JPH0648093B2 - Gas turbine combustor bypass valve control method - Google Patents

Gas turbine combustor bypass valve control method

Info

Publication number
JPH0648093B2
JPH0648093B2 JP21888584A JP21888584A JPH0648093B2 JP H0648093 B2 JPH0648093 B2 JP H0648093B2 JP 21888584 A JP21888584 A JP 21888584A JP 21888584 A JP21888584 A JP 21888584A JP H0648093 B2 JPH0648093 B2 JP H0648093B2
Authority
JP
Japan
Prior art keywords
bypass valve
gas turbine
turbine combustor
control method
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21888584A
Other languages
Japanese (ja)
Other versions
JPS6196332A (en
Inventor
一郎 福江
邦明 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21888584A priority Critical patent/JPH0648093B2/en
Publication of JPS6196332A publication Critical patent/JPS6196332A/en
Publication of JPH0648093B2 publication Critical patent/JPH0648093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、バイパス弁を有するガスタービン燃焼器のバ
イパス空気量の制御方法、特に精度の高いタービン入口
温度演算値をともにバイパス弁を制御する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling a bypass air amount of a gas turbine combustor having a bypass valve, and more particularly to a method of controlling a bypass valve with a highly accurate turbine inlet temperature calculation value. .

従来の技術 ガスタービン燃焼器において、ガスタービンの排ガス中
のNOx(酸化窒素)濃度を低減させるため、超希薄燃
焼、予混合燃焼、予蒸気燃焼などの方法が考えられてい
る。
2. Description of the Related Art In gas turbine combustors, methods such as ultra-lean combustion, premixed combustion, and presteam combustion have been considered in order to reduce the NO x (nitrogen oxide) concentration in the exhaust gas of gas turbines.

しかし、これらの方法によると、安定して燃焼できる燃
空比(燃料と空気との重量比)の範囲が極めて狭くな
る。また一方では、ガスタービン燃焼器は起動から全負
荷まで広い範囲の燃空比で運転されねばならないという
要求がある。
However, according to these methods, the range of the fuel-air ratio (weight ratio of fuel and air) in which stable combustion is possible becomes extremely narrow. On the other hand, there is a demand that the gas turbine combustor must be operated in a wide range of fuel-air ratio from start-up to full load.

この互いに相反する要求を共に満たすために、圧縮空気
の全量を燃焼器内に導入せず、バイパス弁を設けておい
てこれに圧縮空気の一部をバイパスさせる方式が採用さ
れている。第2図はバイパス弁を有するタービン燃焼器
の例を示すもので、特に環状かん形(外筒は環状、内筒
はかん形)パイロツト燃焼式バイパス弁付燃焼器の例で
ある。この図において、符号1はパイロツト燃料入口、
2はパイロツト燃料噴射ノズル、3はパイロツト燃焼
筒、4は主燃焼筒、5は燃焼器車室、6は尾筒、7はタ
ービン静翼、8はバイパス空気エルボ、9はバイパス弁
(図ではバタフライ弁)、10はバイパス弁作動機構、
11はデフユーザ、12は圧縮空気、13はバイパス空
気を示している。圧縮空気12はデフューザ11を通つ
て燃焼器に入り、その一部のバイパス空気13がバイパ
ス弁9に入る。
In order to satisfy both of these mutually contradictory requirements, a system is adopted in which the entire amount of compressed air is not introduced into the combustor, but a bypass valve is provided and a part of the compressed air is bypassed. FIG. 2 shows an example of a turbine combustor having a bypass valve, and particularly an example of an annular rod-shaped (annular outer cylinder, rod-shaped inner cylinder) pilot combustion type combustor with a bypass valve. In this figure, reference numeral 1 is a pilot fuel inlet,
Reference numeral 2 is a pilot fuel injection nozzle, 3 is a pilot combustion cylinder, 4 is a main combustion cylinder, 5 is a combustor casing, 6 is a tail cylinder, 7 is a turbine vane, 8 is a bypass air elbow, and 9 is a bypass valve (in the figure, Butterfly valve), 10 is a bypass valve operating mechanism,
11 is a differential user, 12 is compressed air, and 13 is bypass air. The compressed air 12 enters the combustor through the diffuser 11, and a part of the bypass air 13 enters the bypass valve 9.

