JPH0646866A - Gene capable of coding thermoduric carboxypeptidase and production of thermoduric carboxypeptidase using the same - Google Patents

Gene capable of coding thermoduric carboxypeptidase and production of thermoduric carboxypeptidase using the same

Info

Publication number
JPH0646866A
JPH0646866A JP22450592A JP22450592A JPH0646866A JP H0646866 A JPH0646866 A JP H0646866A JP 22450592 A JP22450592 A JP 22450592A JP 22450592 A JP22450592 A JP 22450592A JP H0646866 A JPH0646866 A JP H0646866A
Authority
JP
Japan
Prior art keywords
leu
carboxypeptidase
ala
glu
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22450592A
Other languages
Japanese (ja)
Inventor
Takahisa Ota
隆久 太田
Hiroshi Matsuzawa
洋 松澤
Hayao Taguchi
速男 田口
Naonori Ri
尚▲玄▼ 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOTSUBA NYUGYO KK
Original Assignee
YOTSUBA NYUGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOTSUBA NYUGYO KK filed Critical YOTSUBA NYUGYO KK
Priority to JP22450592A priority Critical patent/JPH0646866A/en
Publication of JPH0646866A publication Critical patent/JPH0646866A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a new DNA sequence useful for producing a thermoduric carboxypeptidase. CONSTITUTION:The objective gene is a DNA sequence coding a thermoduric carboxypeptidase derived from a microorganism which is a highly thermophilic bacterium of the genus Thermus and capable of coding, e.g. an amino acid sequence of the formula. This gene is obtained by estimating and synthesizing a DNA sequence capable of coding the carboxypeptidase from 29 residues of an amino acid sequence on the N-terminal side of the thermoduric carboxypeptidase, using the resultant oligonucleotide as a probe, obtaining a DNA fragment containing the thermoduric carboxypeptidase from a chromosomic DNA of Thermus.aquaticus YT-1 strain which is a microorganism belonging to the genus Thermus and cloning the resultant DNA fragment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性カルボキシペプ
チダーゼをコードする遺伝子及びそれを用いた耐熱性カ
ルボキシペプチダーゼの生産方法に関し、詳しくは高度
好熱細菌サーマス(Thermus)属に属する微生物が生産す
る耐熱性カルボキシペプチダーゼをコードするDNA配
列及びそのDNA配列を用いて当該耐熱性カルボキシペ
プチダーゼを生産する方法に関するものである。
TECHNICAL FIELD The present invention relates to a gene encoding a thermostable carboxypeptidase and a method for producing a thermostable carboxypeptidase using the same, and more specifically, it is produced by a microorganism belonging to the genus Thermus The present invention relates to a DNA sequence encoding a thermostable carboxypeptidase and a method for producing the thermostable carboxypeptidase using the DNA sequence.

【0002】本発明のDNA配列でコードされるカルボ
キシペプチダーゼは、至適温度が70℃から80℃とい
う、強い耐熱性を示し、非常に安定性が高い。そのた
め、この酵素は食品加工用あるいはタンパク質,ペプチ
ド等のカルボキシル末端の分析用の試薬などとして極め
て有用なものである。
The carboxypeptidase encoded by the DNA sequence of the present invention exhibits strong thermostability with an optimum temperature of 70 ° C. to 80 ° C. and is extremely stable. Therefore, this enzyme is extremely useful as a reagent for food processing or for analysis of carboxyl terminal of proteins, peptides and the like.

【0003】[0003]

【従来の技術】カルボキシペプチダーゼは、タンパク
質,ペプチド等のカルボキシル末端側のアミノ酸残基を
遊離させる酵素であり、この酵素は微生物,植物,動物
等から分離、精製されている。また、この酵素は、その
触媒活性の発現の違いによりセリンカルボキシペプチダ
ーゼ,メタロカルボキシペプチダーゼ,システインカル
ボキシペプチダーゼ等に分類されている。しかし、その
遺伝子のDNA配列が決定されたものは少数であり、特
に耐熱性カルボキシペプチダーゼをコードするDNA配
列について報告された例はまだない。
2. Description of the Related Art Carboxypeptidase is an enzyme that releases an amino acid residue on the carboxyl terminal side of proteins, peptides, etc. This enzyme has been isolated and purified from microorganisms, plants, animals and the like. In addition, this enzyme is classified into serine carboxypeptidase, metallocarboxypeptidase, cysteine carboxypeptidase and the like according to the difference in expression of its catalytic activity. However, the DNA sequence of the gene has been determined in a few cases, and no report has been made particularly on the DNA sequence encoding thermostable carboxypeptidase.

【0004】[0004]

【発明が解決しようとする課題】サーマス属に属する微
生物に由来するカルボキシペプチダーゼは、菌体内に微
量しか存在せず、その分離、精製には多大の労力を要す
るため、他の起源のものに比し経済的に不利であった。
この耐熱性カルボキシペプチダーゼを効率的に生産し、
精製し易くするためには、遺伝子工学的手法による生産
が理想的である。しかし、前記の如く、サーマス属に属
する微生物に由来するカルボキシペプチダーゼをコード
するDNA配列については、未だ報告されていない。本
発明の目的は、高度好熱細菌であるサーマス属に属する
微生物に由来する耐熱性カルボキシペプチダーゼをコー
ドする遺伝子のDNA配列を決定し、これを利用してカ
ルボキシペプチダーゼの遺伝子工学的手法による生産を
可能とし、耐熱性カルボキシペプチダーゼを効率よく生
産する方法を確立することである。
Carboxypeptidases derived from microorganisms belonging to the genus Thermus, which are present in only a trace amount in the microbial cells, require a great deal of labor for their isolation and purification, and thus are more difficult than those of other sources. It was economically disadvantageous.
Efficiently produce this thermostable carboxypeptidase,
In order to facilitate purification, production by a genetic engineering method is ideal. However, as described above, a DNA sequence encoding a carboxypeptidase derived from a microorganism belonging to the genus Thermus has not been reported yet. The object of the present invention is to determine the DNA sequence of a gene encoding a thermostable carboxypeptidase derived from a microorganism belonging to the genus Thermus, which is an extremely thermophilic bacterium, and use this to determine the production of carboxypeptidase by genetic engineering techniques. It is to establish a method for enabling efficient production of thermostable carboxypeptidase.

【0005】また、本発明により明らかにされた耐熱性
カルボキシペプチダーゼをコードするDNA配列を含む
DNA断片あるいはオリゴヌクレオチドをプローブ(探
索子)として他のサーマス属に属する微生物あるいは近
縁の他属の生物のカルボキシペプチダーゼをクローニン
グすることが可能となる。
A microorganism belonging to another Thermus genus or an organism of another closely related genus using a DNA fragment or an oligonucleotide containing a DNA sequence encoding a thermostable carboxypeptidase revealed by the present invention as a probe (searcher). It becomes possible to clone the carboxypeptidase of.

【0006】[0006]

【課題を解決するための手段】本発明者らは、すでに耐
熱性カルボキシペプチダーゼを精製し、その性質を決定
することに成功している(特開昭63−21648号公
報)。その後、さらに研究を重ねた結果、耐熱性カルボ
キシペプチダーゼのN−末端側のアミノ酸配列29残基
を決定することに成功した。このアミノ酸配列から、カ
ルボキシペプチダーゼをコードするDNA配列を推定
し、オリゴヌクレオチドを合成した。このオリゴヌクレ
オチドをプローブとして用い、サーマス属に属する微生
物であるサーマス・アクアティカス(T.aquaticus)YT-1
株の染色体DNAから、耐熱性カルボキシペプチダーゼ
遺伝子(以下、カルボキシペプチダーゼTと称すること
がある。)を含むDNA断片を分離することに成功し
た。
The present inventors have already succeeded in purifying thermostable carboxypeptidase and determining its properties (JP-A-63-21648). After that, as a result of further research, we succeeded in determining 29 residues of the amino acid sequence on the N-terminal side of thermostable carboxypeptidase. From this amino acid sequence, a DNA sequence encoding carboxypeptidase was deduced and an oligonucleotide was synthesized. Using this oligonucleotide as a probe, a microorganism belonging to the genus Thermus, Thermus aquaticus (T. aquaticus) YT-1
A DNA fragment containing a thermostable carboxypeptidase gene (hereinafter sometimes referred to as carboxypeptidase T) was successfully isolated from the chromosomal DNA of the strain.

