JPH0555769B2 - - Google Patents

Info

Publication number
JPH0555769B2
JPH0555769B2 JP59218886A JP21888684A JPH0555769B2 JP H0555769 B2 JPH0555769 B2 JP H0555769B2 JP 59218886 A JP59218886 A JP 59218886A JP 21888684 A JP21888684 A JP 21888684A JP H0555769 B2 JPH0555769 B2 JP H0555769B2
Authority
JP
Japan
Prior art keywords
bypass valve
air
combustor
fuel
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59218886A
Other languages
Japanese (ja)
Other versions
JPS6196333A (en
Inventor
Ichiro Fukue
Kuniaki Aoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Tohoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP21888684A priority Critical patent/JPS6196333A/en
Publication of JPS6196333A publication Critical patent/JPS6196333A/en
Publication of JPH0555769B2 publication Critical patent/JPH0555769B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、バイパス弁を有するガスタービン燃
焼器のバイパス空気量の制御方法に関し、特に精
度の高い燃空比演算値をもとにバイパス弁を制御
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for controlling the amount of bypass air in a gas turbine combustor having a bypass valve, and in particular to a method for controlling the bypass valve based on a highly accurate fuel-air ratio calculation value. Regarding how to.

従来の技術 ガスタービン燃焼器は、燃空比(燃料と空気と
の重量比)の広い範囲で、安定した連続燃焼を維
持しなければならない。このため、構造および制
御面で各種方式が採用されており、バイパス弁を
備えて圧縮機を出た空気の一部を、燃焼器内の燃
空比を適当な値に保持するよう燃焼器をバイパス
して、タービンに導くようにすることもそのひと
つである。
BACKGROUND OF THE INVENTION Gas turbine combustors must maintain stable continuous combustion over a wide range of fuel-air ratios (weight ratios of fuel and air). For this reason, various structural and control methods have been adopted, including a bypass valve that directs a portion of the air leaving the compressor to the combustor to maintain the fuel-air ratio within the combustor at an appropriate value. One option is to bypass it and direct it to the turbine.

第3図は、環状かん形(外筒は環状、内筒はか
ん形)ガスタービン燃焼器のバイパス弁を使用し
た代表例で、特に環状かん形パイロツト燃焼式バ
イパス弁付燃焼器の例である。この図において、
符号1はパイロツト燃料入口、2はパイロツト燃
焼噴射ノズル、3はパイロツト燃焼筒、4は主燃
焼筒、5は燃焼器車室、6は尾筒、7はタービン
静翼、8はバイパス空気エルボ、9はバイパス弁
(図ではバタフライ弁)、10はバイパス弁作動機
構、11はデフユーザ、12は圧縮空気、13は
バイパス空気を示している。勝縮空気12はデフ
ユーザ11を通つて燃焼器に入り、その一部のバ
イパス空気13がバイパス弁9に入る。
Figure 3 is a typical example of a gas turbine combustor with an annular cylinder shape (the outer cylinder is annular and the inner cylinder is cylinder-shaped) using a bypass valve, and is particularly an example of an annular cylinder pilot combustion type combustor with a bypass valve. . In this diagram,
1 is a pilot fuel inlet, 2 is a pilot combustion injection nozzle, 3 is a pilot combustion tube, 4 is a main combustion tube, 5 is a combustor chamber, 6 is a tail piece, 7 is a turbine stationary blade, 8 is a bypass air elbow, 9 is a bypass valve (butterfly valve in the figure), 10 is a bypass valve operating mechanism, 11 is a differential user, 12 is compressed air, and 13 is bypass air. The compressed air 12 enters the combustor through the differential user 11, and a portion of the bypass air 13 enters the bypass valve 9.

従来のバイパス弁制御方法としては、 a 燃料と空気との流量を計測して燃空比を求
め、その信号によつてバイパス弁9を制御す
る、 b 非適正燃空比によつて発生した排ガス中の
NOX、CO、UHC(未燃炭化水素)等の濃度を
計測し、その濃度に応じてバイパス弁9を制御
する などの方式が提案されている。
Conventional bypass valve control methods include: a. Measuring the flow rates of fuel and air to determine the fuel-air ratio, and controlling the bypass valve 9 based on the signal; b. Exhaust gas generated due to an inappropriate fuel-air ratio. In
A method has been proposed in which the concentration of NOX, CO, UHC (unburned hydrocarbons), etc. is measured and the bypass valve 9 is controlled according to the concentration.

