JPH0646682B2 - Short-circuited microstrip antenna - Google Patents

Short-circuited microstrip antenna

Info

Publication number
JPH0646682B2
JPH0646682B2 JP63166209A JP16620988A JPH0646682B2 JP H0646682 B2 JPH0646682 B2 JP H0646682B2 JP 63166209 A JP63166209 A JP 63166209A JP 16620988 A JP16620988 A JP 16620988A JP H0646682 B2 JPH0646682 B2 JP H0646682B2
Authority
JP
Japan
Prior art keywords
short
microstrip antenna
circuited
conductor element
dielectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63166209A
Other languages
Japanese (ja)
Other versions
JPH0216804A (en
Inventor
喜秋 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63166209A priority Critical patent/JPH0646682B2/en
Publication of JPH0216804A publication Critical patent/JPH0216804A/en
Publication of JPH0646682B2 publication Critical patent/JPH0646682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,同軸線路により給電する一端短絡型マイク
ロストリツプアンテナに関し,特に短絡する方法をスル
ーホールメツキとすることで,放射導体素子の共振周波
数を任意に可変とする構造に関するものである。
Description: TECHNICAL FIELD The present invention relates to a microstrip antenna with one end short-circuited that is fed by a coaxial line. The present invention relates to a structure in which the resonance frequency can be changed arbitrarily.

〔従来の技術〕[Conventional technology]

不平衡平面回路共振器を利用した一端短絡型マイクロス
トリツプアンテナは,一般に小型・軽量で低損失である
という利点を有している。
Microstrip antennas with short-circuited ends that use unbalanced planar circuit resonators generally have the advantages of small size, light weight, and low loss.

第3図(a)と(b)は,例えば羽石,須賀「片側短絡型マイ
クロストリツプアンテナ」昭和61年度電子通信学会総
合全国大会(S9−5)3−275から3−276ペー
ジに示された従来の一端短絡型マイクロストリツプアン
テナの一例を示す図である。第3図(a)は平面図,第3
図(b)は断面図である。図中,(1)は辺長aとbの矩形の
一端短絡型平面回路による放射導体素子,(2)は波長に
比べて十分薄い誘電体基板(比誘電率ε,厚さh),
(3)は接地導体板,(4)は入力端子の同軸線路,(6)は同
軸線路の中心導体,(5)は同軸線路(4)の中心導体(6)を
放射導体素子(1)へ接続する給電点,(7)は電波の放射す
る開放周辺端,(8)は放射導体素子(1)を接地導体板(3)
に接続する短絡周辺端である。
Figures 3 (a) and (b) are shown, for example, on pages 3-275 to 3-276 of the IEICE General National Conference (S9-5), "Semiconductor strip with one-side short-circuited type", Saga, Hagaishi, Suga. FIG. 6 is a diagram showing an example of a conventional short-circuited one-end type microstrip antenna. Figure 3 (a) is a plan view, 3rd
Figure (b) is a sectional view. In the figure, (1) is a radiating conductor element by a rectangular one-sided short-circuit type planar circuit with side lengths a and b, (2) is a dielectric substrate (relative permittivity ε r , thickness h) sufficiently thin compared to the wavelength,
(3) is the ground conductor plate, (4) is the coaxial line of the input terminal, (6) is the center conductor of the coaxial line, (5) is the center conductor (6) of the coaxial line (4), and the radiating conductor element (1) (7) is the open peripheral edge where radio waves are radiated, (8) is the radiating conductor element (1) and the ground conductor plate (3)
It is the peripheral edge of the short circuit connected to.

次に動作原理について説明する。Next, the operation principle will be described.

給電点(5)からマイクロ波を給電すると,開放周辺端(7)
より電波が放射される。第3図(a)と(b)に示す一例では
直線偏波として動作する。
When microwave is fed from the feeding point (5), the open peripheral edge (7)
More radio waves are emitted. In the example shown in FIGS. 3 (a) and 3 (b), it operates as a linearly polarized wave.