【0007】また、そのDNA断片中のカルボキシペプ
チダーゼTをコードする全DNA配列を決定することが
できた。さらに、この解明したDNA配列を参考にし
て、カルボキシペプチダーゼT遺伝子を組込んだプラス
ミドを作製し、このプラスミドを用いて形質転換した大
腸菌を用い、耐熱性カルボキシペプチダーゼを極めて効
率的に生産する方法を見出した。本発明はかかる知見に
基づいて完成さたものである。
It was also possible to determine the entire DNA sequence coding for carboxypeptidase T in the DNA fragment. Furthermore, referring to this elucidated DNA sequence, a method for producing a plasmid into which the carboxypeptidase T gene has been incorporated and using E. coli transformed with this plasmid to produce a heat-resistant carboxypeptidase extremely efficiently is provided. I found it. The present invention has been completed based on such findings.

【0008】すなわち、本発明は高度好熱細菌サーマス
属微生物由来の耐熱性カルボキシペプチダーゼをコード
しているDNA配列並びに当該DNA配列を含むDNA
断片を有するプラスミドにより形質転換した形質転換体
を用いることを特徴とする耐熱性カルボキシペプチダー
ゼの生産方法を提供するものである。
That is, the present invention relates to a DNA sequence encoding a thermostable carboxypeptidase derived from a microorganism of the genus Thermus of the extreme thermophile and a DNA containing the DNA sequence.
The present invention provides a method for producing thermostable carboxypeptidase, which comprises using a transformant transformed with a plasmid having a fragment.

【0009】本発明に用いる高度好熱細菌サーマス属に
属する微生物として、例えばサーマス・アクアティカス
YT−1株がある。本菌株はアメリカン タイプカルチ
ャーコレクションにATCC25104として寄託され
ており、何人も入手可能である(American Type Cultur
e Collection,Catalogue of Bacteria and Phages17th
ed. 1989 参照)。
The microorganism belonging to the genus Thermus of the highly thermophilic bacterium used in the present invention is, for example, Thermus aquaticus YT-1 strain. This strain has been deposited with the American Type Culture Collection as ATCC 25104 and is available to many (American Type Cultur
e Collection, Catalogue of Bacteria and Phages17th
ed. 1989).

【0010】本発明のカルボキシペプチダーゼTのDN
A配列は次のように決定できる。 (1)カルボキシペプチダーゼTの遺伝子のクローニン
グ 本発明にかかわるクローニング手法は、例えばJ. Sambr
ook, E.F.Fritsch, T.Maniatis(ed.), "Molecular Clon
ing:A Laboratory Manual, 2nd edition", Cold Spring
Harbor Laboratory Press, 1989等に詳しく紹介されて
おり、何人も実行可能である。また、本発明に用いた菌
株, プラスミドベクター及び酵素類等の材料は容易に入
手可能である。
DN of carboxypeptidase T of the present invention
The A sequence can be determined as follows. (1) Cloning of gene for carboxypeptidase T Cloning techniques according to the present invention include, for example, J. Sambr
ook, EFFritsch, T. Maniatis (ed.), "Molecular Clon
ing: A Laboratory Manual, 2nd edition ", Cold Spring
It is introduced in detail in Harbor Laboratory Press, 1989, etc., and can be executed by any number of people. In addition, materials such as strains, plasmid vectors and enzymes used in the present invention are easily available.

【0011】まず、サーマス・アクアティカスYT−1
を培養して菌体を回収する。菌体から全菌体DNAを常
法により抽出する。次いで、適当な制限酵素で切断し、
アガロースゲル電気泳動を実施する。これをサザントラ
ンスファー〔E.M..Southern,J. Biol. Chem. 98. 508
(1975 )〕により、メンブランに移行させる。一方、精
製したカルボキシペプチダーゼTのN−末端側のアミノ
酸配列を参考にして合成したオリゴヌクレオチドをプロ
ーブとしてハイブリダイゼーションを実施し、プローブ
が特異的にハイブリダイズするバンドを検出する。この
特異的にハイブリダイズしたバンドに相当するDNA断
片をゲルから抽出し、適当なプラスミドベクターに挿入
し、このプラスミドを大腸菌に導入して形質転換する。
次に、コロニーハイブリダイゼーションにより、前記の
プローブと特異的にハイブリダイズするコロニーを鈎菌
し、これらの中からプラスミドを抽出する。これらのプ
ラスミドを分析し、制限酵素地図を作製する。
First, Thermus aquaticus YT-1
The cells are cultured to collect the bacterial cells. Total bacterial cell DNA is extracted from the bacterial cells by a conventional method. Then, cut with an appropriate restriction enzyme,
Perform agarose gel electrophoresis. This was transferred to Southern transfer [EM. Southern, J. Biol. Chem. 98. 508].
(1975)] to transfer to the membrane. On the other hand, hybridization is carried out using an oligonucleotide synthesized with reference to the amino acid sequence on the N-terminal side of purified carboxypeptidase T as a probe, and a band to which the probe specifically hybridizes is detected. A DNA fragment corresponding to this specifically hybridized band is extracted from the gel, inserted into an appropriate plasmid vector, and this plasmid is introduced into Escherichia coli for transformation.
Next, by colony hybridization, colonies that specifically hybridize with the above-mentioned probe are inoculated, and a plasmid is extracted from them. These plasmids are analyzed to create a restriction map.

【0012】(2)カルボキシペプチダーゼT遺伝子の
DNA配列の決定 以上のようにして得られたプラスミドのうち、カルボキ
シペプチダーゼT遺伝子を含んでいる領域について塩基
配列を決定する。この配列からアミノ酸配列を推定し、
それと天然物のカルボキシペプチダーゼTのアミノ酸配
列と比較することによって確認する。
(2) Determination of DNA sequence of carboxypeptidase T gene The nucleotide sequence of the region containing the carboxypeptidase T gene in the plasmid obtained as described above is determined. Deduce the amino acid sequence from this sequence,
It is confirmed by comparing it with the amino acid sequence of carboxypeptidase T of natural product.

【0013】(3)カルボキシペプチダーゼTの遺伝子
工学的生産 このようにして得られたカルボキシペプチダーゼTの遺
伝子配列の知見に基づいて、カルボキシペプチダーゼT
遺伝子部分を適当な市販の発現ベクターに組み込み、該
プラスミドを導入した形質転換体を用いてカルボキシペ
プチダーゼTを生産することができる。
(3) Genetically engineered production of carboxypeptidase T Based on the knowledge of the gene sequence of carboxypeptidase T thus obtained, carboxypeptidase T
Carboxypeptidase T can be produced by incorporating the gene portion into an appropriate commercially available expression vector and using the transformant introduced with the plasmid.

【0014】[0014]

【実施例】以下、実施例を挙げて本発明をさらに具体的
に説明する。 実施例1 <カルボキシペプチダーゼTの精製とN−末端アミノ酸
配列の決定>カルボキシペプチダーゼTの精製は特開昭
63−216481号公報及び特願平3−208748
号明細書に示した方法で行うことができる。このように
精製したカルボキシペプチダーゼTをプロテインシーケ
ンサーを用いて、N−末端から29残基のアミノ酸配列
を決定することができた(図1)。
EXAMPLES The present invention will be described in more detail below with reference to examples. Example 1 <Purification of carboxypeptidase T and determination of N-terminal amino acid sequence> Purification of carboxypeptidase T is described in JP-A-63-216481 and Japanese Patent Application No. 3-208748.
It can be carried out by the method shown in the specification. The thus-purified carboxypeptidase T could be used to determine the amino acid sequence of 29 residues from the N-terminus using a protein sequencer (FIG. 1).

