必要であり、またその
容積の抽出ガスから、完全に溶存ガスを抽出することが
必要である。
(Problems to be Solved by the Invention) In the case of using the measuring means as described above, it is necessary to collect and measure a certain volume of the extracted gas, and to completely extract the dissolved gas from the extracted gas of that volume. It is necessary to.

そのため抽出ガスの回収効率が測定精度を高めるための
重要な要素となり、できるだけ微細な気泡(たとえば気
泡径が10μm以下のもの)を油中に発生させ、長時間
(たとえば3〜4分)にわたって溶存ガス濃度を計測し
ていた。したがってその計測時間は当然長くならざるを
得なかった。
Therefore, the recovery efficiency of the extracted gas becomes an important factor for improving the measurement accuracy, and the finest bubbles (for example, bubbles with a diameter of 10 μm or less) are generated in the oil and dissolved for a long time (for example, 3 to 4 minutes). The gas concentration was measured. Therefore, the measurement time was naturally long.

また微細な気泡を使用するため、抽出器の内部にその気
泡を消すための消泡手段を設置しなければならない。
Further, since fine bubbles are used, a defoaming means for eliminating the bubbles must be installed inside the extractor.

更に前記のように一定容積の回収ガスが必要であるか
ら、供試油量に対する空気量をたとえば5倍以上とする
必要がある。たとえばこれを5倍とした場合、計測器の
指示値の5倍が真値となる。そのため計測器の感度をそ
のまま適用することができず、したがって測定濃度の下
限が比較的大きくならざるを得なかった。たとえば現時
点では50ppm以下の測定は不可能とされている。
Further, since a fixed volume of recovered gas is required as described above, it is necessary to increase the amount of air with respect to the amount of sample oil by, for example, 5 times or more. For example, if this is set to 5 times, 5 times the indicated value of the measuring device becomes the true value. Therefore, the sensitivity of the measuring instrument cannot be applied as it is, and therefore, the lower limit of the measured concentration must be relatively large. For example, it is currently impossible to measure less than 50ppm.

この考案は供試油中のガス量を短時間で、しかも低濃度
まで計測可能とするとともに、消泡手段を不要とするこ
とを目的とする。
The purpose of this invention is to measure the amount of gas in the sample oil in a short time and to a low concentration, and to eliminate the need for a defoaming means.

(課題を解決するための手段) この考案はバブリングによって抽出した回収ガスに溶存
しているガスをガスセンサによって計測するとともに、
計測後のガスを再び抽出器に戻すことによって回収ガス
を循環させるとともに、バブリングのための気泡の径
を、0.1〜8.0mmとしたことを特徴とする。
(Means for Solving the Problem) This invention measures the gas dissolved in the recovered gas extracted by bubbling with a gas sensor, and
The recovered gas is circulated by returning the measured gas to the extractor again, and the bubble diameter for bubbling is set to 0.1 to 8.0 mm.

(作用) バブリングによって抽出された回収ガスを循環させるよ
うにしたので、抽出器内で短時間のうちに気液平衡状態
に到達する。このときのガス濃度が溶存ガス濃度である
から、比較的短時間でガス濃度が検出できるようにな
る。
(Operation) Since the recovered gas extracted by bubbling is circulated, the gas-liquid equilibrium state is reached within a short time in the extractor. Since the gas concentration at this time is the dissolved gas concentration, the gas concentration can be detected in a relatively short time.

また気泡の径を、計測誤差をもたらさない範囲で比較的
大きくしたので、消泡手段が不要となり、低濃度測定が
可能となる。
Further, since the diameter of the bubbles is made relatively large within a range that does not cause a measurement error, the defoaming means is unnecessary and low concentration measurement becomes possible.

(実施例) この考案の実施例を図によって説明する。第1図におい
て、1は抽出器で、ここには供試油2が入れられてあ
る。また内部にボールフィルタ、気泡発生管などからな
る気泡発生器3が設置されてある。測定時には抽出器1
を密閉し、気泡発生器3にポンプ4を介して外部からバ
ブリングガスたとえば空気を導入する。
(Embodiment) An embodiment of this invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 is an extractor in which a sample oil 2 is put. Further, a bubble generator 3 including a ball filter, a bubble generating tube and the like is installed inside. Extractor 1 at the time of measurement
Bubbling gas such as air is introduced into the bubble generator 3 from the outside through the pump 4.

この空気によって気泡が発生する。気泡の中には供試油
2内に溶存しているガスが含まれている。この抽出ガス
はガス回収容器5に送られ、ここでガスセンサ6によっ
てガスが検出される。その検出値は電気信号に変換さ
れ、増幅器7によって増幅される。そしてメータ8に検
出量が指示される。ガスセンサとして、たとえばSnO2,Z
nO,などの金属酸化物のような半導体式センサを使用す
る。
Bubbles are generated by this air. The gas contained in the sample oil 2 is contained in the bubbles. This extracted gas is sent to the gas recovery container 5, where the gas is detected by the gas sensor 6. The detected value is converted into an electric signal and amplified by the amplifier 7. Then, the detected amount is instructed to the meter 8. As a gas sensor, for example, SnO 2 , Z
A semiconductor type sensor such as metal oxide such as nO is used.

