JPH0647635Y2 - High precision processing equipment - Google Patents

High precision processing equipment

Info

Publication number
JPH0647635Y2
JPH0647635Y2 JP1986060429U JP6042986U JPH0647635Y2 JP H0647635 Y2 JPH0647635 Y2 JP H0647635Y2 JP 1986060429 U JP1986060429 U JP 1986060429U JP 6042986 U JP6042986 U JP 6042986U JP H0647635 Y2 JPH0647635 Y2 JP H0647635Y2
Authority
JP
Japan
Prior art keywords
magnet
contactor
contact
boundary
magnetoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986060429U
Other languages
Japanese (ja)
Other versions
JPS62172545U (en
Inventor
敏靖 梅原
柳吉 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP1986060429U priority Critical patent/JPH0647635Y2/en
Priority to US07/040,523 priority patent/US4784541A/en
Publication of JPS62172545U publication Critical patent/JPS62172545U/ja
Application granted granted Critical
Publication of JPH0647635Y2 publication Critical patent/JPH0647635Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、例えばトランスファー機械のステーションに
設けられる数値制御可能な加工装置、特にスピンドルの
工具と被加工物との間で、高精度を以って相対的な位置
決めを可能ならしめるためのX,Y方向の位置検出手段の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is capable of achieving high precision between a numerically controllable processing device, for example, a tool of a spindle and a workpiece, which is provided in a station of a transfer machine, for example. Therefore, the present invention relates to improvement of position detecting means in the X and Y directions for enabling relative positioning.

[考案の概要] 本考案の加工装置においては1本の接触子によりX,Y方
向の位置検出を高精度に行なうため、上記接触子の先端
に第1,第2の磁電変換素子及び当接部が夫々設けられて
いる。被加工物の支持部材に設けられた磁性体の平面に
は第1,第2の磁電変換素子に対向して、夫々直交方向に
磁極の境界を有する4個の板状磁石部材及び接触子の当
接部と接触する基準部材が配設されており、上記磁電変
換素子により加工送り中にX,Y方向の位置検出が行なわ
れる。上記接触子及び基準部材は非磁性材から形成され
ている。
[Outline of the Invention] In the processing apparatus of the present invention, in order to detect the position in the X and Y directions with high accuracy by using one contact, the first and second magnetoelectric conversion elements and the contact are provided at the tip of the contact. Each section is provided. On the plane of the magnetic body provided on the support member of the workpiece, four plate-shaped magnet members facing the first and second magnetoelectric conversion elements and having magnetic pole boundaries in orthogonal directions, respectively, A reference member that comes into contact with the contact portion is provided, and the position is detected in the X and Y directions during the machining feed by the magnetoelectric conversion element. The contactor and the reference member are made of a non-magnetic material.

[従来の技術] トランスファー機械では、被加工物がジグまたはパレッ
トに位置決め状態で支持され、それらによって各ステー
ションごとに位置決め状態で固定される。そしてこの各
ステーションで加工ユニットによって必要な切削加工が
施される。
[Prior Art] In a transfer machine, a work piece is supported by a jig or a pallet in a positioning state, and is fixed in a positioning state for each station by them. Then, at each of these stations, the necessary cutting work is performed by the working unit.

近時、この種の加工ユニットとして数値制御装置を備え
たものが用いられるようになり、被加工物に対する工具
の位置を自動的に割り出し、その位置で必要な送り量
(加工深さ)のもとに切削加工を施すようにしている。
Recently, as a machining unit of this kind, one equipped with a numerical control device has come to be used, and the position of the tool with respect to the workpiece is automatically determined, and the feed amount (machining depth) required at that position is also calculated. It is designed to be cut and processed.

ところで加工中に、加工ユニット側の送りねじ、スピン
ドル或いはコラムやベースなどが熱的に変形し、またト
ランスファー機械側のジグ自体の寸法のばらつきやジグ
に対する被加工物の位置決めのばらつき、更に部品相互
の加工精度の累積誤差などによって、被加工物と加工ユ
ニツトとの間に相対的な位置決め誤差が生じている。
By the way, during machining, the feed screw, spindle, column, base, etc. on the processing unit side are thermally deformed, and the jig itself on the transfer machine side has dimensional variations and positioning of the workpiece with respect to the jig, and further A relative positioning error occurs between the work piece and the processing unit due to the accumulated error of the processing accuracy of 1.