【0015】実施例2 <オリゴヌクレオチドプローブの合成>実施例1で決定
したアミノ酸配列から、それをコードすると予想される
DNA配列を推定し、DNA合成機を用いて2種類の混
合オリゴヌクレオチドを合成した。合成の際には、今ま
でに報告されているサーマス属細菌のコドン使用法を参
考にした(図1)。
Example 2 <Synthesis of Oligonucleotide Probe> From the amino acid sequence determined in Example 1, a DNA sequence predicted to encode it was deduced, and two kinds of mixed oligonucleotides were synthesized using a DNA synthesizer. did. In the synthesis, the codon usage method of the Thermus bacteria reported so far was referred to (FIG. 1).

【0016】実施例3 <サザンハイブリダイゼーション>サーマス・アクアテ
ィカスYT−1のDNAを3種類の制限酵素でそれぞれ
切断し、常法に従い実施例2で示したプローブを用いて
サザンハイブリダイゼーションを実施した。その結果、
合成した2種類のプローブのいずれとも、Hind IIIの約
4.3kbp, BamHIの約6.3kbp のDNA断片にハイブリッ
ドバンドを示した(図2)。
Example 3 <Southern hybridization> The DNA of Thermus aquaticus YT-1 was cleaved with each of three types of restriction enzymes, and Southern hybridization was carried out using the probe shown in Example 2 according to a conventional method. . as a result,
For both of the two types of synthesized probes, Hind III
A hybrid band was shown in a DNA fragment of 4.3 kbp and about 6.3 kbp of BamHI (Fig. 2).

【0017】実施例4 <カルボキシペプチダーゼT遺伝子を含む断片のクロー
ン化>サーマス・アクアティカスYT−1のDNAをHi
nd IIIで切断し、常法に従いアガロースゲル電気泳動を
実施した。ゲルから約4.3kbp 付近のDNA断片を抽出
し、ベクタープラスミドpBR322(市販品)のHind III部
位に挿入した。こうして得られたDNAを用いて大腸菌
HB101 株を形質転換した。次いで、この大腸菌について
コロニーハイブリダイゼーションを行った結果、約75
0個のコロニーの中で3個が特異的なハイブリダイズを
示した。これらの3株からプラスミドを抽出し、Hind I
IIで分解後、サザンハイブリダイゼーションを行ったと
ころ、そのうち2個が合成した2種類のプラスミドのい
ずれともハイブリダイズすることが確認された。これら
は同一の構造をもち、このプラスミドをプラスミドpCP
と命名した(図3)。
Example 4 <Cloning of Fragment Containing Carboxypeptidase T Gene> Thermus aquaticus YT-1 DNA was cloned into Hi.
It was cut with nd III and subjected to agarose gel electrophoresis according to a conventional method. A DNA fragment of about 4.3 kbp was extracted from the gel and inserted into the HindIII site of vector plasmid pBR322 (commercial product). E. coli using the DNA thus obtained
The HB101 strain was transformed. Then, colony hybridization was performed on this E. coli, and as a result, about 75
Of the 0 colonies, 3 showed specific hybridization. Plasmids were extracted from these 3 strains and Hind I
After degradation with II, Southern hybridization was performed, and it was confirmed that two of them hybridized with both of the two types of synthesized plasmids. They have the same structure.
(Fig. 3).

【0018】実施例5 <カルボキシペプチダーゼT遺伝子の塩基配列の決定>
実施例4で得られたカルボキシペプチダーゼT遺伝子を
含むDNA断片を様々な制限酵素で切断し、常法に従い
制限酵素地図を作製した(図4)。一方、実施例2で作
製した合成オリゴヌクレオチドプローブを用いてサザン
ハイブリダイゼーションを実施し、プローブとハイブリ
ダイズする約1kbp のSmaI 断片についてDNA断片の
塩基配列を決定したところ、カルボキシペプチダーゼT
のN−末端アミノ酸配列をコードしていることが明らか
となった。カルボキシペプチダーゼTの分子量から予想
される構造遺伝子の全長は約1.8kbp であり、この約4.
3kbp のHind III断片にカルボキシペプチダーゼT遺伝
子の全領域が含まれていることが明らかとなった。
Example 5 <Determination of nucleotide sequence of carboxypeptidase T gene>
The DNA fragment containing the carboxypeptidase T gene obtained in Example 4 was cleaved with various restriction enzymes and a restriction enzyme map was prepared according to a conventional method (FIG. 4). On the other hand, Southern hybridization was carried out using the synthetic oligonucleotide probe prepared in Example 2, and the nucleotide sequence of the DNA fragment was determined for the SmaI fragment of about 1 kbp that hybridizes with the probe. As a result, carboxypeptidase T
It was revealed that it encodes the N-terminal amino acid sequence of. The total length of the structural gene predicted from the molecular weight of carboxypeptidase T is about 1.8 kbp.
It was revealed that the 3 kbp HindIII fragment contained the entire region of the carboxypeptidase T gene.

【0019】そこで、常法に従いカルボキシペプチダー
ゼTの構造遺伝子部分の全DNA配列を決定した。配列
表の配列番号2にカルボキシペプチダーゼTの構造遺伝
子のDNA配列及びそれから推定されるアミノ酸配列を
示した。推定されるアミノ酸配列から、開始コドンがA
TGではなくGTGになっていること、N−末端から最
初の29残基までのアミノ酸配列は、天然物カルボキシ
ペプチダーゼTの精製標品から決定したN−末端アミノ
酸配列と同一であることを確認した。また、カルボキシ
ペプチダーゼTは511個のアミノ酸に相当する塩基に
よりコードされていることが明らかとなった。推定され
る分子量は57950ダルトンであった。
Therefore, the total DNA sequence of the structural gene portion of carboxypeptidase T was determined by a conventional method. The DNA sequence of the structural gene of carboxypeptidase T and the amino acid sequence deduced therefrom are shown in SEQ ID NO: 2 in the sequence listing. From the deduced amino acid sequence, the start codon is A
It was confirmed that it was GTG instead of TG, and that the amino acid sequence from the N-terminal to the first 29 residues was the same as the N-terminal amino acid sequence determined from the purified preparation of natural product carboxypeptidase T. . Further, it was revealed that carboxypeptidase T was encoded by a base corresponding to 511 amino acids. The estimated molecular weight was 57950 Daltons.

【0020】実施例6 <カルボキシペプチダーゼT遺伝子の大腸菌での発現>
実施例5で示した本酵素の塩基配列を参考にして、開始
コドンのすぐ上流にEcoRI サイトを導入し、同時に開始
コドンをGTGからATGに置換するために36−mer
のオリゴヌクレオチドを合成し、クンケル法で部位特異
的突然変異を行った。こうして得られた変異DNAをEc
oRI とHind IIIで切断し、生じた約3.3kbp のDNA断
片を発現プラスミドpEXP7 の同制限酵素部位に挿入し
た。その結果、大腸菌で高発現が期待できるtac プロモ
ーターのすぐ下流に本酵素の遺伝子をもつ約7kbp の発
現ベクタープラスミドpCP7を構築した(図5)。
Example 6 <Expression of carboxypeptidase T gene in Escherichia coli>
Referring to the nucleotide sequence of the present enzyme shown in Example 5, an EcoRI site was introduced immediately upstream of the start codon, and at the same time, a 36-mer was used to replace the start codon with GTG instead of ATG.
Was synthesized and site-directed mutagenesis was performed by the Kunkel method. The mutated DNA obtained in this way was Ec
After cutting with oRI and HindIII, the resulting DNA fragment of about 3.3 kbp was inserted into the same restriction enzyme site of the expression plasmid pEXP7. As a result, an expression vector plasmid pCP7 of about 7 kbp having the gene for this enzyme immediately downstream of the tac promoter, which is expected to be highly expressed in Escherichia coli, was constructed (Fig. 5).