第2図は、第1図に示す装置によって、油中の水素ガス
を、半導体式センサによって計測したもので、循環時間
に対する指示値、すなわち循環開始後のメータ8の指示
値を時間の経過ととともにプロットした気中濃度平衡曲
線の一例である。
FIG. 2 shows hydrogen gas in oil measured by a semiconductor type sensor by the apparatus shown in FIG. It is an example of an air concentration equilibrium curve plotted together with.

この曲線のピークが気液平衡に達したところであり、そ
の時点で計測が完了になる。この例では循環開始後1分
40秒で、ピーク(340ppm)に達している。
The peak of this curve has just reached vapor-liquid equilibrium, at which point the measurement is complete. In this example, the peak (340 ppm) is reached 1 minute and 40 seconds after the start of circulation.

第3図は更に気液平衡に達するまでの時間を、循環流
速、気泡径を変化させて検証した、気液平衡時間特性曲
線である。この特性図から、気泡径が小さいもの程、お
よび流速が早い程、ピークに到達する時間が短くなる。
したがって気泡径を小さくすれば計測時間を短縮するこ
とが一応理解される。
FIG. 3 is a gas-liquid equilibrium time characteristic curve in which the time required to reach gas-liquid equilibrium was verified by changing the circulation flow rate and bubble diameter. From this characteristic diagram, the smaller the bubble diameter and the faster the flow velocity, the shorter the time to reach the peak.
Therefore, it can be understood that the measurement time is shortened if the bubble diameter is reduced.

ところがこのピーク値について、実際の濃度との差を検
討したところ、第4図に示すような結果が得られた。す
なわちここに計測したピーク値はガス回収容器5内のガ
スセンサ6の指示値であるが、この図から実際の濃度
(ここに使用したガスの濃度は予めガスクロマトグラフ
で正確に計測した340ppmである。)よりも、気泡径が小
さい場合は、高い値を指示することが判明する。
However, when the difference between this peak value and the actual concentration was examined, the results shown in FIG. 4 were obtained. That is, the peak value measured here is the value indicated by the gas sensor 6 in the gas recovery container 5, but from this figure the actual concentration (the concentration of the gas used here is 340 ppm, which was accurately measured beforehand by a gas chromatograph). It is found that a higher bubble diameter indicates a higher value.

この結果から気泡径を0.01mm以下とすると、如何にピー
ク値に到達したからといって、その値を真実のガス濃度
であると認めることができないこととなる。したがって
0.01mm以下の気泡径を使用することは好ましくない。
From this result, even if the bubble diameter is set to 0.01 mm or less, no matter how the peak value is reached, it cannot be recognized as the true gas concentration. Therefore
It is not preferable to use a bubble diameter of 0.01 mm or less.

また気泡径が0.1mm未満の場合は、流速が速くなると、
気泡が抽出器1内で消えないままガス回収容器5に到達
してしまうことがある。そのためガスセンサ6に油が触
れてこれを痛めることがある。したがって0.1mm未満の
径の気泡を使用することは好ましくない。
If the bubble diameter is less than 0.1 mm, the flow velocity will increase,
The bubbles may reach the gas recovery container 5 without disappearing in the extractor 1. Therefore, oil may touch the gas sensor 6 and damage it. Therefore, it is not preferable to use bubbles having a diameter of less than 0.1 mm.

一方気泡径が8mmを超える場合は、第4図から理解され
るように、測定時間が長くなるため、この種の計測には
不適当である。
On the other hand, if the bubble diameter exceeds 8 mm, as will be understood from FIG. 4, the measurement time becomes long, which is unsuitable for this type of measurement.

そして気泡径が0.1〜8.0mmの範囲にあれば、抽出器1内
で気泡は自然消滅するようになり、したがって抽出器1
内に消泡手段を設置する必要はなくなる。現実には試料
油量と空間量との比を、1対1〜5とすることが可能と
なり、これが1対1であるときは、ガスセンサの感度の
最低限たとえば10ppmまで測定ができるようになり、し
たがって従来構成に比較して低濃度測定が可能となる。
If the bubble diameter is in the range of 0.1 to 8.0 mm, the bubbles will spontaneously disappear in the extractor 1, and therefore the extractor 1
There is no need to install defoaming means inside. In reality, it is possible to set the ratio of the sample oil amount to the space amount to 1: 1-5. When this is 1: 1, the minimum sensitivity of the gas sensor, for example, 10ppm, can be measured. Therefore, it is possible to measure a low concentration as compared with the conventional configuration.