従って、加工ユニットがあらかじめ設定された数値制御
プログラム通りに位置決めや送り量を高精度で制御した
としても、上記のような熱的変形や各部分の寸法的なば
らつきによって被加工物に加工誤差が現れることにな
る。
Therefore, even if the machining unit controls the positioning and the feed amount with high accuracy according to the preset numerical control program, there is a machining error on the workpiece due to the above-mentioned thermal deformation and dimensional variation of each part. Will appear.

[考案が解決しようとする問題点] そこで、本件実用新案登録出願人は実公昭63-31877号の
考案により、被加工物から一定の距離の部分でスピンド
ル側のセンサーによって、被加工物とスピンドル側の工
具との間で、相対的な位置を割り出した後に、数値制御
によつて加工深さを規制する技術を既に提案している。
[Problems to be solved by the device] Therefore, the applicant of the present utility model is invented in Japanese Utility Model Publication No. Sho 63-31877. We have already proposed a technology to control the working depth by numerical control after determining the relative position with the tool on the side.

上記の考案によって高い精度の加工が実現したものの、
スピンドルの送り方向の位置を設定するとき、すなわち
センサーによる基準位置の検出動作時にスピンドルを回
転位置割り出しする手段が必要であると共に一時的に送
り停止の状態になるためロスタイムが発生し、加工能率
上の問題が残っていた。
Although high-precision machining was realized by the above idea,
When setting the position of the spindle in the feed direction, that is, when the sensor detects the reference position, a means for indexing the rotational position of the spindle is required, and the feed is temporarily stopped, resulting in loss of time, which increases machining efficiency. Remained the problem.

このため、本件出願人は更に実公平2-39720号の考案お
いて、スピンドルの送り過程で、回転位置設定機能を必
要とせず、かつ、送り運動から基準位置の割り出し、さ
らに続く切削運動を連続的に能率良く実行できる加工装
置を提案した。
Therefore, the applicant of the present invention further devised the invention of Japanese Utility Model Publication No. 2-39720, which does not require a rotational position setting function in the spindle feeding process, determines the reference position from the feeding motion, and continues the subsequent cutting motion. We have proposed a processing device that can be efficiently executed.

しかしこの装置では一方向(Z方向)の位置しか検出補
正することができない問題があり、またその位置検出用
磁石の設置位置が限定されていた。
However, this device has a problem that it can detect and correct only the position in one direction (Z direction), and the installation position of the position detecting magnet is limited.

而してかかる従来技術の問題点を改良するため本件出願
人は先に実公平3-54834号の考案によって1本の接触子
により3次元の位置検出を高精度で行なうと共に加工送
り中にZ方向の原位置を検出補正することを可能にして
検出時間を短縮し、更には零にした高精度加工装置を提
供した。
In order to improve the above-mentioned problems of the prior art, the applicant of the present invention has previously proposed the invention of Japanese Utility Model Publication No. 3-54834 to perform three-dimensional position detection with a single contact with high accuracy and to perform Z during machining feed. The present invention provides a high-precision machining apparatus capable of detecting and correcting the original position in the direction, shortening the detection time, and further reducing the detection time to zero.

この装置によればX,Y方向の高精度な位置検出が原理的
には可能となったが、実用上なお下記のような問題点が
ある。
With this device, highly accurate position detection in the X and Y directions was possible in principle, but there are still the following problems in practical use.