【0021】このプラスミドpCP7を用いて大腸菌MV 118
4 株を形質転換した。このプラスミドpCP7をもつ大腸菌
をLB培地1.5リットルに植菌し、37℃で3時間培養
後、IPTG(Isopropyl β-D-thiogalactopyranoside) を
用いて誘導し、さらに37℃で3時間培養した。次い
で、遠心分離を行って菌体を回収し、超音波処理で菌体
を破砕した。しかる後、熱処理(70℃、1時間)し、
さらに遠心分離して上清を回収した。大腸菌由来の蛋白
質は熱変性し、遠心分離により沈澱物となって大部分除
去される。この上清をブチルトヨパール、Mono Qカラム
クロマトグラフィーによって精製した。精製の各段階で
得られた画分に対する精製表を第1表に示した。また、
各画分のSDS電気泳動の結果を図6に示した。
Using this plasmid pCP7, E. coli MV 118
Four strains were transformed. Escherichia coli having this plasmid pCP7 was inoculated into 1.5 liters of LB medium, cultured at 37 ° C for 3 hours, induced with IPTG (Isopropyl β-D-thiogalactopyranoside), and further cultured at 37 ° C for 3 hours. Then, centrifugation was performed to collect the cells, and the cells were disrupted by ultrasonic treatment. After that, heat treatment (70 ° C, 1 hour),
After further centrifugation, the supernatant was recovered. Proteins derived from Escherichia coli are heat-denatured and are mostly removed as a precipitate by centrifugation. The supernatant was purified by Butyl Toyopearl, Mono Q column chromatography. Table 1 shows the purification table for the fractions obtained at each stage of purification. Also,
The results of SDS electrophoresis of each fraction are shown in FIG.

【0022】[0022]

【表1】 [Table 1]

【0023】最終段階のMono Q画分はサーマス・アクア
ティカスYT−1菌体からの精製標品とほぼ同じ比活性
を示し、50%以上の収率で1.5リットルの培養液に対
して2.8mgのカルボキシペプチダーゼ標品が得られた。
また、常温菌である大腸菌を宿主として生産させた場
合、70℃の加熱処理で大腸菌由来の蛋白質を大部分除
去できることが示された。また、このMono Q画分はSD
S電気泳動でサーマス・アクアティカスからの精製標品
とほぼ同じ位置で単一バンドを示し、天然物と同じ分子
量をもち、高い純度のものであることが示された。
The final-stage Mono Q fraction showed almost the same specific activity as that of the purified preparation from Thermus aquaticus YT-1 cells, and was obtained in a yield of 50% or more for 1.5 liters of culture solution. 2.8 mg of carboxypeptidase preparation was obtained.
Further, it was shown that when Escherichia coli, which is a room temperature bacterium, is produced as a host, most of the Escherichia coli-derived protein can be removed by heat treatment at 70 ° C. Also, this Mono Q fraction is SD
S-electrophoresis showed a single band at almost the same position as the purified standard product from Thermus aquaticus, which had the same molecular weight as the natural product and was of high purity.

【0024】[0024]

【発明の効果】本発明によって、サーマス属に属するサ
ーマス・アクアティカスYT−1由来の耐熱性カルボキ
シペプチダーゼをコードする遺伝子のDNA配列及びそ
れから推定されるアミノ酸配列が明らかになった。ま
た、本発明により、遺伝子工学的手法で耐熱性カルボキ
シペプチダーゼを大量生産する製造方法がはじめて提供
され、従来のサーマス属菌体から分離・精製するより
も、極めて効率よく、かつ経済的にカルボキシペプチダ
ーゼを生産することが可能となった。
INDUSTRIAL APPLICABILITY The present invention has revealed the DNA sequence of a gene encoding a thermostable carboxypeptidase derived from Thermus aquaticus YT-1 belonging to the genus Thermus and the amino acid sequence deduced therefrom. Further, according to the present invention, a production method for mass-producing a thermostable carboxypeptidase by a genetic engineering method is provided for the first time, and the carboxypeptidase is extremely efficiently and economically isolated and isolated from conventional Thermus cells. It has become possible to produce.

【0025】また、本発明のDNA配列をもつDNA断
片をプローブとし、他のサーマス属菌種あるいはサーマ
ス属と近縁の他属の生物のカルボキシペプチダーゼ遺伝
子をクローニングすることも可能である。
It is also possible to use the DNA fragment having the DNA sequence of the present invention as a probe to clone the carboxypeptidase gene of other species of Thermus species or organisms of other genus closely related to Thermus genus.

【0026】[0026]

【配列表】[Sequence list]

