JPH0216804A - Micro strip antenna of one end-short type - Google Patents

Micro strip antenna of one end-short type

Info

Publication number
JPH0216804A
JPH0216804A JP63166209A JP16620988A JPH0216804A JP H0216804 A JPH0216804 A JP H0216804A JP 63166209 A JP63166209 A JP 63166209A JP 16620988 A JP16620988 A JP 16620988A JP H0216804 A JPH0216804 A JP H0216804A
Authority
JP
Japan
Prior art keywords
resonant frequency
short
intervals
circuit
microstrip antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63166209A
Other languages
Japanese (ja)
Other versions
JPH0646682B2 (en
Inventor
Yoshiaki Tsuda
喜秋 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63166209A priority Critical patent/JPH0646682B2/en
Publication of JPH0216804A publication Critical patent/JPH0216804A/en
Publication of JPH0646682B2 publication Critical patent/JPH0646682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To match electric characteristics such as the matching of a resonant frequency and that of an impedance by making the resonant frequency variable according to the intervals and the number of inter-plated through holes. CONSTITUTION:A high frequency signal inputted to a coaxial line 4 excites a feeding point 5 via a central conductor 6, and a linear polarized wave is radiated from the open peripheral end 7 of a radiation conductor element 1. The resonant frequency of a one end-short type micro strip antenna is optionally set by the plated through holes 9 which are provided on a short peripheral end 8 with the intervals of (e). When the intervals (e) are narrowed, the side length (a) are equally shortened, the resonant frequency moves to a higher level, and the resonant frequency moves to a lower level when the intervals (e) are widen.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、同軸線路により給電する一端短絡型マイク
ロストリップアンテナに関し、特に短絡する方法をスル
ーホールメッキとすることで、放射導体素子の共振周波
数を任意に可変とする構造に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a one-end short-circuit type microstrip antenna that is powered by a coaxial line, and in particular, by using through-hole plating as the short-circuiting method, the resonant frequency of the radiating conductor element is reduced. This relates to a structure in which the value can be arbitrarily varied.

〔従来の技術〕[Conventional technology]

不平衡平面回路共振器を利用した一端短絡型マイクロス
トリップアンテナは、一般に小型・軽量で低損失である
という利点を有している。
A short-circuited microstrip antenna using an unbalanced planar circuit resonator generally has the advantages of being small, lightweight, and low loss.

第3図(a)と(b)は1例えば羽石、須賀「片側短絡
型マイクロストリップアンテナ」昭和61年度電子通信
学会総合全国大会(89−5)3−275から3−27
6ページに示された従来の一端短絡型マイクロス) I
Jツブアンテナの一例を示す図である。
Figures 3 (a) and (b) are 1. For example, Haneishi, Suga, "Single-sided short-circuit type microstrip antenna," 1985 National Conference of the Institute of Electronics and Communication Engineers (89-5), 3-275 to 3-27
Conventional short-circuited micros (shown on page 6) I
FIG. 3 is a diagram showing an example of a J-tube antenna.

第3図りa)は平面図、第3図(b)は断面図である。The third diagram a) is a plan view, and FIG. 3(b) is a sectional view.

図中、(1)は辺長aとbの矩形の一端短絡型平面回路
による放射導体素子、(2)は波長に比べて十分薄い誘
電体基板(比誘電率ε1.厚さh)、(3)は接地導体
板、(4)は入力端子の同軸線路、(6)は同軸線路の
中心導体、(5)は同軸線路(4)の中心導体(6)を
放射導体素子(1)へ接続する給電点、(7)は電波の
放射する開放周辺端、(8)は放射導体素子(1)を接
地導体板(3)に接続する短絡周辺端である。
In the figure, (1) is a radiation conductor element made of a rectangular one-end short-circuited planar circuit with side lengths a and b, (2) is a dielectric substrate (relative permittivity ε1, thickness h) that is sufficiently thin compared to the wavelength, ( 3) is the ground conductor plate, (4) is the coaxial line of the input terminal, (6) is the center conductor of the coaxial line, and (5) is the center conductor (6) of the coaxial line (4) to the radiation conductor element (1). The feeding points to be connected are (7) an open peripheral end from which radio waves are radiated, and (8) a short-circuit peripheral end which connects the radiation conductor element (1) to the ground conductor plate (3).

次に動作原理について説明する。Next, the operating principle will be explained.