すなわち、X,Y方向の位置検出用磁電変換素子は種々の
問題が発生するため前記磁石に摺接してトレースさせる
ことができないので、磁石と離間対向かつ近接させてト
レースさせなければならない。そして上記磁電変換素子
は磁極の境界を検出するわけであるが、磁極の境界は空
間では歪曲されており、X,Y方向の直線にはならない。
また検出位置(実際のトレース位置)は本来数10〜200
μ程度のずれがでるので、このずれと上記歪曲によりせ
っかく位置検出を行なっても正しい補正を行なうことが
できず、検出誤差が大となつて目的とする高精度加工を
実現することが難しかった。
That is, since the position-detecting magnetoelectric conversion element in the X and Y directions cannot be traced by sliding contact with the magnet because of various problems, it has to be traced so as to be opposed to and close to the magnet. The magnetoelectric conversion element detects the boundary of the magnetic pole, but the boundary of the magnetic pole is distorted in space and does not become a straight line in the X and Y directions.
The detection position (actual trace position) is originally several 10 to 200.
Since there is a deviation of about μ, correct correction cannot be performed even if position detection is carried out due to this deviation and the above distortion, and it was difficult to realize the desired high-precision machining due to a large detection error. .

従って本考案の目的はこのような従来技術の問題点を解
決して高精度加工を実現するために好適なX,Y方向の位
置検出手段の具体的構造を提供するにある。
Therefore, an object of the present invention is to provide a concrete structure of a position detecting means in the X and Y directions suitable for solving the problems of the prior art and realizing high precision machining.

[問題点を解決するための手段] 本考案は上記目的を達成するため、X,Y方向の位置検出
手段を、支持部材に固定した磁性体と、この磁性体の平
面に固定した4個の板状磁石部材と、上記磁性体または
磁石部材に固定した基準部材とから構成し、該基準部材
の基準面にX−Y方向の平面を具備せしめて、この平面
に接触子の当接部が接触するようになし、前記基準部材
及び接触子を非磁性材で形成し、かつ接触子の当接部が
基準面に接触している時にZ軸方向センサとしての第3
の磁電変換素子が第2の磁石と対向するように構成した
ことを特徴とする。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention comprises a position detecting means in the X and Y directions, a magnetic body fixed to a support member, and four magnetic body fixed to the plane of the magnetic body. It is composed of a plate-shaped magnet member and a reference member fixed to the magnetic body or the magnet member, and a reference surface of the reference member is provided with a flat surface in the XY direction. A third Z-axis direction sensor when the reference member and the contactor are made of a non-magnetic material and the contact portion of the contactor is in contact with the reference surface.
It is characterized in that the magnetoelectric conversion element of is configured so as to face the second magnet.

[作用] 上記構成の加工装置において、接触子の当接部が基準部
材の基準面に当接すると、前記磁電変換素子は前記磁石
部材の磁極パターンと近接対向して、X,Y方向の位置検
出が行なわれる。この検出の結果、X,Y方向の位置がず
れていれば、数値制御装置は磁電変換素子からの出力信
号を受けてその数値制御プログラムをそのずれ量だけ補
正し、X,Y軸のサーボモータが駆動制御される。
[Operation] In the processing apparatus having the above-described configuration, when the contact portion of the contactor comes into contact with the reference surface of the reference member, the magnetoelectric conversion element closely faces the magnetic pole pattern of the magnet member, and is positioned in the X and Y directions. Detection is performed. As a result of this detection, if the positions in the X and Y directions are deviated, the numerical control device receives the output signal from the magnetoelectric conversion element and corrects the numerical control program by the amount of the deviation, and the X and Y axis servo motors are corrected. Are driven and controlled.

この場合、前記磁石部材は板状で、磁性体の平面に固定
されていて、これら磁石部材及び磁性体以外の基準部
材、接触子は非磁性材で形成されているので、空間での
磁極の境界の歪みはできるだけ滑らかになっており測定
誤差を小さくするのに効果がある。特に好適には前記磁
電変換素子を、上記境界の中間部をトレースさせるよう
にすると、更に歪みが少なくなって測定誤差の減少を図
ることができる。
In this case, since the magnet member is plate-shaped and is fixed to the plane of the magnetic body, and the reference member and the contactor other than the magnet member and the magnetic body are formed of a non-magnetic material, the magnetic pole in the space is The boundary distortion is as smooth as possible, which is effective in reducing the measurement error. Particularly preferably, when the magnetoelectric conversion element is made to trace the intermediate portion of the boundary, the distortion is further reduced and the measurement error can be reduced.