配列番号:1 配列の長さ:511 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 Met Thr Pro Glu Ala Ala Tyr Gln Asn Leu Leu Glu Phe Gln Arg Glu 1 5 10 15 Thr Ala Tyr Leu Gly Ser Leu Gly Ala Leu Ala Ala Trp Asp Gln Arg 20 25 30 Thr Met Ile Pro Arg Lys Gly His Gly His Arg Ala Arg Gln Met Ala 35 40 45 Ala Leu Ala Arg Leu Leu His Glu Arg Ala Thr Asp Pro Arg Ile Gly 50 55 60 Glu Trp Leu Glu Lys Val Glu Gly Ser Ser Leu Val Glu Asp Pro Leu 65 70 75 80 Ser Asp Ala Ala Val Asn Val Arg Ala Trp Arg Arg Ala Tyr Glu Arg 85 90 95 Ala Arg Ala Ile Pro Glu Arg Leu Ala Val Glu Leu Ala Gln Ala Arg 100 105 110 Ser Glu Gly Glu Thr Ala Trp Glu Ala Leu Arg Pro Arg Asp Asp Trp 115 120 125 Gln Gly Phe Leu Pro Tyr Leu Lys Arg Leu Phe Ala Leu Ala Lys Glu 130 135 140 Glu Ala Glu Ile Leu Met Ala Val Gly Pro Asp Pro Leu Asp Pro Pro 145 150 155 160 Tyr Gly Glu Leu Tyr Asp Ala Leu Leu Asp Gly Tyr Glu Pro Gly Ala 165 170 175 Arg Ala Arg Asp Leu Glu Pro Leu Phe Arg Glu Leu Ser Ser Gly Leu 180 185 190 Lys Gly Leu Leu Asp Arg Ile Leu Gly Ser Gly Arg Arg Pro Asp Val 195 200 205 Gly Val Leu His Arg His Tyr Pro Lys Glu Ala Gln Arg Ala Phe Ala 210 215 220 Leu Glu Leu Leu Gln Ala Cys Gly Tyr Asp Leu Glu Ala Gly Arg Leu 225 230 235 240 Asp Pro Thr Ala His Pro Phe Glu Ile Ala Ile Gly Pro Gly Asp Val 245 250 255 Arg Ile Thr Thr Arg Tyr Tyr Glu Asp Phe Phe Asn Ala Gly Ile Phe 260 265 270 Gly Thr Leu His Glu Met Gly His Ala Leu Tyr Glu Gln Gly Leu Pro 275 280 285 Glu Ala His Trp Gly Thr Pro Arg Gly Glu Ala Ala Ser Leu Gly Val 290 295 300 His Glu Ser Gln Ser Arg Thr Trp Glu Asn Leu Val Gly Arg Ser Leu 305 310 315 320 Gly Phe Trp Glu Arg Phe Phe Pro Arg Ala Lys Glu Val Phe Ser Ser 325 330 335 Leu Ala Asp Val Arg Leu Glu Asp Phe His Phe Ala Val Asn Ala Val 340 345 350 Glu Pro Ser Leu Ile Arg Val Glu Ala Asp Glu Val Thr Tyr Asn Leu 355 360 365 His Ile Leu Val Arg Leu Glu Leu Glu Leu Ala Leu Phe Arg Gly Glu 370 375 380 Leu Phe Leu Glu Asp Leu Pro Glu Ala Trp Arg Glu Lys Tyr Arg Ala 385 390 395 400 Tyr Leu Gly Val Ala Pro Arg Asp Tyr Lys Asp Gly Val Met Gln Asp 405 410 415 Val His Trp Ser Gly Gly Met Phe Gly Tyr Phe Pro Thr Tyr Thr Leu 420 425 430 Gly Asn Leu Tyr Ala Ala Gln Phe Phe Ala Lys Ala Gln Glu Glu Leu 435 440 445 Gly Pro Leu Glu Pro Leu Phe Ala Arg Gly Glu Phe Thr Pro Phe Leu 450 455 460 Asp Trp Thr Arg Arg Lys Ile His Ala Glu Gly Ser Arg Phe Arg Pro 465 470 475 480 Arg Ala Leu Val Glu Arg Val Thr Gly Ser Pro Pro Gly Ala Gln Ala 485 490 495 Phe Leu Arg Tyr Leu Glu Ala Lys Tyr Gly Ala Leu Tyr Gly Phe 500 505 510  SEQ ID NO: 1 Sequence length: 511 Sequence type: Amino acid Topology: Linear Sequence type: Protein sequence Met Thr Pro Glu Ala Ala Tyr Gln Asn Leu Leu Glu Phe Gln Arg Glu 1 5 10 15 Thr Ala Tyr Leu Gly Ser Leu Gly Ala Leu Ala Ala Trp Asp Gln Arg 20 25 30 Thr Met Ile Pro Arg Lys Gly His Gly His Arg Ala Arg Gln Met Ala 35 40 45 Ala Leu Ala Arg Leu Leu His Glu Arg Ala Thr Asp Pro Arg Ile Gly 50 55 60 Glu Trp Leu Glu Lys Val Glu Gly Ser Ser Leu Val Glu Asp Pro Leu 65 70 75 80 Ser Asp Ala Ala Val Asn Val Arg Ala Trp Arg Arg Ala Tyr Glu Arg 85 90 95 Ala Arg Ala Ile Pro Glu Arg Leu Ala Val Glu Leu Ala Gln Ala Arg 100 105 110 Ser Glu Gly Glu Thr Ala Trp Glu Ala Leu Arg Pro Arg Asp Asp Trp 115 120 125 Gln Gly Phe Leu Pro Tyr Leu Lys Arg Leu Phe Ala Leu Ala Lys Glu 130 135 140 Glu Ala Glu Ile Leu Met Ala Val Gly Pro Asp Pro Leu Asp Pro Pro 145 150 155 160 Tyr Gly Glu Leu Tyr Asp Ala Leu Leu Asp Gly Tyr Glu Pro Gly Ala 165 170 175 Arg Ala Arg Asp Leu Glu Pro Le u Phe Arg Glu Leu Ser Ser Gly Leu 180 185 190 Lys Gly Leu Leu Asp Arg Ile Leu Gly Ser Gly Arg Arg Pro Asp Val 195 200 205 Gly Val Leu His Arg His Tyr Pro Lys Glu Ala Gln Arg Ala Phe Ala 210 215 220 Leu Glu Leu Leu Gln Ala Cys Gly Tyr Asp Leu Glu Ala Gly Arg Leu 225 230 235 240 Asp Pro Thr Ala His Pro Phe Glu Ile Ala Ile Gly Pro Gly Asp Val 245 250 255 Arg Ile Thr Thr Arg Tyr Tyr Glu Asp Phe Phe Asn Ala Gly Ile Phe 260 265 270 Gly Thr Leu His Glu Met Gly His Ala Leu Tyr Glu Gln Gly Leu Pro 275 280 285 Glu Ala His Trp Gly Thr Pro Arg Gly Glu Ala Ala Ser Leu Gly Val 290 295 300 His Glu Ser Gln Ser Arg Thr Trp Glu Asn Leu Val Gly Arg Ser Leu 305 310 315 320 Gly Phe Trp Glu Arg Phe Phe Pro Arg Ala Lys Glu Val Phe Ser Ser 325 330 335 Leu Ala Asp Val Arg Leu Glu Asp Phe His Phe Ala Val Asn Ala Val 340 345 350 Glu Pro Ser Leu Ile Arg Val Glu Ala Asp Glu Val Thr Tyr Asn Leu 355 360 365 His Ile Leu Val Arg Leu Glu Leu Glu Leu Ala Leu Phe Arg Gly Glu 370 375 380 Leu Phe Leu Glu Asp Leu Pro Glu Al a Trp Arg Glu Lys Tyr Arg Ala 385 390 395 400 Tyr Leu Gly Val Ala Pro Arg Asp Tyr Lys Asp Gly Val Met Gln Asp 405 410 415 Val His Trp Ser Gly Gly Met Phe Gly Tyr Phe Pro Thr Tyr Thr Leu 420 425 430 Gly Asn Leu Tyr Ala Ala Gln Phe Phe Ala Lys Ala Gln Glu Glu Leu 435 440 445 Gly Pro Leu Glu Pro Leu Phe Ala Arg Gly Glu Phe Thr Pro Phe Leu 450 455 460 Asp Trp Thr Arg Arg Lys Ile His Ala Glu Gly Ser Arg Phe Arg Pro 465 470 475 480 Arg Ala Leu Val Glu Arg Val Thr Gly Ser Pro Pro Gly Ala Gln Ala 485 490 495 Phe Leu Arg Tyr Leu Glu Ala Lys Tyr Gly Ala Leu Tyr Gly Phe 500 505 510