この一端短絡型マイクロストリツプアンテナの基本モー
ドの共振周波数は,主として放射導体素子(1)の辺
長aと誘電体基板(2)の比誘電率εにより決定され
る。また,周波数帯域幅は,主として誘電体基板(2)の
比誘電率εと厚さhにより決定され,εを小とし,
さらにhを大にする程広帯域となる性質があるが,高次
モードの発生を防止するために厚さhの選択範囲には限
界があり,実用化されている一端短絡型マイクロストリ
ツプアンテナの周波数帯域は第4図に示すように数%程
度である。
The resonance frequency 0 of the fundamental mode of this one-short-circuited microstrip antenna is mainly determined by the side length a of the radiating conductor element (1) and the relative permittivity ε r of the dielectric substrate (2). The frequency bandwidth is primarily determined by the dielectric constant epsilon r and the thickness h of the dielectric substrate (2), the epsilon r small city,
The larger h is, the wider the band becomes, but the range of thickness h is limited to prevent the generation of higher-order modes. The frequency band is about several percent as shown in FIG.

給電点インピーダンスは,給電点(5)を開放周辺端(7)に
一致させてc=0とした場合に高インピーダンスとな
り,給電点(5)を放射導体素子(1)の短絡周辺端(8)に近
づけるに従つて順次給電点インピーダンスは低下する性
質があり,同軸線路(4)とインピーダンス整合を図るよ
うに寸法cを選定する。また,寸法dは交差偏波成分の
発生を防止するためd=b/2とする。
The feeding point impedance becomes high impedance when the feeding point (5) matches the open peripheral end (7) and c = 0, and the feeding point (5) is short-circuited peripheral end (8) of the radiating conductor element (1). ), The feeding point impedance gradually decreases as it gets closer to), and dimension c is selected so as to achieve impedance matching with the coaxial line (4). Further, the dimension d is set to d = b / 2 in order to prevent the generation of cross polarization components.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の一端短絡型マイクロストリツプアンテナは以上の
ように構成されているので,インピーダンス整合,交差
偏波抑圧や共振周波数の観点から一端短絡型マイクロス
トリツプアンテナの寸法,形状や同軸線路の位置が限定
されているので,多数個一端短絡型マイクロストリツプ
アンテナを製造して使用する場合,各々の電気的特性
は,使用する誘電体基板の誘電率のばらつきや工作性の
公差により異なるなどの課題があつた。
Since the conventional short-circuited microstrip antenna is configured as described above, from the viewpoint of impedance matching, cross polarization suppression and resonance frequency, the size, shape and coaxial line of the short-circuited microstrip antenna are Since the positions are limited, when manufacturing and using a large number of short-circuited microstrip antennas, the electrical characteristics of each differ depending on the variation of the dielectric constant of the dielectric substrate used and the tolerance of workability. There was such a problem.

また,従来の一端短絡型マイクロストリツプアンテナは
本質的に狭帯域であるため,共振周波数の整合が困難で
ある等の課題があつた。
In addition, the conventional one-side short-circuit type microstrip antenna has a problem that it is difficult to match the resonance frequency because the band is essentially narrow.

この発明は上記のような課題を解消するためになされた
もので,放射導体素子や同軸線路の位置等の寸法,形状
を変化させずに誘電体基板の誘電率のばらつきや工作性
の公差が付加されても,共振周波数の整合やインピーダ
ンス整合等の電気的特性の整合を可能とする一端短絡型
マイクロストリツプアンテナを得ることを目的とする。
The present invention has been made in order to solve the above problems, and it is possible to reduce the variation in permittivity of dielectric substrates and the tolerance of workability without changing the size and shape of the position and the like of the radiation conductor element and the coaxial line. The objective is to obtain a microstrip antenna with one-end short circuit that can match electrical characteristics such as resonance frequency matching and impedance matching even if added.