発明が解決しようとする問題点 しかし、これらのバイパス弁制御方法において
は、まず、a方式では空気流量の計測精度が悪
く、適正な制御ができない、一方b方式で応答速
度が遅く、急激な負荷変動に対し追随することが
できない、といつた欠点を有している。
Problems to be Solved by the Invention However, in these bypass valve control methods, firstly, method a has poor accuracy in measuring air flow rate and cannot perform proper control, while method b has a slow response speed and cannot handle sudden loads. It has the disadvantage of not being able to follow fluctuations.

したがつて、本発明は、起動から各種負荷に対
応して、精度の高い燃空比を維持させ、しかも急
激な負荷変動にも追随できるようなガスタービン
燃焼器のバイパス弁制御方法を目的とする。
Therefore, the object of the present invention is to provide a bypass valve control method for a gas turbine combustor that can maintain a highly accurate fuel-air ratio in response to various loads from startup and can also follow rapid load changes. do.

問題点を解決するための手段 本発明によれば、計測精度の高い、燃焼器車室
内空気圧力(P2)および発電機出力(LGEN)を入
力信号とし、空気圧力P2の関係F(P2)と発電機
出力LGENとの比α=LGEN/F(P2)を演算し、燃
空比を表わすその比αに対応したバイパス弁開度
を設定するようにした、燃空比に対するバイパス
弁制御の方法が提供される。
Means for Solving Problems According to the present invention, the combustor vehicle interior air pressure (P 2 ) and the generator output (L GEN ), which have high measurement accuracy, are used as input signals, and the air pressure P 2 relationship F( P 2 ) and the generator output L GEN , the ratio α = L GEN /F (P 2 ) is calculated, and the bypass valve opening corresponding to the ratio α representing the fuel air ratio is set. A method of bypass valve control over ratio is provided.

実施例 以下第1図および第2図に例示した本発明の好
適な実施例について詳述する。
Embodiments Hereinafter, preferred embodiments of the present invention illustrated in FIGS. 1 and 2 will be described in detail.

第1図は、バイパス弁角度設定信号を出力する
までの流れ図である。第1図において、符号14
は発電機出力LGENを信号として入力する装置、1
5は燃焼器車室内の空気圧力P2を信号として入
力する装置、16は空気圧力P2からある関数F
(P2)を発生する装置、17は発電機出力LGEN
関数F(P2)とから両者の商α=LGEN/F(P2)を
演算して出力する装置、18は商αに対してバイ
パス弁角度信号CSOをある関数で設定する装置、
19はバイパス弁角度設定信号CSOを受けてバ
イパス弁を制御するサーボモータである。
FIG. 1 is a flowchart up to outputting a bypass valve angle setting signal. In FIG. 1, reference numeral 14
is a device that inputs the generator output L GEN as a signal, 1
5 is a device that inputs the air pressure P2 in the combustor compartment as a signal, and 16 is a function F from the air pressure P2 .
(P 2 ), 17 is a device that calculates and outputs the quotient α=L GEN /F (P 2 ) from the generator output L GEN and the function F (P 2 ), and 18 is the quotient α A device that sets a bypass valve angle signal CSO with a certain function,
A servo motor 19 controls the bypass valve in response to the bypass valve angle setting signal CSO.

作 用 まず、ガスタービン燃焼器車室内の空気圧力
P2および発電機出力LGENを計測する。
Effect First, the air pressure inside the gas turbine combustor chamber is
Measure P 2 and generator output L GEN .

空気圧力P2より関数F(P2)を演算する。関数
F(P2)を簡易解析結果によれば、 である。但し、Kは流体の比熱比cp/cy cp:定圧比熱 cv:定積比熱 で与えられるが、実用上は詳細解析結果を F(P2)=a×P2+b (a、bは常数) 等の簡易関数で近似するのが望ましい。
A function F(P 2 ) is calculated from the air pressure P 2 . According to the simple analysis result of the function F(P 2 ), It is. However, K is given by the specific heat ratio of the fluid c p /c y c p : constant pressure specific heat c v : constant volume specific heat, but in practice, the detailed analysis results are expressed as F(P 2 )=a×P 2 +b (a, b is a constant) It is desirable to approximate with a simple function such as

演算装置17においては、関数F(P2)および
発電機出力LGENから α=LGEN/F(P2) を演算する。
The calculation device 17 calculates α=L GEN /F (P 2 ) from the function F (P 2 ) and the generator output L GEN .