【0027】配列番号:2 配列の長さ:1536 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源 生物名:サーマス・アクアティカス(Thermus aquaticu
s) 起源:YT−1 配列の特徴 特徴を表す記号:CDS 存在位置:1..1533 特徴を決定した方法 E 配列 GTG ACG CCG GAA GCC GCT TAT CAG AAC CTG TTG GAG TTC CAG AGG GAA 48 Met Thr Pro Glu Ala Ala Tyr Gln Asn Leu Leu Glu Phe Gln Arg Glu 1 5 10 15 ACC GCC TAC CTG GGT TCC TTA GGG GCC CTG GCC GCC TGG GAC CAG CGC 96 Thr Ala Tyr Leu Gly Ser Leu Gly Ala Leu Ala Ala Trp Asp Gln Arg 20 25 30 ACC ATG ATC CCC AGA AAG GGG CAC GGG CAC CGG GCC CGG CAG ATG GCC 144 Thr Met Ile Pro Arg Lys Gly His Gly His Arg Ala Arg Gln Met Ala 35 40 45 GCT CTG GCC CGC CTC CTC CAC GAG CGG GCC ACC GAC CCC AGG ATC GGG 192 Ala Leu Ala Arg Leu Leu His Glu Arg Ala Thr Asp Pro Arg Ile Gly 50 55 60 GAG TGG CTG GAG AAG GTG GAG GGG TCG TCC CTG GTG GAG GAC CCC CTT 240 Glu Trp Leu Glu Lys Val Glu Gly Ser Ser Leu Val Glu Asp Pro Leu 65 70 75 80 TCC GAT GCC GCC GTC AAC GTG CGG GCC TGG CGG CGG GCC TAC GAG AGG 288 Ser Asp Ala Ala Val Asn Val Arg Ala Trp Arg Arg Ala Tyr Glu Arg 85 90 95 GCC CGG GCC ATT CCC GAG AGG CTG GCT GTG GAG CTG GCC CAG GCC AGG 336 Ala Arg Ala Ile Pro Glu Arg Leu Ala Val Glu Leu Ala Gln Ala Arg 100 105 110 AGC GAG GGG GAG ACC GCC TGG GAG GCC CTG CGC CCC AGG GAC GAC TGG 384 Ser Glu Gly Glu Thr Ala Trp Glu Ala Leu Arg Pro Arg Asp Asp Trp 115 120 125 CAG GGC TTC CTG CCC TAC CTC AAG CGC CTT TTC GCC CTG GCC AAG GAG 432 Gln Gly Phe Leu Pro Tyr Leu Lys Arg Leu Phe Ala Leu Ala Lys Glu 130 135 140 GAG GCG GAG ATC CTC ATG GCC GTG GGG CCA GAC CCC CTG GAC CCC CCC 480 Glu Ala Glu Ile Leu Met Ala Val Gly Pro Asp Pro Leu Asp Pro Pro 145 150 155 160 TAC GGG GAG CTT TAC GAC GCC CTC CTG GAC GGC TAC GAG CCC GGG GCC 528 Tyr Gly Glu Leu Tyr Asp Ala Leu Leu Asp Gly Tyr Glu Pro Gly Ala 165 170 175 AGG GCG AGG GAC CTC GAG CCC CTC TTC CGG GAG CTC TCC TCG GGC CTC 576 Arg Ala Arg Asp Leu Glu Pro Leu Phe Arg Glu Leu Ser Ser Gly Leu 180 185 190 AAG GGT CTT CTG GAC CGC ATC CTG GGA AGC GGG CGG AGG CCC GAC GTC 624 Lys Gly Leu Leu Asp Arg Ile Leu Gly Ser Gly Arg Arg Pro Asp Val 195 200 205 GGC GTC CTC CAC CGC CAC TAC CCT AAG GAG GCC CAG AGG GCC TTC GCC 672 Gly Val Leu His Arg His Tyr Pro Lys Glu Ala Gln Arg Ala Phe Ala 210 215 220 TTA GAG CTC CTT CAG GCC TGC GGG TAC GAC CTC GAG GCC GGC CGT CTG 720 Leu Glu Leu Leu Gln Ala Cys Gly Tyr Asp Leu Glu Ala Gly Arg Leu 225 230 235 240 GAC CCC ACC GCC CAC CCC TTT GAG ATC GCC ATC GGC CCC GGG GAC GTG 768 Asp Pro Thr Ala His Pro Phe Glu Ile Ala Ile Gly Pro Gly Asp Val 245 250 255 CGC ATC ACC ACC CGC TAC TAC GAG GAC TTC TTC AAC GCC GGC ATC TTC 816 Arg Ile Thr Thr Arg Tyr Tyr Glu Asp Phe Phe Asn Ala Gly Ile Phe 260 265 270 GGC ACC CTC CAC GAG ATG GGC CAC GCC CTC TAC GAG CAG GGC CTG CCC 864 Gly Thr Leu His Glu Met Gly His Ala Leu Tyr Glu Gln Gly Leu Pro 275 280 285 GAG GCC CAC TGG GGC ACC CCC CGG GGG GAG GCC GCC TCC TTG GGG GTC 912 Glu Ala His Trp Gly Thr Pro Arg Gly Glu Ala Ala Ser Leu Gly Val 290 295 300 CAC GAG TCC CAA AGC CGC ACC TGG GAG AAC CTG GTG GGC CGC TCC TTG 960 His Glu Ser Gln Ser Arg Thr Trp Glu Asn Leu Val Gly Arg Ser Leu 305 310 315 320 GGC TTC TGG GAG CGC TTC TTC CCC CGG GCC AAG GAG GTC TTT TCC AGT 1008 Gly Phe Trp Glu Arg Phe Phe Pro Arg Ala Lys Glu Val Phe Ser Ser 325 330 335 CTG GCC GAC GTG CGC CTG GAG GAC TTC CAC TTC GCC GTC AAC GCC GTG 1056 Leu Ala Asp Val Arg Leu Glu Asp Phe His Phe Ala Val Asn Ala Val 340 345 350 GAG CCC TCC CTG ATC CGG GTG GAG GCC GAC GAG GTT ACC TAT AAC CTC 1104 Glu Pro Ser Leu Ile Arg Val Glu Ala Asp Glu Val Thr Tyr Asn Leu 355 360 365 CAC ATC CTG GTG CGC CTG GAG CTG GAG CTG GCC CTA TTC CGG GGG GAG 1152 His Ile Leu Val Arg Leu Glu Leu Glu Leu Ala Leu Phe Arg Gly Glu 370 375 380 CTT TTC CTC GAG GAC CTG CCC GAG GCC TGG CGG GAA AAG TAC CGG GCC 1200 Leu Phe Leu Glu Asp Leu Pro Glu Ala Trp Arg Glu Lys Tyr Arg Ala 385 390 395 400 TAC CTG GGC GTG GCC CCA AGG GAC TAC AAG GAC GGG GTC ATG CAG GAC 1248 Tyr Leu Gly Val Ala Pro Arg Asp Tyr Lys Asp Gly Val Met Gln Asp 405 410 415 GTC CAC TGG TCG GGG GGG ATG TTC GGC TAC TTC CCC ACC TAC ACC CTG 1296 Val His Trp Ser Gly Gly Met Phe Gly Tyr Phe Pro Thr Tyr Thr Leu 420 425 430 GGC AAC CTC TAC GCT GCC CAG TTC TTC GCC AAG GCC CAG GAG GAG CTT 1344 Gly Asn Leu Tyr Ala Ala Gln Phe Phe Ala Lys Ala Gln Glu Glu Leu 435 440 445 GGG CCC TTG GAG CCC CTC TTC GCC CGC GGG GAG TTC ACC CCC TTC CTG 1392 Gly Pro Leu Glu Pro Leu Phe Ala Arg Gly Glu Phe Thr Pro Phe Leu 450 455 460 GAC TGG ACC AGG CGC AAG ATC CAC GCC GAG GGG AGC CGC TTC CGC CCC 1440 Asp Trp Thr Arg Arg Lys Ile His Ala Glu Gly Ser Arg Phe Arg Pro 465 470 475 480 CGG GCC CTG GTG GAG AGG GTG ACG GGA AGC CCC CCC GGC GCT CAA GCC 1488 Arg Ala Leu Val Glu Arg Val Thr Gly Ser Pro Pro Gly Ala Gln Ala 485 490 495 TTC CTC AGG TAC CTG GAG GCC AAG TAC GGG GCC CTT TAC GGC TTC TGA 1536 Phe Leu Arg Tyr Leu Glu Ala Lys Tyr Gly Ala Leu Tyr Gly Phe 500 505 510