〔課題を解決するための手段〕 この発明に係る一端短絡型マイクロストリツプアンテナ
は,放射導体素子(1)と接地導体板(3)間を接続する短絡
周辺端(8)のかわりに,短絡周辺端(8)側を任意の間隔で
複数個のスルーホールメツキを配置し,このスルーホー
ルメツキ間の間隔と個数によつて,この一端短絡型マイ
クロストリツプアンテナの共振周波数を可変し,所望の
周波数に整合をとることにしたものである。
[Means for Solving the Problem] The short-circuited microstrip antenna according to the present invention has a short-circuiting peripheral end (8) instead of a radiating conductor element (1) and a grounding conductor plate (3). A plurality of through-hole platings are arranged on the short-circuited peripheral edge (8) side at arbitrary intervals, and the resonance frequency of this short-circuiting type microstrip antenna is varied according to the spacing and the number of the through-hole platings. It is designed to match the desired frequency.

〔作用〕[Action]

この発明における一端短絡型マイクロストリツプアンテ
ナは,放射導体素子(1)と接地導体板(3)間を開放周辺端
(7)と反対側に複数個のスルーホールメツキにて短絡
し,そのスルーホールメツキの数量と間隔を変化するこ
とで,放射導体素子(1)の辺長a,または,誘電体基板
(2)の比誘電率εを変化させなくても一端短絡型マイ
クロストリツプアンテナの共振周波数を所望の周波数に
整合を図れる。
The short-circuited type microstrip antenna according to the present invention has an open peripheral end between the radiation conductor element (1) and the ground conductor plate (3).
By short-circuiting with a plurality of through-hole plating on the side opposite to (7), and changing the number and spacing of the through-hole plating, the side length a of the radiating conductor element (1) or the dielectric substrate
The resonance frequency of the one-side short-circuit type microstrip antenna can be matched to a desired frequency without changing the relative permittivity ε r of (2).

〔実施例〕〔Example〕

以下,この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)と(b)と(c)は,この発明の一実施例を示す図
であり,第1図(a)は平面図,第1図(b)は断面図,第1
図(c)は等価回路を示す図である。図中,(1)から(8)
は,上記従来の一端短絡型マイクロストリツプアンテナ
と全く同一のものである。(9)は,従来の一端短絡型マ
イクロストリツプアンテナが短絡周辺端(8)で全面に接
地導体板と接続していたかわりに,間隔eで穴を開け接
地導体板と接続するためのスルーホールメツキである。
1 (a), (b) and (c) are views showing an embodiment of the present invention, wherein FIG. 1 (a) is a plan view, FIG. 1 (b) is a cross sectional view, and FIG.
FIG. (C) is a diagram showing an equivalent circuit. In the figure, (1) to (8)
Is exactly the same as the conventional short-circuited microstrip antenna described above. (9) is for connecting a grounding conductor plate by making a hole at an interval e instead of connecting the conventional one-sided short-circuit type microstrip antenna to the grounding conductor plate on the entire surface at the short-circuited peripheral edge (8). It is a through hole.

第2図(a)は,スルーホールメツキ(9)の数を変化させた
場合の一端短絡型マイクロストリツプアンテナの共振周
波数の変化を示す図である。
FIG. 2 (a) is a diagram showing changes in the resonance frequency of the one-side short-circuit type microstrip antenna when the number of through-hole platings (9) is changed.

上記のように構成されたこの発明による一端短絡型マイ
クロストリツプアンテナの一実施例の動作について説明
する。
The operation of one embodiment of the one-short-circuited type microstrip antenna according to the present invention configured as described above will be described.