演算装置17に計算したαに対して、関数設定
装置18において、バイパス弁開度設定信号
CSOを設定する。この信号CSOにより、バイパ
ス弁開度制御を行なう。
The function setting device 18 outputs a bypass valve opening setting signal for α calculated by the arithmetic device 17.
Set up CSO. This signal CSO controls the bypass valve opening.

ここでαは、以下に示す如く、充分な精度でガ
スタービンの燃空比を代表している。すなわち、
第2図に示すように、ガスタービンの基本サイク
ル(ブレイトンサイクル)を考える。
Here, α represents the fuel-air ratio of the gas turbine with sufficient accuracy, as shown below. That is,
As shown in FIG. 2, consider the basic cycle (Brayton cycle) of a gas turbine.

まず、単位空気量について考える。 First, let's consider the unit air volume.

ΔIc=Cp(T2−T1) (1) ΔIt=Cp(T3−T4) (2) ΔIb=Cp(T3−T2) (3) 但し、ΔIcは圧縮機のエンタルピ上昇、ΔItは
タービンのエンタルピ落差、ΔIbは燃焼器のエン
タルピ上昇、T1は圧縮機入口温度、T2は圧縮機
出口温度、T3はタービン入口温度、T4はタービ
ン出口温度である。
ΔIc=C p (T 2 − T 1 ) (1) ΔIt=C p (T 3 − T 4 ) (2) ΔIb=C p (T 3 − T 2 ) (3) However, ΔIc is the enthalpy of the compressor. rise, ΔIt is the enthalpy drop of the turbine, ΔIb is the enthalpy rise of the combustor, T 1 is the compressor inlet temperature, T 2 is the compressor outlet temperature, T 3 is the turbine inlet temperature, and T 4 is the turbine outlet temperature.

発生仕事は(1)〜(3)式より ΔIw=Cp(T1+T3−T2+T4) (4) ここで、等エントロピー変化の式を下記の如く
書く。
The generated work is calculated from equations (1) to (3) as follows: ΔIw=C p (T 1 +T 3 −T 2 +T 4 ) (4) Here, the equation for isentropic change is written as follows.

但し、rはP1を圧縮機吸込圧力およびタービ
ン出力圧力とするときr=P2/P1の圧力比であ
る。
However, r is a pressure ratio of r=P 2 /P 1 when P 1 is the compressor suction pressure and the turbine output pressure.

(3)〜(5)式より 燃焼器入熱量は ΔIb=n×LHV (7) 但し、nは燃料量/空気量の燃空比、LHVは
燃料の単位重量当りの発熱量である。
From equations (3) to (5) The heat input to the combustor is ΔIb=n×LHV (7) where n is the fuel-air ratio of fuel amount/air amount, and LHV is the calorific value per unit weight of fuel.

(6)式および(7)式から実流量に於ける発生仕事を
求めると 但し、Gは空気流量である。
Calculating the work generated at the actual flow rate from equations (6) and (7), However, G is the air flow rate.

タービンの流量特性を与える常数kt=G√
T3/P2を(8)式に組合せて (3)、(5)、(7)式を用いて(9)式を書き換えると、 ここで、次の変数αを定義する (11)式により(10)式を書き換えると ここで、 は実際上、常数=Cとみなせるので、 α=n/√n×LHV/Cp+C (13) すなわち、αはLHV、Cpおよびcが一定であ
るので、燃空比nを代表するのである。一方、(11)
式において、kt、p1、LHVはほぼ一定値である
のでαは の関数となる。
Constant giving the flow rate characteristics of the turbine k t = G√
Combining T 3 /P 2 in equation (8) Rewriting equation (9) using equations (3), (5), and (7), we get Here, define the following variable α Rewriting equation (10) using equation (11), we get here, can actually be regarded as a constant = C, so α=n/√n×LHV/C p +C (13) In other words, α represents the fuel-air ratio n since LHV, C p and c are constant. be. On the other hand, (11)
In the equation, k t , p 1 , and LHV are almost constant values, so α is becomes a function of

なお、 を一定とした場合の誤差は、T1=260〜310°K、
r=13〜10の変動があるとして、実際の計算を行
なうと、αは1:1.051(n=0.02とする)とな
り、実用上充分な精度で、常数として扱えること
がわかる。
In addition, The error when T 1 is constant is T 1 = 260 ~ 310°K,
Assuming that there is a variation of r=13 to 10, when performing actual calculations, α becomes 1:1.051 (assuming n=0.02), which shows that it can be treated as a constant with sufficient accuracy for practical use.