従来のバイパス弁制御方法としては、 a.タービン入口ガス温度を計測し、その信号によつて
バイパス弁9を制御する、 b.排ガス中のNOx、CO、UHC(未燃炭化水素)等の濃度
を計測し、その濃度に応じてバイパス弁9を制御する、 c.燃料と空気との流量を計測して燃空比を求め、その
信号によつてバイパス弁9を制御する、 などの方式が考案されている。
As a conventional bypass valve control method, a. Measuring the turbine inlet gas temperature and controlling the bypass valve 9 according to the signal; b. Measuring the concentration of NO x , CO, UHC (unburned hydrocarbon), etc. in the exhaust gas, and controlling the bypass valve 9 according to the concentration, c. A method has been devised in which the flow rate of fuel and air is measured to obtain the fuel-air ratio, and the signal is used to control the bypass valve 9.

発明が解決しようとする問題点 しかし、これらのバイパス弁制御方法においては、ま
ず、a方式ではタービン入口ガスは高温であり、しかも
温度が一様でないので、そのような高温に耐える信頼性
のある温度計は入手し難く、また入口ガスの平均温度も
求め難い。b方式では応答速度が遅く、急激な負荷変動
に対し充分に追随することができない。また、c方式で
は空気流量の計測精度が悪く、適正な制御ができないの
である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in these bypass valve control methods, first, in the method a, the turbine inlet gas is at a high temperature and the temperature is not uniform, so there is a reliability to withstand such a high temperature. It is difficult to obtain a thermometer, and it is difficult to obtain the average temperature of the inlet gas. In the method b, the response speed is slow and it is not possible to sufficiently follow a sudden load change. Further, in the c method, the accuracy of measuring the air flow rate is poor, and proper control cannot be performed.

したがつて、本発明は、負荷、吸込温度等の運転条件が
変化しても、燃焼器内の燃空比を精度よく一定に保ち、
安定燃焼が可能であるように、かつ急激な負荷変動にも
追随できるようなバイパス弁制御方法を提供することを
目的とする。
Therefore, the present invention, even if the operating conditions such as load and suction temperature change, keep the fuel-air ratio in the combustor constant accurately,
An object of the present invention is to provide a bypass valve control method capable of stable combustion and capable of following a sudden load change.

問題点を解決するための手段 本発明によれば、燃焼器車室内空気圧力とタービン排ガ
ス温度とを計測し、空気圧力の関数と排ガス温度との比
を演算をし、この演算値をもとにしてバイパス弁の制御
を行なうようにしている。これは、燃焼器車室内空気圧
力が計測精度、信頼性および応答性においてよく、排ガ
ス温度計測も500℃レベルであるので直接タービン入口
温度の計測に比較して精度、信頼性および応答性におい
て良好であることによつている。
Means for Solving the Problems According to the present invention, the combustor vehicle interior air pressure and the turbine exhaust gas temperature are measured, the ratio between the function of the air pressure and the exhaust gas temperature is calculated, and the calculated value is used as the basis. Then, the bypass valve is controlled. This is because the air pressure inside the combustor is good in measurement accuracy, reliability, and responsiveness, and the exhaust gas temperature measurement is at the 500 ° C level, so it is better in accuracy, reliability, and responsiveness than direct turbine inlet temperature measurement. It depends on that.

実施例 以下第1図に例示した本発明の好適な実施例について詳
述する。
EXAMPLE A preferred example of the present invention illustrated in FIG. 1 will be described in detail below.

第1図は、バイパス弁角度設定信号を出力するまでの流
れ図である。第1図において、符号14はガスタービン
排ガス温度T4を信号として入力する装置、15は燃焼器
車室内の空気圧力P2を信号として入力する装置、16は
空気圧力P2からある関数F(P2)を発生する装置、17は
排ガス温度T4と関数F(P2)とから両者の商α=T4/F(P2)
を演算して出力する装置、18は商αに対してバイパス
弁角度信号CSOをある関数で設定する装置、19はバイ
パス弁角度設定信号CSOを受けてバイパス弁を制御する
サーボモータである。
FIG. 1 is a flow chart until the bypass valve angle setting signal is output. In Figure 1, reference numeral 14 is an apparatus for inputting a signal to the gas turbine exhaust gas temperature T 4, 15 enters the combustor vehicle air pressure P 2 of the chamber as a signal device, 16 is a function from the air pressure P 2 F ( A device for generating P 2 ), 17 is a quotient of the exhaust gas temperature T 4 and the function F (P 2 ) α = T 4 / F (P 2 )
Is a device that calculates and outputs the bypass valve angle signal CSO with respect to the quotient α by a function, and 19 is a servomotor that receives the bypass valve angle setting signal CSO and controls the bypass valve.