入力端子の同軸線路(4)へ入力された高周波信号は,中
心導体(6)を経由して給電点(5)を励振し,放射導体素子
(1)の開放周辺端(7)から直線偏波の電波が放射される。
放射導体素子(1)に対する給電点(5)の位置は,従来の一
端短絡型マイクロストリツプアンテナと同様に,インピ
ーダンス整合と交差偏波抑圧の観点から定められる。一
方,一端短絡型マイクロストリツプアンテナの共振周波
は,放射導体素子(1)の辺長aと誘電体基板(2)の
比誘電率εを変化させずに,短絡周辺端(8)に間隔e
で設けた複数個のスルーホールメツキ(9)で任意に設定
できる。スルーホールメツキ(9)の数量を多くし間隔e
を狭くすると放射導体素子(1)の辺長aが等価的に短く
なり,共振周波数は,第2図(a)の一点破線で示すよう
に高い周波数に移動し,スルーホールメツキ(9)の数量
を少なくし間隔eを広くすると放射導体素子(1)の辺長
aが等価的に長くなり,共振周波数は,第2図(a)の点
数で示すように低い周波数に移動する等の共振周波数の
可変ができる。
The high-frequency signal input to the coaxial line (4) of the input terminal excites the feeding point (5) via the central conductor (6), and the radiating conductor element
Radio waves of linear polarization are radiated from the open peripheral edge (7) of (1).
The position of the feeding point (5) with respect to the radiating conductor element (1) is determined from the viewpoint of impedance matching and cross polarization suppression, as in the conventional short-circuited microstrip antenna. On the other hand, the resonance frequency 0 of the short-circuited microstrip antenna does not change the side length a of the radiating conductor element (1) and the relative permittivity ε r of the dielectric substrate (2) without changing the short-circuit peripheral end (8 ) To interval e
It can be set arbitrarily with a plurality of through-hole plating (9) provided in. Increase the number of through hole mates (9) to increase the spacing e
When the width is narrowed, the side length a of the radiating conductor element (1) is shortened equivalently, and the resonance frequency moves to a higher frequency as shown by the dashed line in Fig. 2 (a), and the through hole plating (9) When the number is decreased and the distance e is increased, the side length a of the radiating conductor element (1) becomes equivalently long, and the resonance frequency moves to a lower frequency as shown by the points in Fig. 2 (a). The frequency can be changed.

以下に、スルーホールメッキの数量・間隔と共振周波数
の関係の詳細を示す。
The details of the relationship between the number and spacing of through-hole plating and the resonance frequency are shown below.

第2図(b)に一端短絡型マイクロストリップアンテナの
電流の長さの平均値を示す等価回路を示す。
FIG. 2 (b) shows an equivalent circuit showing the average value of the current length of the microstrip antenna with short-circuited ends.

給電点からマイクロ波を給電すると、開放周辺端側と短
絡周辺端にそれぞれ流れ、開放周辺端から電波が放射さ
れる。
When microwaves are fed from the feeding point, they flow to the open peripheral end side and the short-circuited peripheral end, respectively, and radio waves are radiated from the open peripheral end.

ここで、開放周辺端に流れる電流の長さの平均値を
、短絡周辺端に流れる電流の長さの平均値を
する。
Here, the average value of the length of the current flowing at the open peripheral edge is
1 and the average value of the length of the current flowing around the short-circuited peripheral end is 2 .

一端短絡型マイクロストリップアンテナの辺長aは、
である。
The side length a of the short-circuited microstrip antenna is
1 + 2 .

次に、電流の流れを第2図(c)と第2図(d)を用いて示
す。
Next, the flow of current will be shown with reference to FIGS. 2 (c) and 2 (d).

第2図にスルーホールメツキが短絡周辺端にほぼ全面あ
る場合を示す。給電点から開放周辺端へは電流の流れと
して、1aからまで各長さが異なる電流が流れ
ており、次式で電流の長さの平均値を求めることができ
る。 =(1a1b1c+…+)/K ……(1) 一方、短絡周辺端までの電流の長さは、同様に、 =(2a2b+…+2j)/j
……(2) で求めることができる。
FIG. 2 shows the case where the through hole plating is almost entirely on the peripheral edge of the short circuit. As a current flow from the feeding point to the open peripheral end, currents having different lengths from 1a to 1 flow, and the average value of the current lengths can be obtained by the following equation. 1 = ( 1a + 1b + 1c + ... + 1 ) / K (1) On the other hand, the length 2 of the current to the short-circuit peripheral edge is 2 = ( 2a + 2b + ... + 2j ) / j
…… (2) can be obtained.

よって、辺長αは、 α= ……(3) 次に、スルーホールメッキが短絡周辺端にまばらにある
場合を示す。
Therefore, the side length α is α = 1 + 2 (3) Next, the case where through-hole plating is sparse at the peripheral edge of the short circuit is shown.