効 果 本発明方法によれば、ガスタービン燃焼器内の
燃焼部分の燃空比を、燃焼器内でのNOx発生を
できるだけ低くなるよう、かつ安定燃焼が行なわ
れるように、制御するに当り、燃焼器車室内空気
圧力と発電機出力とを計測し演算して制御するこ
とにより、その圧力および出力は共に測定精度、
応答性、測定の信頼性に優れているので、精度信
頼性共に優れた制御を得ることができる。
Effects According to the method of the present invention, in controlling the fuel-air ratio of the combustion section in the gas turbine combustor so that NOx generation within the combustor is as low as possible and stable combustion is performed, By measuring, calculating and controlling the air pressure inside the combustor vehicle and the generator output, both the pressure and output can be measured with high accuracy.
Since it has excellent responsiveness and measurement reliability, it is possible to obtain control with excellent accuracy and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるバイパス弁制御方法を示
す流れ図、第2図は本発明の方法の作用を説明す
るための図、第3図は本発明方法の対象となるバ
イパス弁をそなえたガスタービン燃焼器の例を示
す断面図である。 1……パイロツト燃料入口、2……パイロツト
燃料噴射ノズル、3……パイロツト燃焼筒、4…
…主燃焼筒、5……燃焼器車室、6……尾筒、7
……タービン静翼、8……バイパス空気エルボ、
9……バイパス弁、10……バイパス弁作動機
構、11……デフユーザ、12……圧縮空気、1
3……バイパス空気、14……発電機出力の入力
装置、15……燃焼器車室内空気の入力装置、1
6……関数発生装置、17……演算装置、18…
…関数設定装置、19………サーボモータ。
FIG. 1 is a flowchart showing the bypass valve control method according to the present invention, FIG. 2 is a diagram for explaining the operation of the method according to the present invention, and FIG. 3 is a diagram showing a gas turbine equipped with a bypass valve to which the method of the present invention is applied. FIG. 2 is a cross-sectional view showing an example of a combustor. 1...Pilot fuel inlet, 2...Pilot fuel injection nozzle, 3...Pilot combustion tube, 4...
...Main combustion tube, 5...Combustor chamber, 6...Temporary tube, 7
...Turbine stationary blade, 8...Bypass air elbow,
9... Bypass valve, 10... Bypass valve operating mechanism, 11... Differential user, 12... Compressed air, 1
3...Bypass air, 14...Input device for generator output, 15...Input device for combustor cabin air, 1
6...Function generator, 17...Arithmetic device, 18...
...Function setting device, 19... Servo motor.

Claims (1)

【特許請求の範囲】[Claims] 1 ガスタービン燃焼器の車室内空気圧力P2
発電機出力LGENとを計測し、前記空気圧力P2をも
とに関数F(P2)を発生させ、この関数F(P2
と前記発電機出力LGENとの比α=LGEN/F(P2
を演算し、その比に対応したバイパス弁開度を設
定し、この設定弁開度でバイパス弁の開度を制御
する、ガスタービン燃焼器バイパス弁制御方法。
1. Measure the cabin air pressure P 2 of the gas turbine combustor and the generator output L GEN , generate a function F (P 2 ) based on the air pressure P 2 , and generate the function F (P 2 ).
The ratio α=L GEN /F(P 2 ) to the generator output L GEN
A gas turbine combustor bypass valve control method that calculates the ratio, sets a bypass valve opening corresponding to the ratio, and controls the bypass valve opening with this set valve opening.
JP21888684A 1984-10-18 1984-10-18 Gas turbine combustor bypass valve controlling method Granted JPS6196333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21888684A JPS6196333A (en) 1984-10-18 1984-10-18 Gas turbine combustor bypass valve controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21888684A JPS6196333A (en) 1984-10-18 1984-10-18 Gas turbine combustor bypass valve controlling method

Publications (2)