[考案の実施例] 以下、図面を参照して本考案を説明すると、第1図及び
第2図は本考案を適用する高精度加工装置1の主要部を
示す。この高精度加工装置1は数値制御装置2によつて
X,Y,Zの3次元の軸方向に制御される加工ユニット3を
備えている。この加工ユニット3は特殊シリンダ4によ
つて進退されるZ軸方向の接触子5、この接触子5の先
端部分近傍にX,Y方向センサーとしての第1及び第2の
磁電変換素子6,7(例えば磁気アナログセンサー)を有
し、また接触子5の中間側部にはZ方向センサーとして
の第3の磁電変換素子8を設けてある。
[Embodiment of the Invention] Hereinafter, the present invention will be described with reference to the drawings. FIGS. 1 and 2 show a main part of a high-precision machining apparatus 1 to which the present invention is applied. This high-precision machining device 1 uses a numerical controller 2
A processing unit 3 controlled in the three-dimensional axial directions of X, Y, and Z is provided. The machining unit 3 is moved in and out by a special cylinder 4 in the Z-axis direction, and in the vicinity of the tip of the contact 5, the first and second magnetoelectric conversion elements 6, 7 as X, Y direction sensors are provided. (For example, a magnetic analog sensor) is provided, and a third magnetoelectric conversion element 8 as a Z-direction sensor is provided on the intermediate side portion of the contact 5.

Z方向のスピンドル9はスピンドルホルダ10によって接
触子5と平行に支持されており、スピンドルホルダ10に
固定した環状のベアリング押え11の1個所には棒状磁石
12(第2の磁石)が固定され、この磁石はスピンドルの
軸方向にN,S磁極が配してある。
The Z-direction spindle 9 is supported by a spindle holder 10 in parallel with the contacts 5, and a ring-shaped magnet holder 11 fixed to the spindle holder 10 has a bar-shaped magnet at one position.
12 (second magnet) is fixed, and this magnet has N and S magnetic poles arranged in the axial direction of the spindle.

一方、被加工物13はトランスファー装置14によってパレ
ットなどの支持部材15と共に加工ユニット3の正面側、
つまり加工ステーションに順次案内されてくる。この装
置では支持部材15の側面で被加工物13が支持されてお
り、スピンドル9の先端に取付けられた刃具16によって
所定の加工が行われるようになっている。
On the other hand, the workpiece 13 is transferred to the front side of the processing unit 3 by the transfer device 14 together with the supporting member 15 such as a pallet.
That is, they are sequentially guided to the processing station. In this device, the work piece 13 is supported by the side surface of the support member 15, and the predetermined processing is performed by the cutting tool 16 attached to the tip of the spindle 9.

更に支持部材15の上側面には、接触子5の先端が当接す
る基準面17及び前記X,Y方向センサー6,7と対向配置され
たX,Y磁石18(第1の磁石)が設けられている。
Further, on the upper side surface of the support member 15, there are provided a reference surface 17 with which the tips of the contacts 5 come into contact and an X, Y magnet 18 (first magnet) arranged to face the X, Y direction sensors 6,7. ing.

X,Y磁石18は、例えば第3図に示すように、N,S極の境界
が水平,垂直なマグネットパターンを有しており、その
中心部に前記基準面17が配置されており、支持部材がX,
Y方向の基準位置に正しくセットされている場合には、
X,Y方向の上記N,S極の境界に前記X,Y方向センサー6,7が
対向するようになっていて、数値制御装置2の加工プロ
グラムは上記N,S極の境界を原点として組み込んであ
る。
As shown in FIG. 3, for example, the X, Y magnet 18 has a magnet pattern in which the boundaries of the N and S poles are horizontal and vertical, and the reference plane 17 is arranged at the center of the magnet pattern. The member is X,
If it is set correctly at the reference position in the Y direction,
The X and Y direction sensors 6 and 7 face the boundary between the N and S poles in the X and Y directions, and the machining program of the numerical controller 2 incorporates the boundary between the N and S poles as the origin. Is.