第2図(d)に示すように、スルーホールメッキの本数
が、例えば第2図(b)の10本から6本に減った場合、給
電点から流れる電流の長さは、以下のようになる。
As shown in FIG. 2 (d), when the number of through-hole plating is reduced from 10 in FIG. 2 (b) to 6, for example, the length of the current flowing from the feeding point is as follows. Become.

開放周辺端までの長さは変わらず。The length 1 to the open peripheral edge does not change.

短絡周辺端までの長さは、スルーホールメッキへ直
接流れこむものと、スルーホールメッキ間を通り抜けな
がら、スルーホールメッキにまわりこんで流れるため、
まわり込む分だけ長くなる。
A length of 2 up to the peripheral edge of the short circuit directly flows into the through-hole plating, and flows into the through-hole plating while passing through between the through-hole plating.
The longer it goes around, the longer it becomes.

即ち、′=(2a′+2b2c′+2d
2e′+2f2g2h′+2i
2j)/j ……(4) 但し、2a′>2a2c′>2c2e′>2e2h′>2h よって、辺長aは a=′ ……(5) となり、辺長aは長くなる。
That is, 2 < 2 ′ = ( 2a ′ + 2b + 2c ′ + 2d
+ 2e '+ 2f + 2g + 2h ' + 2i +
2j ) / j (4) However, 2a '> 2a , 2c '> 2c , 2e '> 2e , 2h '> 2h Therefore, the side length a is a = 1 + 2 '... (5), and the side is The length a becomes longer.

辺長aの長さは、一端短絡型マイクロストリップアンテ
ナの共振周波数と密接につながっており、次式で概略を
求めることができる。
The length of the side length a is closely connected to the resonance frequency of the short-circuit microstrip antenna with one end, and can be roughly calculated by the following equation.

C:光速,:共振周波数 ε:誘電体基板の比誘電率 h:誘電体基板の厚さ なお、式(6)と式(7)は、例えばI.J.Bahl,P.Bhartia共著
「Microstrip Antennas」1982年Artech House社発行31
ページから66ページに示されたマイクロストリップアン
テナの設計式を一端短絡型マイクロストリップアンテナ
の設計式に置きかえたものである。
C: speed of light, 0 : resonance frequency ε r : relative permittivity of the dielectric substrate h: thickness of the dielectric substrate Note that equations (6) and (7) are described in, for example, IJ Bahl, P. Bhartia “Microstrip Antennas”. 1982 Published by Artech House 31
The design formulas for the microstrip antennas shown on pages 66 to 66 are replaced with the design formulas for the microstrip antenna with a short-circuited end.

ここで、辺長aが等価的に長くなったり、スルーホール
間隔を狭めることで等価的に短くすることで、第2図
(e)に示すように共振周波数は可変できる。
Here, the side length a is equivalently increased, or the through hole interval is reduced to be equivalently shortened.
The resonance frequency can be changed as shown in (e).

なお,上記実施例では,スルーホールメツキ(9)を円形
で示したが,四角形で形成してもよい。また,上記実施
例では,放射導体素子(1)と接地導体板(3)の間に誘電体
基板(2)を1枚で説明したが,複数枚の誘電体基板で構
成してもよく,上記実施例と同様の効果が得られる。
In the above embodiment, the through hole plating (9) is shown as a circle, but it may be formed as a square. Further, in the above embodiment, the one dielectric substrate (2) is described between the radiation conductor element (1) and the ground conductor plate (3), but it may be composed of a plurality of dielectric substrates. The same effect as in the above embodiment can be obtained.

さらに,上記実施例では,一端短絡型マイクロストリツ
プアンテナの形状を矩形の放射導体素子(1)の場合で説
明したが,正方形,円形あるいは任意形状の放射導体素
子(1)でも同様の効果が得られる。
Further, in the above embodiment, the shape of the one-side short-circuit type microstrip antenna is explained as the case of the rectangular radiating conductor element (1), but the same effect can be obtained even if the radiating conductor element (1) is square, circular or of any shape. Is obtained.