給電点(5)からマイクロ波を給電すると、開放周辺端
(7)よシミ波が放射される。第3図(a)と(b)に
示す一例では直線偏波として動作する。
When microwaves are fed from the feed point (5), stain waves are radiated to the open peripheral end (7). The example shown in FIGS. 3(a) and 3(b) operates as a linearly polarized wave.

この一端短絡型マイクロス) IJツブアンテナの基本
モードの共振周波数fQは、 主として放射導体素子(
1)の辺長aと誘電体基板(2)の比誘電率ε、により
決定される。また9周波数帯域幅は。
The resonant frequency fQ of the fundamental mode of the IJ tube antenna (one end short-circuited micros) is mainly determined by the radiation conductor element (
It is determined by the side length a of 1) and the dielectric constant ε of the dielectric substrate (2). Also, what is the frequency bandwidth of 9?

主として誘電体基板(2)の比誘電率ε1と厚さhによ
υ決定され、ε1を小とし、さらにhを大にする程広帯
域となる性質があるが、高次モードの発生を防止するた
めに厚さhの選択範囲には限界があり、実用化されてい
る一端短絡型マイクロストリップアンテナの周波数帯域
は第4図に示すように数チ程度である。
It is mainly determined by the dielectric constant ε1 and thickness h of the dielectric substrate (2), and the smaller ε1 and the larger h the wider the band, but it is important to prevent the generation of higher-order modes. Therefore, there is a limit to the selection range of the thickness h, and the frequency band of the one-end short-circuited microstrip antenna that has been put into practical use is about several inches, as shown in FIG.

給電点インピーダンスは、給電点(5)を開放周辺端(
7)に一致させてc=0とした場合に高インピーダンス
となシ、給電点(5)を放射導体素子(11の短絡周辺
端(8)に近づけるに従って順次給電点インピーダンス
は低下する性質があシ、同軸線路(4)とインピーダン
ス整合を図るように寸法Cを選定する。
The feed point impedance is the feed point (5) at the open peripheral end (
7) and c = 0, the impedance is high, but as the feed point (5) approaches the short-circuit peripheral end (8) of the radiation conductor element (11), the impedance of the feed point gradually decreases. The dimension C is selected so as to achieve impedance matching with the coaxial line (4).

また9寸法dは交差偏波成分の発生を防止するためd=
b/z  とする。
In addition, the 9 dimension d is set to prevent the generation of cross-polarized components.
b/z.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の一端短絡型マイクロストリップアンテナは以上の
ように構成されているので、インピーダンス整合、交差
偏波抑圧や共振周波数の観点から一端短絡型マイクロス
トリップアンテナの寸法。
Since the conventional one-end short-circuited microstrip antenna is configured as described above, the dimensions of the one-end short-circuited microstrip antenna are important from the viewpoints of impedance matching, cross-polarization suppression, and resonant frequency.

形状や同軸線路の位置が限定されているので、多数個一
端短絡型マイクロストリップアンテナを製造して使用す
る場合、各々の電気的特性は、使用する誘電体基板の誘
電率のばらつきや工作性の公差により異なるなどの課題
があった。
Since the shape and position of the coaxial line are limited, when manufacturing and using a large number of single-end short-circuited microstrip antennas, the electrical characteristics of each microstrip antenna may be affected by variations in the permittivity of the dielectric substrate used and workability. There were issues such as differences due to tolerances.

また、従来の一端短絡型マイクロストリップアンテナは
本質的に狭帯域であるだめ、共振周波数の整合が困難で
ある等の課題があった。
Further, since the conventional one-end short-circuit type microstrip antenna essentially has a narrow band, it is difficult to match the resonant frequency.

この発明は上記のような課題を解消するためになされた
もので、放射導体素子や同軸線路の位置等の寸法、形状
を変化させずに誘電体基板の誘電率のばらつきや工作性
の公差が付加されても、共振周波数の整合やインピーダ
ンス整合等の電気的特性の整合を可能とする一端短絡型
マイクロストリップアンテナを得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to eliminate variations in the dielectric constant of the dielectric substrate and workability tolerances without changing the dimensions and shape of the radiation conductor element or coaxial line. It is an object of the present invention to obtain a one-end short-circuited microstrip antenna that enables matching of electrical characteristics such as resonant frequency matching and impedance matching even when the antenna is added.