以上のような構成の高精度加工装置1において、加工ユ
ニット3の加工動作は数値制御装置2のNC加工プログラ
ムに従って実行される。まず、最初に、スピンドル9が
復帰位置に戻っている状態で特殊シリンダー4が動作
し、接触子5を前進させることによって、その先端が基
準面17に当接される。これによつてX,Y方向センサー6,7
はX,Y磁石18の前記N,S極の境界に近接対向することにな
るが、各種変位、累積誤差のため若干上記境界からずれ
ている場合には、上記センサーから境界からのずれ量に
応じたアナログ出力が発生され、数値制御装置2に送ら
れる。具体的にはずれ量に応じたアナログ出力をディジ
タル変換して数値制御装置に送り、数値制御装置には予
めずれ量とディジタル値の関係が記憶されているので、
ずれ量だけプログラムが自動的に補正される。
In the high-precision machining apparatus 1 having the above configuration, the machining operation of the machining unit 3 is executed according to the NC machining program of the numerical controller 2. First, the special cylinder 4 is operated while the spindle 9 is returned to the return position, and the contact 5 is moved forward, so that the tip of the special contact 4 is brought into contact with the reference surface 17. As a result, X and Y direction sensors 6,7
Is closely opposed to the boundary of the N and S poles of the X and Y magnets 18, but if it is slightly deviated from the above boundary due to various displacements and accumulated errors, A corresponding analog output is generated and sent to the numerical controller 2. Specifically, the analog output corresponding to the deviation amount is digitally converted and sent to the numerical control device. Since the numerical control device stores the relationship between the deviation amount and the digital value in advance,
The program is automatically corrected by the amount of deviation.

これと平行して加工ユニット3はスピンドル9を回転さ
せながら、送り運動によつて前進し、刀具16を被加工物
13に接近させる。
In parallel with this, the processing unit 3 rotates the spindle 9 and moves forward by the feeding motion to move the sword tool 16 to the workpiece.
Get closer to 13.

この前進過程、すなわち、加工動作中の移動域で、接触
子5が基準面17に当接し停止しているZ方向センサー8
が第2の磁石12と対向するようになり、その磁極境界を
検出し、その検出信号を数値制御装置2に送る。
In this forward movement process, that is, in the movement range during the machining operation, the Z-direction sensor 8 in which the contact 5 comes into contact with the reference surface 17 and stops.
Comes to face the second magnet 12, detects the magnetic pole boundary thereof, and sends the detection signal to the numerical controller 2.

数値制御装置2は前記X,Y方向のずれ量だけ前記プログ
ラムを補正し、図示していないX,Y軸のサーボモータが
駆動制御されると共に前記Z方向センサーからの検出信
号に応答してプログラムスタート(所定加工の原点とし
て)させ、加工ユニット3を予め設定されている所定の
送り量だけ前進させることによって刀具16により被加工
物13に所定深さの切削加工を施す。
The numerical controller 2 corrects the program by the amount of deviation in the X and Y directions, and drives the X and Y axis servo motors (not shown) to drive the program and responds to the detection signal from the Z direction sensor to execute the program. By starting (as the origin of predetermined processing) and advancing the processing unit 3 by a predetermined predetermined feed amount, the workpiece 13 is cut by the sword tool 16 to a predetermined depth.

なおZ方向の検出方式としては環状磁石を使用した実願
昭60-61111号の方式を採用しても良い。
As the Z direction detecting method, the method of Japanese Patent Application No. 60-61111 using an annular magnet may be adopted.

またX,Y方向の検出方式としても、上記装置の如くX,Y方
向の検出値よりずれ量を検出する方式だけでなく、X,Y
方向センサーが完全に第2の磁石の境界と対向するよう
にX,Y軸のサーボモータを駆動して上記検出値に応じて
X,Y位置の補正を行なう方式を採用することもできる。
Also, the X, Y direction detection method is not limited to the method of detecting the amount of deviation from the detection values in the X, Y directions as in the above device,
Drive the X and Y axis servomotors so that the direction sensor completely faces the boundary of the second magnet, and
A method of correcting the X and Y positions can also be adopted.