Publication Number Publication Date
JPS6196333A JPS6196333A (en) 1986-05-15
JPH0555769B2 true JPH0555769B2 (en) 1993-08-17

Family

ID=16726847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21888684A Granted JPS6196333A (en) 1984-10-18 1984-10-18 Gas turbine combustor bypass valve controlling method

Country Status (1)

Country Link
JP (1) JPS6196333A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110282A (en) * 1974-07-15 1976-01-27 Tokyo Shibaura Electric Co SANGYOYOKONPYUUTADESEIGYOSARERU SUCHISEIGYOSOCHI
JPS52319A (en) * 1974-06-04 1977-01-05 Westinghouse Electric Corp Backkup control device for gas turbine power plant
JPS521315A (en) * 1975-06-20 1977-01-07 Gen Motors Corp Method of controlling gas generator for gas turbine
JPS5334248A (en) * 1976-09-10 1978-03-30 Kawasaki Denki Kogyo Motorcar elevator landing device
JPS57122223A (en) * 1981-01-21 1982-07-30 Hitachi Ltd Method of air supply and its apparatus for gas turbine combustor
JPS5855622A (en) * 1981-09-30 1983-04-02 Hitachi Ltd Gas turbine combustion unit with low nox
JPS58140520A (en) * 1982-02-16 1983-08-20 Toshiba Corp Combustion apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52319A (en) * 1974-06-04 1977-01-05 Westinghouse Electric Corp Backkup control device for gas turbine power plant
JPS5110282A (en) * 1974-07-15 1976-01-27 Tokyo Shibaura Electric Co SANGYOYOKONPYUUTADESEIGYOSARERU SUCHISEIGYOSOCHI
JPS521315A (en) * 1975-06-20 1977-01-07 Gen Motors Corp Method of controlling gas generator for gas turbine
JPS5334248A (en) * 1976-09-10 1978-03-30 Kawasaki Denki Kogyo Motorcar elevator landing device
JPS57122223A (en) * 1981-01-21 1982-07-30 Hitachi Ltd Method of air supply and its apparatus for gas turbine combustor
JPS5855622A (en) * 1981-09-30 1983-04-02 Hitachi Ltd Gas turbine combustion unit with low nox
JPS58140520A (en) * 1982-02-16 1983-08-20 Toshiba Corp Combustion apparatus

Also Published As

Publication number Publication date
JPS6196333A (en) 1986-05-15

Similar Documents

Publication Publication Date Title
Kaemming et al. Determining the pressure gain of pressure gain combustion
JP5259568B2 (en) System and method for direct non-intrusive measurement of corrected air flow
JPH05215652A (en) Exhaust sampler and control means thereof
De Zilwa et al. Time-resolved fuel-grain port diameter measurement in hybrid rockets
US5154513A (en) Method for determining the temperature of a flow of medium
EP1779084A2 (en) Fast operating dilution flow control system and method for sampling exhaust analysis
US4248042A (en) Engine thrust control system
US3837220A (en) Determination of gross thrust-related parameters
JPH0555769B2 (en)
US3886790A (en) Apparatus for determining the gross thrust of a jet engine
JPH0648093B2 (en) Gas turbine combustor bypass valve control method
JP2667609B2 (en) Gas turbine control device
De Zilwa et al. Combustion oscillations in high regression rate hybrid rockets
Suchocki Operational space and characterization of a rotating detonation engine using hydrogen and air
RU2755211C2 (en) Method for determining coefficient of completeness of fuel combustion in ramjet engine
JPS5926779B2 (en) Method for controlling nitrogen oxide emissions in gas turbine plants
US4244183A (en) Control means for an augmentor for a gas turbine engine
CN116562193B (en) Combustion efficiency analysis method and system for rotary detonation engine
US3834222A (en) Methods and apparatus for determining the thrust of a jet engine
JPS6142225B2 (en)
JP2988960B2 (en) Boiler air supply device
Juhasz Performance of an asymmetric short annular diffuser with a nondiverging inner wall using suction
JPH11159756A (en) Water injection control device for oil fired dln combustor
Kurtenbach Evaluation of a simplified gross thrust calculation technique using two prototype F100 turbofan engines in an altitude facility
Kurtenbach et al. Flight evaluation of a simplified gross thrust calculation technique using an F100 turbofan engine in an F-15 airplane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term