〔課題を解決するだめの手段〕[Failure to solve the problem]

この発明に係る一端短絡型マイクロストリップアンテナ
は、放射導体素子+11と接地導体板(3)間を接続す
る短絡周辺端(8)のかわシに、短絡周辺端(8)側を
任意の間隔で複数個のスルーホールメッキを配置し、こ
のスルーホールメッキ間の間隔と個数によって、この一
端短絡型マイクロストリップアンテナの共振周波数を可
変し、所望の周波数に整合をとることにしたものである
In the one-end short-circuit type microstrip antenna according to the present invention, the short-circuit peripheral end (8) side is connected to the short-circuit peripheral end (8) connecting between the radiation conductor element +11 and the ground conductor plate (3) at an arbitrary interval. A plurality of through-hole platings are arranged, and the resonant frequency of this one-end short-circuited microstrip antenna is varied by changing the spacing between the through-hole platings and the number of through-hole platings, and matching to a desired frequency is achieved.

〔作用〕[Effect]

この発明における一端短絡型マイクロストリップアンテ
ナは、放射導体素子filと接地導体板(3)間を開放
周辺端(7)と反対側に複数個のスルーホールメッキに
て短絡し、そのスルーホールメッキの数量と間隔を変化
することで、放射導体素子(11の辺長a、または、誘
電体基板(2)の比誘電率ε、を変化させなくても一端
短絡型マイクロストリップアンテナの共振周波数を所望
の周波数に整合を図れる。
In the one-end short-circuit type microstrip antenna of the present invention, a plurality of through-hole platings are used to short-circuit between the radiation conductor element fil and the ground conductor plate (3) on the side opposite to the open peripheral end (7), and the through-hole plating is By changing the number and spacing, the resonant frequency of the short-circuited microstrip antenna can be adjusted to the desired value without changing the side length a of the radiating conductor element (11) or the dielectric constant ε of the dielectric substrate (2). It is possible to match the frequency of

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)と(b)と(C)は、この発明の一実施例
を示す図であシ、第1図(a)は平面図、第1図(b)
は断面図、第1図(c)は等節回路を示す図である。図
中。
FIGS. 1(a), (b), and (C) are views showing one embodiment of the present invention, FIG. 1(a) is a plan view, and FIG. 1(b) is a plan view.
is a sectional view, and FIG. 1(c) is a diagram showing an isotonic circuit. In the figure.

(11から(8)は、上記従来の一端短絡型マイクロス
トリップアンテナと全く同一のものである。(9)は。
(11 to (8) are exactly the same as the conventional one-end short-circuited microstrip antenna mentioned above. (9) is.

従来の一端短絡型マイクロストリップアンテナが短絡周
辺端(8)で全面に接地導体板と接続していたかわシに
1間隔eで穴を開は接地導体板と接続するためのスルー
ホールメッキである。
The conventional one-end short-circuit type microstrip antenna is connected to the ground conductor plate on the entire surface at the short-circuit peripheral end (8). Holes are made at 1 interval e through hole plating to connect with the ground conductor plate. .

第2図は、スルーホールメッキ(9)の数を変化させた
場合の一端短絡型マイクロストリップアンテナの共振周
波数の変化を示す図である。
FIG. 2 is a diagram showing changes in the resonant frequency of the one-end short-circuited microstrip antenna when the number of through-hole platings (9) is changed.

上記のように構成されたこの発明による一端短絡型マイ
クロストリップアンテナの一実施例の動作について説明
する。
The operation of one embodiment of the one-end short-circuit type microstrip antenna according to the present invention configured as described above will be described.

入力端子の同軸線路(4)へ入力された高周波信号は、
中心導体(6)を経由して給電点(5)を励振し、放射
導体素子(1)の開放周辺端(7)から直線偏波の電波
が放射される。放射導体素子(++に対する給電点(5
)の位置は、従来の一端短絡型マイクロストリップアン
テナと同様に、インピーダンス整合と交差偏波抑圧の観
点から定められる。一方、一端短絡型マイクロスl−I
Jツブアンテナの共振周波数f、は。
The high frequency signal input to the coaxial line (4) of the input terminal is
The feed point (5) is excited via the center conductor (6), and linearly polarized radio waves are radiated from the open peripheral end (7) of the radiation conductor element (1). Radiation conductor element (feed point for ++ (5
) is determined from the viewpoint of impedance matching and cross-polarization suppression, similar to the conventional short-circuited microstrip antenna. On the other hand, one end shorted type micros l-I
The resonant frequency f of the J-tube antenna is.