さて、上述した構成及び動作の加工装置においては、前
述したようにX,Y磁石18の磁極の境界が空間では歪曲し
ていて、しかも検出位置(センサーの実際のトレース位
置)のずれが存在することにより検出誤差が大となる点
に鑑み、本考案ではこの点を改良すべくX,Y方向の位置
検出手段を成しているX,Y磁石18等を下記の如く構成す
る。
Now, in the processing apparatus having the above-described configuration and operation, the boundary between the magnetic poles of the X and Y magnets 18 is distorted in space as described above, and there is a deviation in the detection position (actual trace position of the sensor). In view of the fact that this causes a large detection error, in the present invention, in order to improve this point, the X, Y magnets 18 and the like forming the position detecting means in the X, Y directions are constructed as follows.

すなわち、第4図に示すように、磁性体(ヨーク)20を
使用し、その凹部平面21を形成し、この平面に第3図と
同様に例えば矩形平板状磁石部材22を4個異極同士つき
合せて貼付する。そしてその中心部に例えば厚さ1mm程
度の円形薄板状基準部材23(例えばセラミック等の非磁
性材)を貼付ける。上記磁石部材平面及び基準部材平面
(基準面)はX,Y平面と一致させてある。
That is, as shown in FIG. 4, a magnetic body (yoke) 20 is used to form a recessed flat surface 21, and four flat rectangular magnet members 22, for example, are formed on this flat surface as in FIG. Stick them together. Then, a circular thin plate-shaped reference member 23 (for example, a non-magnetic material such as ceramics) having a thickness of about 1 mm is attached to the central portion thereof. The magnet member plane and the reference member plane (reference plane) are aligned with the X and Y planes.

次に接触子5を、例えばジルコニア等の非磁性材で形成
し、基準部材23と対向するように配設し、また例えば、
その中心に孔24をあけ、非作動時にその孔から空気を噴
射することによりクリーニングできるようにすると便利
である。また90°ずらせて接触子5と一体に取付けてあ
るX,Y方向の2つの前記センサー6,7は接触子5の進出時
に対応磁極境界の中間部の横、例えばX方向,Y方向の境
界に対して200〜300μmずらした位置にくるようになつ
ている。ここで上記中間部とは磁極境界の両端から夫々
30%の長さを除いた部分が好適である。
Next, the contact 5 is formed of a non-magnetic material such as zirconia, and is disposed so as to face the reference member 23.
It is convenient to make a hole 24 in the center of the hole 24 so that it can be cleaned by injecting air from the hole when it is not in operation. Further, the two sensors 6 and 7 in the X and Y directions, which are mounted integrally with the contact 5 while being displaced by 90 °, are located next to the middle part of the corresponding magnetic pole boundary when the contact 5 is advanced, for example, the boundaries in the X and Y directions. The position is shifted by 200 to 300 μm. Here, the above-mentioned middle part is respectively from both ends of the magnetic pole boundary.
The portion excluding the length of 30% is preferable.

このような構成のX,Y方向の位置検出手段の検出誤差
(ずれ量)の補正動作は下記のステップで行なわれる
が、基本的には前述したものと同様である。
The correction operation of the detection error (deviation amount) of the position detecting means in the X and Y directions having such a configuration is performed in the following steps, but basically it is the same as that described above.

(i)接触子5を進出させて基準部材23の基準面にその
当接部を接触させる。(従って基準部材23の大きさは機
械として誤差の出る大きさ、例えば数値制御工作機械で
はせいぜい200μ程度であり、接触子5の先端径より1mm
位大きな径とすれば充分である。) (ii)加工ユニット3を0.1〜0.2mm程度戻して停止させ
る。この状態でX方向に300〜500μm程度加工ユニット
3を送り、X方向センサー出力位置を加工プログラムの
X方向原点とする。
(I) The contactor 5 is advanced to bring the contact portion into contact with the reference surface of the reference member 23. (Therefore, the size of the reference member 23 is a size that causes an error as a machine, for example, about 200 μ at most in a numerically controlled machine tool, and 1 mm from the tip diameter of the contact 5.
A large diameter is sufficient. (Ii) Return the processing unit 3 by about 0.1 to 0.2 mm and stop it. In this state, the machining unit 3 is fed in the X direction by about 300 to 500 μm, and the X direction sensor output position is set as the X direction origin of the machining program.