SEQ ID NO: 2 Sequence length: 1536 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: Genomic DNA Origin organism name: Thermus aquaticu
s) Origin: Features of YT-1 sequence Characteristic symbol: CDS Location: 1. . 1533 Method of Characterizing E Sequence GTG ACG CCG GAA GCC GCT TAT CAG AAC CTG TTG GAG TTC CAG AGG GAA 48 Met Thr Pro Glu Ala Ala Tyr Gln Asn Leu Leu Glu Phe Gln Arg Glu 1 5 10 15 ACC GCC TAC CTG GGT TCC TTA GGG GCC CTG GCC GCC TGG GAC CAG CGC 96 Thr Ala Tyr Leu Gly Ser Leu Gly Ala Leu Ala Ala Trp Asp Gln Arg 20 25 30 ACC ATG ATC CCC AGA AAG GGG CAC GGG CAC CGG GCC CGG CAG ATG GCC 144 Thr Met Ile Pro Arg Lys Gly His Gly His Arg Ala Arg Gln Met Ala 35 40 45 GCT CTG GCC CGC CTC CTC CAC GAG CGG GCC ACC GAC CCC AGG ATC GGG 192 Ala Leu Ala Arg Leu Leu His Glu Arg Ala Thr Asp Pro Arg Ile Gly 50 55 60 GAG TGG CTG GAG AAG GTG GAG GGG TCG TCC CTG GTG GAG GAC CCC CTT 240 Glu Trp Leu Glu Lys Val Glu Gly Ser Ser Leu Val Glu Asp Pro Leu 65 70 75 80 TCC GAT GCC GCC GTC AAC GTG CGG GCC TGG CGG CGG GCC TAC GAG AGG 288 Ser Asp Ala Ala Val Asn Val Arg Ala Trp Arg Arg Ala Tyr Glu Arg 85 90 95 GCC CGG GCC ATT CCC GAG AGG CTG GCT GTG GAG CTG GCC CAG GCC AGG 336 Ala Arg Ala Ile Pro Glu Arg Leu Ala Val Glu Leu Ala Gln Ala Arg 100 105 110 AGC GAG GGG GAG ACC GCC TGG GAG GCC CTG CGC CCC AGG GAC GAC TGG 384 Ser Glu Gly Glu Thr Ala Trp Glu Ala Leu Arg Pro Arg Asp Asp Trp 115 120 125 CAG GGC TTC CTG CCC TAC CTC AAG CGC CTT TTC GCC CTG GCC AAG GAG 432 Gln Gly Phe Leu Pro Tyr Leu Lys Arg Leu Phe Ala Leu Ala Lys Glu 130 135 140 GAG GCG GAG ATC CTC ATG GCC GTG GGG CCA GAC CCC CTG GAC CCC CCC 480 Glu Ala Glu Ile Leu Met Ala Val Gly Pro Asp Pro Leu Asp Pro Pro 145 150 155 160 TAC GGG GAG CTT TAC GAC GCC CTC CTG GAC GGC TAC GAG CCC GGG GCC 528 Tyr Gly Glu Leu Tyr Asp Ala Leu Leu Asp Gly Tyr Glu Pro Gly Ala 165 170 175 AGG GCG AGG GAC CTC GAG CCC CTC TTC CGG GAG CTC TCC TCG GGC CTC 576 Arg Ala Arg Asp Leu Glu Pro Leu Phe Arg Glu Leu Ser Ser Gly Leu 180 185 190 AAG GGT CTT CTG GAC CGC ATC CTG GGA AGC GGG CGG AGG CCC GAC GTC 624 Lys Gly Leu Leu Asp Arg Ile Leu Gly Ser Gly Arg Arg Pro Asp Val 195 200 205 GGC GTC CTC CAC CGC CAC TAC CCT AAG GAG GCC CAG AGG GCC TTC GCC 672 Gly Val Leu His Arg His Tyr Pro Lys Glu Ala Gln Arg Ala Phe Ala 210 215 220 TTA GAG CTC CTT CAG GCC TGC GGG TAC GAC CTC GAG GCC GGC CGT CTG 720 Leu Glu Leu Leu Gln Ala Cys Gly Tyr Asp Leu Glu Ala Gly Arg Leu 225 230 235 240 GAC CCC ACC GCC CAC CCC TTT GAG ATC GCC ATC GGC CCC GGG GAC GTG 768 Asp Pro Thr Ala His Pro Phe Glu Ile Ala Ile Gly Pro Gly Asp Val 245 250 255 CGC ATC ACC ACC CGC TAC TAC GAG GAC TTC TTC AAC GCC GGC ATC TTC 816 Arg Ile Thr Thr Arg Tyr Tyr Glu Asp Phe Phe Asn Ala Gly Ile Phe 260 265 270 GGC ACC CTC CAC GAG ATG GGC CAC GCC CTC TAC GAG CAG GGC CTG CCC 864 Gly Thr Leu His Glu Met Gly His Ala Leu Tyr Glu Gln Gly Leu Pro 275 280 285 GAG GCC CAC TGG GGC ACC CCC CGG GGG GAG GCC GCC TCC TTG GGG GTC 912 Glu Ala His Trp Gly Thr Pro Arg Gly Glu Ala Ala Ser Leu Gly Val 290 295 300 CAC GAG TCC CAA AGC CGC ACC TGG GAG AAC CTG GTG GGC CGC TCC TTG 960 His Glu Ser Gln Ser Arg Thr Trp Glu Asn Leu Val Gly Arg Ser Leu 305 310 315 320 GGC TTC TGG GAG CGC TTC TTC CCC CGG GCC AAG GAG GTC TTT TCC AGT 1008 Gly Phe Trp Glu Arg Phe Phe Pro Arg Ala Lys Glu Val Phe Ser Ser 325 330 335 CTG GCC GAC GTG CGC CTG GAG GAC TTC CAC TTC GCC GTC AAC GCC GTG 1056 Leu Ala Asp Val Arg Leu Glu Asp Phe His Phe Ala Val Asn Ala Val 340 345 350 GAG CCC TCC CTG ATC CGG GTG GAG GCC GAC GAG GTT ACC TAT AAC CTC 1104 Glu Pro Ser Leu Ile Arg Val Glu Ala Asp Glu Val Thr Tyr Asn Leu 355 360 365 CAC ATC CTG GTG CGC CTG GAG CTG GAG CTG GCC CTA TTC CGG GGG GAG 1152 His Ile Leu Val Arg Leu Glu Leu Glu Leu Ala Leu Phe Arg Gly Glu 370 375 380 CTT TTC CTC GAG GAC CTG CCC GAG GCC TGG CGG GAA AAG TAC CGG GCC 1200 Leu Phe Leu Glu Asp Leu Pro Glu Ala Trp Arg Glu Lys Tyr Arg Ala 385 390 395 400 TAC CTG GGC GTG GCC CCA AGG GAC TAC AAG GAC GGG GTC ATG CAG GAC 1248 Tyr Leu Gly Val Ala Pro Arg Asp Tyr Lys Asp Gly Val Met Gln Asp 405 410 415 GTC CAC TGG TCG GGG GGG ATG TTC GGC TAC TTC CCC ACC TAC ACC CTG 1296 Val His Trp Ser Gly Gly Met Phe Gly Tyr Phe Pro Thr Tyr Thr Leu 420 425 430 GGC AAC CTC TAC GCT GCC CAG TTC TTC GCC AAG GCC CAG G AG GAG CTT 1344 Gly Asn Leu Tyr Ala Ala Gln Phe Phe Ala Lys Ala Gln Glu Glu Leu 435 440 445 GGG CCC TTG GAG CCC CTC TTC GCC CGC GGG GAG TTC ACC CCC TTC CTG 1392 Gly Pro Leu Glu Pro Leu Phe Ala Arg Gly Glu Phe Thr Pro Phe Leu 450 455 460 GAC TGG ACC AGG CGC AAG ATC CAC GCC GAG GGG AGC CGC TTC CGC CCC 1440 Asp Trp Thr Arg Arg Lys Ile His Ala Glu Gly Ser Arg Phe Arg Pro 465 470 475 480 CGG GCC CTG GTG GAG AGG GTG ACG GGA AGC CCC CCC GGC GCT CAA GCC 1488 Arg Ala Leu Val Glu Arg Val Thr Gly Ser Pro Pro Gly Ala Gln Ala 485 490 495 TTC CTC AGG TAC CTG GAG GCC AAG TAC GGG GCC CTT TAC GGC TTC TGA 1536 Phe Leu Arg Tyr Leu Glu Ala Lys Tyr Gly Ala Leu Tyr Gly Phe 500 505 510