放射導体素子(1)の辺長aと誘電体基板(2)の比誘
電率ε1を変化させずに、短絡周辺端(8)に間隔eで
設けた複数個のスルーホールメッキ(9)で任意に設定
できる。スルーホールメッキ(9)の数量を多くし間隔
eを狭くすると放射導体素子(1)の辺長aが等価的に
短くなり、共振周波数は、第2図の一点破線で示すよう
に高い周波数に移動し、スルーホールメッキ(9)の数
量を少なくし間隔eを広くすると放射導体素子(1)の
辺長aが等価的に長くなり、共振周波数は、第2図の点
数で示すように低い周波数に移動する等の共振周波数の
可変ができる。
A plurality of through-hole platings (9) provided at intervals of e on the short-circuit peripheral edge (8) without changing the side length a of the radiation conductor element (1) and the dielectric constant ε1 of the dielectric substrate (2) Can be set arbitrarily. When the number of through-hole platings (9) is increased and the interval e is narrowed, the side length a of the radiation conductor element (1) becomes equivalently shorter, and the resonance frequency increases to a higher frequency as shown by the dotted line in Figure 2. If the number of through-hole platings (9) is reduced and the interval e is widened, the side length a of the radiation conductor element (1) becomes equivalently longer, and the resonant frequency becomes lower as shown by the points in Figure 2. It is possible to change the resonant frequency by changing the frequency.

ナオ、上記実施例では、スルーホールメッキ(9)を円
形で示したが、四角形で形成してもよい。丑だ、上記実
施例では、放射導体素子(++と接地導体板(3)の間
に誘電体基板(2)を1枚で説明しだが、複数枚の誘電
体基板で構成してもよく、上記実施例と同様の効果が得
られる。
In the above embodiment, the through-hole plating (9) is shown in a circular shape, but it may be formed in a square shape. In the above embodiment, one dielectric substrate (2) is used between the radiation conductor element (++) and the ground conductor plate (3), but it may be composed of multiple dielectric substrates. The same effects as in the above embodiment can be obtained.