(iii)次にこの状態よりY方向に300〜500μm程度加
工ユニット3を送り、上記と同様にして加工プログラム
のY方向原点を決める。
(Iii) Next, from this state, the machining unit 3 is fed in the Y direction by about 300 to 500 μm, and the Y direction origin of the machining program is determined in the same manner as above.

[考案の効果] 以上説明した所から明らかなように本考案によれば、X,
Y方向の位置検出精度が格段に向上するので、±5μm
以上の高精度の加工を実現することができ、またこの検
出が効率化され時間短縮が図られる等実用上の効果顕著
である。
[Effects of the Invention] As is apparent from the above description, according to the present invention, X,
± 5 μm because the position detection accuracy in the Y direction is greatly improved
The above-described highly accurate processing can be realized, and the detection is made efficient and the time is shortened, which is a practical effect.

なお、前記磁石部材を第3図のようにして非磁性材から
なる基準部材も同形状としてもよい。また前記接触子の
X,Y方向の移動量は予測される最大ずれ量(機械の能力
により定まる)よりも少し大きな値とすればよく、前記
の例に限定されるものではない。
The magnet member may have the same shape as the reference member made of a non-magnetic material as shown in FIG. In addition, the contact
The amount of movement in the X and Y directions may be set to a value slightly larger than the predicted maximum amount of deviation (determined by the capability of the machine), and is not limited to the above example.

更にこのずれ量も上記測定法に限らず、例えば境界まで
の量にしてもよい。
Further, this deviation amount is not limited to the above measuring method, and may be an amount up to the boundary, for example.

その他、前記矩形磁石部材を用いる場合は、その一辺が
8mm以上のものを用いると歪みが少なく有利で、またこ
の歪みは磁石とセンサーとの対向距離の変化で大きく変
わるので、接触子のトレース時にこの距離が変化しない
ようにすることが検出精度上有利となる。
In addition, when using the rectangular magnet member, one side is
Use of 8 mm or more is advantageous because there is little distortion, and this distortion changes greatly with changes in the facing distance between the magnet and sensor, so it is advantageous in terms of detection accuracy that this distance does not change when tracing the contact. Becomes