〔発明の効果〕〔The invention's effect〕

以上のように,この発明によれば複数個のスルーホール
メツキ(9)を短絡周辺端(8)に配置し,スルーホールメツ
キ(9)の個数と間隔を変化させることで,放射導体素子
(1)の辺長aや誘電体基板(2)の比誘電率εを変化させ
なくても共振周波数を変化させることができるので,誘
電体基板の比誘電率のばらつきや工作性の公差により,
共振周波数が変化してもスルーホールメツキ(9)の個
数と間隔を変化させることで所望の共振周波数に整合を
図れる一端短絡型マイクロストリツプアンテナが得られ
る効果がある。
As described above, according to the present invention, by arranging a plurality of through-hole mates (9) at the peripheral edge (8) of the short circuit and changing the number and spacing of the through-hole mates (9), the radiation conductor element can be changed.
Since the resonance frequency can be changed without changing the side length a of (1) and the relative permittivity ε r of the dielectric substrate (2), variations in the relative permittivity of the dielectric substrate and tolerance of workability Due to
Even if the resonance frequency changes, by changing the number and spacing of the through-hole plating (9), it is possible to obtain the one-side short-circuit type microstrip antenna that can achieve matching with the desired resonance frequency.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b),(c)はこの発明の一実施例を説明する
ための図,第2図(a)、(b)、(c)、(d)、(e)はスルーホ
ールメッキの数量、間隔と共振周波数との関係を説明す
るための図第3図(a),(b)は従来の一端短絡型マイクロ
ストリツプアンテナの一例を示す図,第4図は従来の一
端短絡型マイクロストリツプアンテナの共振周波数と反
射損失の特性を示す図である。 図中,(1)は放射導体素子,(2)は誘電体基板,(3)は接
地導体板,(4)は同軸線路,(5)は給電点,(6)は中心導
体,(7)は開放周辺端,(8)は短絡周辺端,(9)はスルー
ホールメツキである。 なお,図中,同一符号は同一あるいは相当部分を示すも
のである。
1 (a), (b) and (c) are views for explaining one embodiment of the present invention, and FIGS. 2 (a), (b), (c), (d) and (e). Is a diagram for explaining the relationship between the number of through-hole plating, the interval and the resonance frequency. FIGS. 3 (a) and 3 (b) are diagrams showing an example of a conventional one-side short-circuit type microstrip antenna, FIG. FIG. 6 is a diagram showing characteristics of a resonance frequency and a reflection loss of a conventional one-short-circuited type microstrip antenna. In the figure, (1) is a radiating conductor element, (2) is a dielectric substrate, (3) is a ground conductor plate, (4) is a coaxial line, (5) is a feeding point, (6) is a central conductor, and (7) ) Is an open peripheral edge, (8) is a short-circuited peripheral edge, and (9) is a through hole plating. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】波長に比べて薄い誘電体基板と、前記誘電
体基板の一方面に設けられた接地導体板と、前記誘電体
基板の他方面に設けられ、辺長a、bの矩形をなし、か
つ辺長bを有する一端が前記接地導体板に短絡された平
面回路による放射導体素子と、前記接地導体板の背面に
設けられ、前記放射導体素子に中心導体を介して給電す
るための同軸線路とを備えた一端短絡型マイクロストリ
ップアンテナにおいて、前記放射導体素子と前記接地導
体板間を短絡するために使用するスルーホールメッキを
上記放射導体素子の短絡周辺端に辺長b方向に沿って設
け、そのスルーホールメッキの個数と間隔をマイクロス
トリップアンテナの共振周波数に応じて設定することに
より前記放射導体素子の辺長a又は前記誘電体基板の比
誘電率を変化させることなくマイクロストリップアンテ
ナの周波数を所望の周波数に設定することを特徴とする
一端短絡型マイクロストリップアンテナ。
1. A dielectric substrate thinner than a wavelength, a ground conductor plate provided on one surface of the dielectric substrate, and a rectangle having side lengths a and b provided on the other surface of the dielectric substrate. None, and one end having a side length b is a radiating conductor element by a planar circuit having one end short-circuited to the grounding conductor plate, and a radiating conductor element provided on the back surface of the grounding conductor plate for feeding power to the radiating conductor element via a center conductor. In a short-circuited one-end type microstrip antenna including a coaxial line, through-hole plating used for short-circuiting between the radiation conductor element and the ground conductor plate is provided along a side length b direction at a short-circuited peripheral end of the radiation conductor element. By changing the side length a of the radiating conductor element or the relative permittivity of the dielectric substrate by setting the number and spacing of the through-hole plating according to the resonance frequency of the microstrip antenna. One end short-circuited microstrip antenna and sets the frequency of the microstrip antenna to a desired frequency without.
JP63166209A 1988-07-04 1988-07-04 Short-circuited microstrip antenna Expired - Lifetime JPH0646682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63166209A JPH0646682B2 (en) 1988-07-04 1988-07-04 Short-circuited microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63166209A JPH0646682B2 (en) 1988-07-04 1988-07-04 Short-circuited microstrip antenna