(考案の効果) 以上詳述したようにこの考案によれば、油中に溶存して
いるガスの濃度を計測するにあたり、従来よりも短時間
で、しかも低濃度まで計測できるとともに、消泡手段を
不要とすることができる効果を奏する。
(Effects of the Invention) As described in detail above, according to the present invention, when measuring the concentration of gas dissolved in oil, it is possible to measure the concentration of gas in a shorter time than before, and to reduce the concentration of defoaming means. There is an effect that can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案の実施例を示す配置図、第2図は気中
濃度平衡曲線図、第3図は気液平衡時間特性図、第4図
は濃度差特性図である。 1……抽出器、2……供試油、3……気泡発生器、4…
…ポンプ、5……ガス回収容器、6……ガスセンサ、
FIG. 1 is an arrangement diagram showing an embodiment of the present invention, FIG. 2 is an air concentration equilibrium curve diagram, FIG. 3 is a gas-liquid equilibrium time characteristic diagram, and FIG. 4 is a concentration difference characteristic diagram. 1 ... extractor, 2 ... sample oil, 3 ... bubble generator, 4 ...
… Pump, 5 …… Gas recovery container, 6 …… Gas sensor,

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】溶存ガスを含む供試油を入れた抽出器と、
前記抽出器内で気泡を発生させる気泡発生器と、前記気
泡発生器に送り込まれるバブリングガスによってバブリ
ングされたガスを回収し、前記溶存ガスを計測するガス
センサを備えているガス回収容器と、前記ガス回収器内
の回収ガスを前記抽出器に送って循環させるポンプとを
備え、前記気泡の径を0.1〜8.0mmとしてなる油中溶存ガ
ス測定装置。
1. An extractor containing a sample oil containing a dissolved gas,
A bubble generator that generates bubbles in the extractor, a gas recovery container that is equipped with a gas sensor that collects the gas bubbled by the bubbling gas sent to the bubble generator, and measures the dissolved gas, and the gas. An apparatus for measuring dissolved gas in oil, comprising: a pump for sending the recovered gas in the collector to the extractor to circulate it, wherein the bubble diameter is 0.1 to 8.0 mm.
JP12680788U 1988-04-18 1988-09-27 Measuring device for dissolved gas in oil Expired - Lifetime JPH0631414Y2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP12680788U JPH0631414Y2 (en) 1988-09-27 1988-09-27 Measuring device for dissolved gas in oil
US07/333,401 US4944178A (en) 1988-04-18 1989-04-05 Apparatus and method for measuring dissolved gas in oil
CA000596784A CA1339796C (en) 1988-04-18 1989-04-14 Apparatus and method for measuring dissolved gas in oil
EP89303764A EP0338744B1 (en) 1988-04-18 1989-04-17 Apparatus and method for measuring dissolved gas in oil
KR1019890004899A KR910006228B1 (en) 1988-04-18 1989-07-03 Apparatus for method for measuring dissolved gas in oil
US07/510,845 US5127962A (en) 1988-04-18 1990-04-18 Method for cleaning apparatus used for measuring dissolved gas in oil
CA000616985A CA1338870C (en) 1988-04-18 1995-02-16 Method of cleaning apparatus for measuring dissolved gas in oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12680788U JPH0631414Y2 (en) 1988-09-27 1988-09-27 Measuring device for dissolved gas in oil

Publications (2)

Publication Number Publication Date
JPH0247555U JPH0247555U (en) 1990-03-30
JPH0631414Y2 true JPH0631414Y2 (en) 1994-08-22

Family

ID=31378661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12680788U Expired - Lifetime JPH0631414Y2 (en) 1988-04-18 1988-09-27 Measuring device for dissolved gas in oil

Country Status (1)

Country Link
JP (1) JPH0631414Y2 (en)

Also Published As

Publication number Publication date
JPH0247555U (en) 1990-03-30

Similar Documents

Publication Publication Date Title
Swinnerton et al. Determination of Dissolved Gases in Aqueous Solutions by Gas Chromatography.
US3528779A (en) Chemiluminescent method of detecting ozone
US5127962A (en) Method for cleaning apparatus used for measuring dissolved gas in oil
US5004538A (en) Control arrangement for the chromatography of liquid
JPS62291543A (en) Method of measuring foaming point or maximum pore of thin-film or filter material
KR890012325A (en) Core Responsiveness Verification Apparatus and Method
JPH0631414Y2 (en) Measuring device for dissolved gas in oil
KR100478280B1 (en) A method and apparatus for measuring ethanol vapour concentration
EP0006256A1 (en) Method and apparatus for determining the hydrogen content of a gas
Jerman et al. A miniature gas chromatograph for atmospheric monitoring
US3888630A (en) Breath testing method
US4321545A (en) Carbon dioxide measurement system
JPH0648381Y2 (en) Measuring device for dissolved gas in oil
JP2777304B2 (en) Abnormality diagnosis apparatus and diagnosis method for perfluorocarbon input device
Lund et al. Automated polarographic analysis: Part II. Response time and precision studies
JP2681767B2 (en) Isothermal capacity transient spectroscopy
KR20160108300A (en) Electrochemical sensing using voltage-current time differential
Wartburg et al. Evaluation of a coulometric oxidant sensor
JPH0546883B2 (en)
CN111929224B (en) Method, device, equipment and storage medium for determining particle content in infrared cell detection
JPH0126017B2 (en)
SU575566A1 (en) Device for detecting liquids and gases
JPS59638Y2 (en) Reactor
JP3120328B2 (en) Particle counter for air filter leak test
RU33822U1 (en) ACOUSTIC DETECTOR FOR GASES AND VAPORS