作用 まず、ガスタービン燃焼器車室内の空気圧力P2および排
ガス温度T4を計測する。
Action First, the air pressure P 2 and the exhaust gas temperature T 4 inside the gas turbine combustor compartment are measured.

空気圧力P2より関数F(P2)を演算する。関数F(P2)は簡易
解析結果によれば、 となる。但し、 ηt:タービン効率 K:比熱比(Cp/Cv) Cp:定圧比熱 Cv:定積比熱 しかし、実用上は詳細解析結果を a×P2+b (a,bは常数) 等の簡易関数で近似するのが望ましい。
The function F (P 2 ) is calculated from the air pressure P 2 . According to the simple analysis result, the function F (P 2 ) is Becomes However, η t : Turbine efficiency K: Specific heat ratio (C p / C v ) C p : Constant pressure specific heat C v : Constant volume specific heat However, in practice, the detailed analysis result is a × P 2 + b (a and b are constants) It is desirable to approximate with a simple function such as.

次いで、演算装置17においては、関数F(P2)および排
ガス温度T4から α=T4/F(P2) を演算する。
Next, in the arithmetic unit 17, α = T 4 / F (P 2 ) is calculated from the function F (P 2 ) and the exhaust gas temperature T 4 .

演算装置17にて計算したαに対して、関数設定装置1
8において、バイパス弁開度設定信号CSOを設定する。
この設定信号CSOによりサーボモータ19を操作してバ
イパス弁開度制御を行なう。
With respect to α calculated by the arithmetic unit 17, the function setting unit 1
At 8, the bypass valve opening degree setting signal CSO is set.
The servo motor 19 is operated by the setting signal CSO to control the bypass valve opening.

効果 本発明によれば、燃焼器車室内空気圧力と排ガス温度と
を計測して演算してタービン燃焼器のバイパス弁開度を
制御することにより、精度面、応答性における問題が解
決され、各負荷を通じて安定した低NOx運転を行なうこ
とができ、また急激な負荷変動に際しても、充分に追随
することができるようになつた。
Effect According to the present invention, by controlling the bypass valve opening of the turbine combustor by measuring and calculating the combustor vehicle interior air pressure and the exhaust gas temperature, the problems in accuracy and responsiveness are solved. It became possible to perform stable low NOx operation through the load, and to be able to sufficiently follow sudden load changes.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明によるバイパス弁制御方法を示す流れ
図、第2図は本発明方法の対象となるバイパス弁をそな
えたガスタービン燃焼器の例を示す断面図である。 1……パイロツト燃料入口、2……パイロツト燃料噴射
ノズル、3……パイロツト燃焼筒、4……主燃焼筒、5
……燃焼器車室、6……尾筒、7……タービン静翼、8
……バイパス空気エルボ、9……バイパス弁、10……
バイパス弁作動機構、11……デフユーザ、12……圧
縮空気、13……バイパス空気、14……ガスタービン
排ガス温度の入力装置、15……燃焼器車室内空気圧力
の入力装置、16……関数発生装置、17……演算装
置、18……関数設定装置、19……サーボモータ。
FIG. 1 is a flow chart showing a bypass valve control method according to the present invention, and FIG. 2 is a cross-sectional view showing an example of a gas turbine combustor provided with a bypass valve which is a target of the present invention method. 1 ... Pilot fuel inlet, 2 ... Pilot fuel injection nozzle, 3 ... Pilot combustion cylinder, 4 ... Main combustion cylinder, 5
...... Combustor compartment, 6 ... Tail tube, 7 ... Turbine vane, 8
...... Bypass air elbow, 9 ... Bypass valve, 10 ...
By-pass valve actuation mechanism, 11 ... Defuser, 12 ... Compressed air, 13 ... Bypass air, 14 ... Gas turbine exhaust gas temperature input device, 15 ... Combustor vehicle interior air pressure input device, 16 ... Function Generator, 17 ... Arithmetic device, 18 ... Function setting device, 19 ... Servo motor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ガスタービン燃焼器の車室内空気圧力P2
ガスタービン排ガス温度T4とを計測し、前記空気圧力P2
をもとに関数F(P2)を発生させ、この関数F(P2)と前記排
ガス温度T4との比α=T4/F(P2)を演算し、その比に対
応したバイパス弁開度を設定し、この設定弁開度でバイ
パス弁の開度を制御する、ガスタービン燃焼器バイパス
弁制御方法。
1. An air pressure P 2 in a vehicle interior of a gas turbine combustor and a gas turbine exhaust gas temperature T 4 are measured to obtain the air pressure P 2
A function F (P 2 ) is generated based on the following, and the ratio α = T 4 / F (P 2 ) between this function F (P 2 ) and the exhaust gas temperature T 4 is calculated, and the bypass corresponding to the ratio is calculated. A gas turbine combustor bypass valve control method, wherein a valve opening is set, and the opening of the bypass valve is controlled by this set valve opening.
JP21888584A 1984-10-18 1984-10-18 Gas turbine combustor bypass valve control method Expired - Lifetime JPH0648093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21888584A JPH0648093B2 (en) 1984-10-18 1984-10-18 Gas turbine combustor bypass valve control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21888584A JPH0648093B2 (en) 1984-10-18 1984-10-18 Gas turbine combustor bypass valve control method