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案が適用される高精度加工装置の概略を示
す側面図、第2図はその要部拡大図、第3図は上記装置
におけるX,Y磁石のマグネットパターンを例示する図、
第4図は本考案の一実施例を示す概略図である。 1……高精度加工装置、 2……数値制御装置、 5……接触子、 6,7,8……センサー、 13……被加工物、 15……支持部材、 17……基準、 18……X,Y磁石、 20……磁性体、 22……磁石部材、 23……基準部材。
FIG. 1 is a side view showing the outline of a high-precision machining device to which the present invention is applied, FIG. 2 is an enlarged view of the essential parts thereof, and FIG. 3 is a diagram illustrating the magnet pattern of X and Y magnets in the device,
FIG. 4 is a schematic view showing an embodiment of the present invention. 1 …… High-precision machining device, 2 …… Numerical control device, 5 …… Contact, 6,7,8 …… Sensor, 13 …… Workpiece, 15 …… Supporting member, 17 …… Reference, 18… … X, Y magnet, 20 …… Magnetic material, 22 …… Magnetic member, 23 …… Reference member.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】数値制御可能な加工ユニットに設けられて
いて、先端に当接部及び第1,第2の磁電変換素子を有す
る接触子と、この接触子の進退手段と、上記接触子の進
出時に上記当接部が接触する基準面を有する被加工物の
支持部材と、この支持部材に上記第1,第2の磁電変換素
子と対向して設けられていて、夫々X軸、Y軸の直交方
向に磁極の境界を有する第1の磁石と、Z軸方向の位置
検出用の第2の磁石と、を少なくとも備えた装置におい
て、上記支持部材に上記第1の磁石を保持する磁性体を
固定し、該磁性体の上記接触子と対向する側に平面を形
成し、この平面上に前記磁石として4個の板状磁石部材
を異極同士つき合わせて固定して直交方向の境界を形成
させ、上記第1の磁石上もしくは上記磁性体上に基準部
材を固定し、この基準部材に前記基準面を形成し、この
基準部材と前記接触子を非磁性材で形成するとともに、
上記接触子の当接部が上記基準面に接触している時に上
記第2の磁石と対向する第3の磁電変換素子を有するこ
とを特徴とする高精度加工装置。
1. A contactor which is provided in a numerically controllable processing unit and has an abutting portion and first and second magnetoelectric conversion elements at its tip, an advancing / retreating means of the contactor, and a contactor of the contactor. A support member for a workpiece having a reference surface with which the abutting portion contacts when advancing, and a support member provided on the support member so as to face the first and second magnetoelectric conversion elements, respectively. In a device including at least a first magnet having a boundary of magnetic poles in a direction orthogonal to the above, and a second magnet for position detection in the Z-axis direction, a magnetic body holding the first magnet on the support member. Is fixed, a flat surface is formed on the side of the magnetic body facing the contactor, and four plate-shaped magnet members as the magnets are fixed on the flat surface by attaching different poles to each other to form a boundary in the orthogonal direction. Then, a reference member is formed on the first magnet or the magnetic body, and the base member is formed. The reference surface is formed on the quasi member, and the reference member and the contact are formed of a non-magnetic material,
A high-precision machining apparatus comprising a third magnetoelectric conversion element facing the second magnet when the contact portion of the contactor is in contact with the reference surface.
JP1986060429U 1986-04-21 1986-04-21 High precision processing equipment Expired - Lifetime JPH0647635Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1986060429U JPH0647635Y2 (en) 1986-04-21 1986-04-21 High precision processing equipment
US07/040,523 US4784541A (en) 1986-04-21 1987-04-17 High-precision equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986060429U JPH0647635Y2 (en) 1986-04-21 1986-04-21 High precision processing equipment

Publications (2)

Publication Number Publication Date
JPS62172545U JPS62172545U (en) 1987-11-02
JPH0647635Y2 true JPH0647635Y2 (en) 1994-12-07

Family

ID=30892832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986060429U Expired - Lifetime JPH0647635Y2 (en) 1986-04-21 1986-04-21 High precision processing equipment

Country Status (1)

Country Link
JP (1) JPH0647635Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4319270B2 (en) * 1998-08-25 2009-08-26 武蔵エンジニアリング株式会社 Object position detection method and position detection apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856912B2 (en) * 1981-04-06 1983-12-17 株式会社 マコメ研究所 2D magnetic scale device
JPS6116254U (en) * 1984-07-03 1986-01-30 株式会社三協精機製作所 Transfer type processing equipment

Also Published As

Publication number Publication date
JPS62172545U (en) 1987-11-02

Similar Documents

Publication Publication Date Title
US4784541A (en) High-precision equipment
US9658610B2 (en) Displacement and position measurement in machine tool
US4881021A (en) Numerical control equipment
JP4172614B2 (en) Ball screw feed drive correction method
JPH0647635Y2 (en) High precision processing equipment
JP3405744B2 (en) Measuring method of workpiece and time-dependent change in machine tool
JPH0239720Y2 (en)
JPH0354834Y2 (en)
JPS6331877Y2 (en)
JP2004322255A (en) Machine tool with straight line position measuring instrument
JPH08174320A (en) Device and method for machining up to fixed depth
JPS6258850B2 (en)
JPH0730266Y2 (en) High precision processing equipment
JP5531640B2 (en) Feed control device for machine tools
CN115516389A (en) Processing method
JP2001239440A (en) Machining center
JPH0647631Y2 (en) High precision processing equipment
JPH10254520A (en) Original point returning method for nc control axis
JPH02109662A (en) Correction of detection error of tracer head
JPS624438Y2 (en)
JP2001300801A (en) Control method of nc lathe
JPH0577058A (en) Measurement instrument for spot welding coordinate in spot welding system
JPH0426975B2 (en)
JPH11119816A (en) Precise groove machining device
JPH04146046A (en) Thermal displacement correction device for lathe