Publications (2)

Publication Number Publication Date
JPH0216804A JPH0216804A (en) 1990-01-19
JPH0646682B2 true JPH0646682B2 (en) 1994-06-15

Family

ID=15827122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63166209A Expired - Lifetime JPH0646682B2 (en) 1988-07-04 1988-07-04 Short-circuited microstrip antenna

Country Status (1)

Country Link
JP (1) JPH0646682B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648763B2 (en) * 1989-06-27 1994-06-22 防衛庁技術研究本部長 Short-circuited microstrip antenna
JPH0620642U (en) * 1992-04-18 1994-03-18 北海鋼機株式会社 Non-slip waste formwork for concrete slabs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122204A (en) * 1982-12-28 1984-07-14 Mitsubishi Electric Corp Printed antenna
JPH061848B2 (en) * 1984-09-17 1994-01-05 松下電器産業株式会社 antenna
JP2530851Y2 (en) * 1985-04-15 1997-04-02 日本電気株式会社 antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEETRANSACTIONSONANTENNASANDPROPAGATIONVol.AP29,No.1JAN1981P.118−P.123

Also Published As

Publication number Publication date
JPH0216804A (en) 1990-01-19

Similar Documents

Publication Publication Date Title
US4843403A (en) Broadband notch antenna
US7446712B2 (en) Composite right/left-handed transmission line based compact resonant antenna for RF module integration
Jin et al. Millimeter-wave TE 20-mode SIW dual-slot-fed patch antenna array with a compact differential feeding network
US3995277A (en) Microstrip antenna
US4853704A (en) Notch antenna with microstrip feed
WO2021120545A1 (en) Low-profile broadband patch antenna structure for 5g millimeter wave wireless communication
WO2022198931A1 (en) Single-layer broadband microstrip patch antenna and method for forming same
US20040201525A1 (en) Antenna arrays and methods of making the same
US4649396A (en) Double-tuned blade monopole
CN105958192A (en) Double-frequency anti-multipath navigation antenna adopting Peano fractal electromagnetic band gap structure
JP3004082B2 (en) Flat slot antenna
CN111009725A (en) Leaky-wave antenna
CN110212316A (en) A kind of multiband aerial based on composite right/left-handed transmission line
JPH0646682B2 (en) Short-circuited microstrip antenna
JPH08250916A (en) Antenna
KR100286005B1 (en) Microstrip dipole antenna array
KR100449857B1 (en) Wideband Printed Dipole Antenna
CN112448166A (en) High-gain butterfly-shaped microstrip branch antenna
JPH0648763B2 (en) Short-circuited microstrip antenna
JP2613170B2 (en) Broadband planar antenna
RU150630U1 (en) Fragment of a Broadband Phased Antenna Array in Three Frequency Bands
JPH0693571B2 (en) Short-circuited microstrip antenna
Veeramani et al. Compartive study of coplanar waveguide feed and microstrip feed for log periodic antennas
JPH04170804A (en) Microstrip antenna
Chen et al. Bandwidth enhancement of substrate integrated waveguide (SIW) slot antenna with parasitic dipole