Publications (2)

Publication Number Publication Date
JPS6196332A JPS6196332A (en) 1986-05-15
JPH0648093B2 true JPH0648093B2 (en) 1994-06-22

Family

ID=16726832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21888584A Expired - Lifetime JPH0648093B2 (en) 1984-10-18 1984-10-18 Gas turbine combustor bypass valve control method

Country Status (1)

Country Link
JP (1) JPH0648093B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113329B2 (en) * 1986-12-15 1995-12-06 三井造船株式会社 Gas turbine
JPH02149836U (en) * 1989-05-19 1990-12-21
JP2004132255A (en) 2002-10-10 2004-04-30 Mitsubishi Heavy Ind Ltd Combustor control device

Also Published As

Publication number Publication date
JPS6196332A (en) 1986-05-15

Similar Documents

Publication Publication Date Title
US4462376A (en) Method and apparatus for determining and controlling the exhaust gas recirculation rate in internal combustion engines
JP5259568B2 (en) System and method for direct non-intrusive measurement of corrected air flow
US4567725A (en) Trap regenerative device control apparatus
US4060979A (en) Stall warning detector for gas turbine engine
US20090113896A1 (en) Control apparatus and method for gas-turbine engine
JPH06323165A (en) Control device and method for gas turbine
US4594849A (en) Apparatus for synthesizing control parameters
JP2004522129A (en) Method and apparatus for setting air ratio
JPH07189741A (en) Equipment and method of determining and controlling temperature of primary zone of combustion chamber
US9249738B2 (en) Method for automatic closed-loop control of one or more combustion temperatures in a gas turbine installation and method for determination of the water content in the working fluid of a gas turbine installation
JPS5612027A (en) Electric controller for injection pump
JP2000220481A (en) Air-fuel ratio control device for gas engine and its operating method
RU2383001C1 (en) Method of debugging of gas turbine engine with afterburner
US5154513A (en) Method for determining the temperature of a flow of medium
US6202408B1 (en) Method and apparatus for a zero-point stabilization of an exaust gas sensor
US3977182A (en) Gas turbine control
US4248042A (en) Engine thrust control system
JPH0648093B2 (en) Gas turbine combustor bypass valve control method
JP2667609B2 (en) Gas turbine control device
GB1580503A (en) Methods and apparatus for stabilishing and augmeter systems of aircraft jet engines
US4050306A (en) Method and apparatus for measuring pressures
US5392312A (en) Method and device for regulating the combustion air flow rate of a flue rate gas collection device of a metallurgical reactor, corresponding collection device and metallurgical reactor
RU2319025C1 (en) Gas-turbine engine control method
JPS5926779B2 (en) Method for controlling nitrogen oxide emissions in gas turbine plants
JPH0555769B2 (en)