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に用いたカルボキシペプチダーゼTの
N−末端側29残基分のアミノ酸配列と、プローブに用
いた28mer と23mer の混合オリゴヌクレオチドの配
列を示す。
FIG. 1 shows the amino acid sequence of 29 residues at the N-terminal side of carboxypeptidase T used in the present invention and the sequence of a mixed 28mer and 23mer oligonucleotide used as a probe.

【図2】 サザンハイブリダイゼーションの結果を示
す。なお、矢印は図1で示したプローブがハイブリダイ
ズした約4.36kbp と6.55kbp のバンドの位置を示
す。
FIG. 2 shows the results of Southern hybridization. The arrows indicate the positions of about 4.36 kbp and 6.55 kbp bands hybridized with the probe shown in FIG.

【図3】 プラスミドpCP(約8.7kbp)の構造を示す。太
線の部分はカルボキシペプチダーゼT遺伝子を含むDN
A断片部分を示し、細線部分はベクタープラスミドpBR3
22部分を示す。
FIG. 3 shows the structure of plasmid pCP (about 8.7 kbp). The thick line is DN containing the carboxypeptidase T gene.
The A fragment portion is shown, and the thin line portion is the vector plasmid pBR3.
22 parts are shown.

【図4】 プラスミドpCP 中でサーマス・アクアティカ
スYT−1由来のカルボキシペプチダーゼT遺伝子を含
む約4.3kbp のHind III断片の制限酵素地図と塩基配列
決定の戦略を示す。特に、カルボキシペプチダーゼT遺
伝子コード領域について詳細に示す。黒い矢印部分はカ
ルボキシペプチダーゼTの構造遺伝子部分を示す。GT
Gは開始コドンを示す。Trm は終止コドンを示す。
FIG. 4 shows a restriction enzyme map and a nucleotide sequencing strategy of an approximately 4.3 kbp Hind III fragment containing the carboxypeptidase T gene derived from Thermus aquaticus YT-1 in the plasmid pCP. In particular, the carboxypeptidase T gene coding region is shown in detail. The black arrow indicates the structural gene portion of carboxypeptidase T. GT
G indicates the start codon. Trm indicates a stop codon.

【図5】 部位特異的変異によって開始コドンGTGを
ATGに変異させるために用いた36mer のプライマー
の配列と、部位特異的変異によって構築したプラスミド
pCP7の構造を示す。なお、白ヌキの矢印はカルボキシ
ペプチダーゼTの構造遺伝子部分を示す。Ptacはtac プ
ロモーターの位置を示す。
FIG. 5: Sequence of 36-mer primer used to mutate start codon GTG to ATG by site-directed mutagenesis and plasmid constructed by site-directed mutagenesis
1 shows the structure of pCP7 The white arrow shows the structural gene portion of carboxypeptidase T. Ptac indicates the position of the tac promoter.

【図6】 大腸菌で生産したカルボキシペプチダーゼT
の精製過程を示すSDS電気泳動の図である。
FIG. 6: Carboxypeptidase T produced in E. coli
FIG. 3 is a diagram of SDS electrophoresis showing the purification process of.

【符号の説明】[Explanation of symbols]

図2のレーン記号のHB,HP,BH,H,B,P,M
は下記のとおり。 HB:Hind III/BamHI HP:Hind III/PstI BP:BamHI/PstI H:Hind III B:BamHI P:PstI M:分子量マーカー 図6のレーン記号のM,V,C,H,B,Q,Tは下記
のとおり。 M:分子量マーカー V:大腸菌全菌体(pCP7をもたない) C:大腸菌全菌体(pCP7をもつ) H:加熱処理後の上澄 B:ブチルトヨパール精製画分 Q:Mono Q精製画分 T:天然物カルボキシペプチダーゼT精製標品
Lane symbols HB, HP, BH, H, B, P, M in FIG.
Is as follows. HB: Hind III / BamHI HP: Hind III / PstI BP: BamHI / PstI H: Hind III B: BamHI P: PstI M: Molecular weight marker M, V, C, H, B, Q, T of lane symbols in FIG. Is as follows. M: Molecular weight marker V: E. coli whole cells (without pCP7) C: E. coli whole cells (with pCP7) H: Supernatant after heat treatment B: Butyltoyopearl purified fraction Q: Mono Q purified fraction Fraction T: Natural product carboxypeptidase T purified preparation

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:01) (C12N 9/48 C12R 1:19) Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area C12R 1:01) (C12N 9/48 C12R 1:19)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高度好熱細菌サーマス属微生物由来の耐
熱性カルボキシペプチダーゼをコードしているDNA配
列。
1. A DNA sequence encoding a thermostable carboxypeptidase derived from an extremely thermophilic bacterium, Thermus sp.
【請求項2】 DNAが配列表の配列番号1記載のアミ
ノ酸配列またはそれと実質的に同一の機能を有するアミ
ノ酸配列をコードするものである請求項1記載のDNA
配列。
2. The DNA according to claim 1, wherein the DNA encodes the amino acid sequence of SEQ ID NO: 1 in the sequence listing or the amino acid sequence having substantially the same function.
Array.
【請求項3】 DNAが配列表の配列番号2記載の塩基
配列またはそれと実質的に同一の機能を持つ塩基配列を
有するものである請求項1記載のDNA配列。
3. The DNA sequence according to claim 1, wherein the DNA has the nucleotide sequence of SEQ ID NO: 2 in the sequence listing or the nucleotide sequence having substantially the same function.
【請求項4】 請求項2記載のDNA配列にハイブリッ
ドするDNA配列であり、かつ耐熱性カルボキシペプチ
ダーゼ活性を有するポリペプチドをコードするDNA配
列。
4. A DNA sequence hybridizing to the DNA sequence according to claim 2 and encoding a polypeptide having thermostable carboxypeptidase activity.
【請求項5】 請求項1記載のDNA配列を含むDNA
断片を有するプラスミドにより形質転換した形質転換体
を用いることを特徴とする耐熱性カルボキシペプチダー
ゼの生産方法。
5. A DNA containing the DNA sequence according to claim 1.
A method for producing thermostable carboxypeptidase, which comprises using a transformant transformed with a plasmid having a fragment.
JP22450592A 1992-08-03 1992-08-03 Gene capable of coding thermoduric carboxypeptidase and production of thermoduric carboxypeptidase using the same Pending JPH0646866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22450592A JPH0646866A (en) 1992-08-03 1992-08-03 Gene capable of coding thermoduric carboxypeptidase and production of thermoduric carboxypeptidase using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22450592A JPH0646866A (en) 1992-08-03 1992-08-03 Gene capable of coding thermoduric carboxypeptidase and production of thermoduric carboxypeptidase using the same

Publications (1)

Publication Number Publication Date
JPH0646866A true JPH0646866A (en) 1994-02-22

Family

ID=16814853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22450592A Pending JPH0646866A (en) 1992-08-03 1992-08-03 Gene capable of coding thermoduric carboxypeptidase and production of thermoduric carboxypeptidase using the same

Country Status (1)

Country Link
JP (1) JPH0646866A (en)

Similar Documents

Publication Publication Date Title
AU698889B2 (en) Production of enzymatically active recombinant carboxypeptidase B
CN113667682B (en) YH66-RS11190 gene mutant and application thereof in preparation of L-valine
JPH10108675A (en) New cell surface protein derived from corynebacterium ammoniagenes
CN110592084A (en) Recombinant strain modified by rhtA gene promoter and construction method and application thereof
EP0815238B1 (en) Dna fragment encoding d-amino acid oxidase
CN114835783A (en) NCgl2747 gene mutant and application thereof in preparation of L-lysine
CN110564742B (en) Recombinant strain modified by yebN gene and construction method and application thereof
JPH0646866A (en) Gene capable of coding thermoduric carboxypeptidase and production of thermoduric carboxypeptidase using the same
JP3709422B2 (en) Regulators involved in nitrilase gene expression and genes thereof
CN114277069B (en) Method for preparing L-valine and biological material used by same
CN114315998B (en) CEY17_RS00300 gene mutant and application thereof in preparation of L-valine
JPH09220093A (en) Dna coding enzyme for synthesizing inositol-1-phosphate, recombined dna containing the dna, transformant and production of inositol with the transformant
JP3062595B2 (en) Maltopentaose high-producing α-amylase gene, vector containing the gene, and transformant
JPH07250679A (en) Variation type thermolysin ty140 and its gene
JPH08238087A (en) Sarcosine oxidase and its production
JP2990280B1 (en) Aminopeptidase and its precursor gene, vector containing the gene, and transformant
JPH0530976A (en) Gene coding heat-resistant superoxide dismutase and plasmid containing the same
JP2000316584A (en) Catalase gene
JPH09168389A (en) Dna coding for ascorbate oxidase
JPH09262089A (en) Dna coding for b-type subunit of avian lactic acid dehydrogenase
JP2961143B2 (en) Aminopeptidase gene, plasmid vector containing the gene and transformant
JP2001046075A (en) Salt tolerant glutaminase gene
JP2000245471A (en) Formate dehydrogenase gene, recombinant vector containing the same, transformant containing the recombinant vector and production of formate dehydrogenase using the transformant
JPH06292582A (en) Heat shock protein gene and production of heat shock protein
JPH07107980A (en) Production of mold protein disulfide isomerase in high efficiency