さらに、上記実施例では、一端短絡型マイクロス) I
Jツブアンテナの形状を矩形の放射導体素子(1)の場
合で説明したが、正方形1円形あるいは任意形状の放射
導体素子(1)でも同様の効果が得られる。
Furthermore, in the above embodiment, one end short-circuit type micros) I
Although the shape of the J-tube antenna has been described using a rectangular radiating conductor element (1), the same effect can be obtained with a radiating conductor element (1) having a square, a circle, or an arbitrary shape.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば複数個のスルーホール
メッキ(9)を短絡周辺端(8)に配置し、スルーホー
ルメッキ(9)の個数と間隔を変化させることで、放射
導体素子(1)の辺長aや誘電体基板(2)の比誘”+
(+:率ε、を変化させなくても共振周波数を変化させ
ることができるので、誘電体基板の比誘電率のばらつき
や工作性の公差により、共振周波数が変化してもスルー
ホールメッキ(9)の個数と間隔を変化させることで所
望の共振周波数に整合を図れる一端短絡型マイクロスト
リップアンテナが得られる効果がある。
As described above, according to the present invention, by arranging a plurality of through-hole platings (9) at the short-circuit peripheral end (8) and changing the number and interval of the through-hole platings (9), the radiation conductor element ( The side length a of 1) and the relative permittivity of dielectric substrate (2)
(+: The resonant frequency can be changed without changing the rate ε, so even if the resonant frequency changes due to variations in the dielectric constant of the dielectric substrate and tolerances in workability, through-hole plating (9) ) By changing the number and spacing of the antennas, it is possible to obtain a one-end short-circuited microstrip antenna that can be matched to a desired resonant frequency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b) 、 (C)はこの発明の一
実施例を説明するだめの図、第2図はスルーホールメッ
キの数量と間隔を変化させた場合の一端短絡型マイクロ
ストリップアンテナの共振周波数と反射損失の特性を示
す図、第3図(a) 、 (+))は従来の一端短絡型
マイクロストリップアンテナの一例を示す図、第4図は
従来の一端短絡型マイクロストリップアンテナの共振周
波数と反射損失の特性を示す図である。 図中、(1)は放射導体素子、(2)は誘電体基板、(
3)は接地導体板、(4)は同軸線路、(5)は給電点
、(6)は中心導体、(7)は開放周辺端、(8)は短
絡周辺端、(9)はスルーホールメッキである。 なお1図中、同一符号は同一あるいは相当部分を示すも
のである。
Figures 1 (a), (b), and (C) are diagrams for explaining one embodiment of the present invention, and Figure 2 is a one-end short-circuit type microstrip when the number and spacing of through-hole plating are varied. A diagram showing the characteristics of the resonant frequency and return loss of the antenna. Figure 3 (a) and (+)) are diagrams showing an example of a conventional one-end shorted microstrip antenna. Figure 4 is a conventional one-end shorted microstrip antenna. FIG. 3 is a diagram showing the characteristics of the resonant frequency and return loss of the antenna. In the figure, (1) is a radiation conductor element, (2) is a dielectric substrate, (
3) is the ground conductor plate, (4) is the coaxial line, (5) is the feed point, (6) is the center conductor, (7) is the open peripheral edge, (8) is the shorted peripheral edge, (9) is the through hole. It is plated. Note that in FIG. 1, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 波長に比べて薄い誘電体基板上に、一端を接地導体板に
短絡した平面回路による放射導体素子を設け、対向する
接地導体板の背面に、給電のための同軸線路を設けて構
成される一端短絡型マイクロストリップアンテナにおい
て、前記接地導体板と平面回路間を短絡するために使用
するスルーホールメッキの個数と間隔によりマイクロス
トリップアンテナの共振周波数を可変とすることを特徴
とする一端短絡型マイクロストリップアンテナ。
A radiation conductor element with a plane circuit short-circuited at one end to a grounded conductor plate is provided on a dielectric substrate that is thinner than the wavelength, and a coaxial line for power supply is provided on the back of the opposing grounded conductor plate. A short-circuit type microstrip antenna, characterized in that the resonant frequency of the microstrip antenna is made variable by the number and spacing of through-hole plating used to short-circuit between the ground conductor plate and the planar circuit. antenna.
JP63166209A 1988-07-04 1988-07-04 Short-circuited microstrip antenna Expired - Lifetime JPH0646682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63166209A JPH0646682B2 (en) 1988-07-04 1988-07-04 Short-circuited microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63166209A JPH0646682B2 (en) 1988-07-04 1988-07-04 Short-circuited microstrip antenna

Publications (2)

Publication Number Publication Date
JPH0216804A true JPH0216804A (en) 1990-01-19
JPH0646682B2 JPH0646682B2 (en) 1994-06-15

Family

ID=15827122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63166209A Expired - Lifetime JPH0646682B2 (en) 1988-07-04 1988-07-04 Short-circuited microstrip antenna

Country Status (1)

Country Link
JP (1) JPH0646682B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330501A (en) * 1989-06-27 1991-02-08 Tech Res & Dev Inst Of Japan Def Agency One-end short-circuited type microstrip antenna
JPH0620642U (en) * 1992-04-18 1994-03-18 北海鋼機株式会社 Non-slip waste formwork for concrete slabs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122204A (en) * 1982-12-28 1984-07-14 Mitsubishi Electric Corp Printed antenna
JPS6171701A (en) * 1984-09-17 1986-04-12 Matsushita Electric Ind Co Ltd Antenna
JPS61171307U (en) * 1985-04-15 1986-10-24

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122204A (en) * 1982-12-28 1984-07-14 Mitsubishi Electric Corp Printed antenna
JPS6171701A (en) * 1984-09-17 1986-04-12 Matsushita Electric Ind Co Ltd Antenna
JPS61171307U (en) * 1985-04-15 1986-10-24

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330501A (en) * 1989-06-27 1991-02-08 Tech Res & Dev Inst Of Japan Def Agency One-end short-circuited type microstrip antenna
JPH0620642U (en) * 1992-04-18 1994-03-18 北海鋼機株式会社 Non-slip waste formwork for concrete slabs

Also Published As

Publication number Publication date
JPH0646682B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
CN105870619B (en) A kind of differential filtering micro-strip array antenna with high common mode inhibition
US6333719B1 (en) Tunable electromagnetic coupled antenna
JP3288059B2 (en) Feeder for radiating element operating with two polarizations
US4477813A (en) Microstrip antenna system having nonconductively coupled feedline
US3995277A (en) Microstrip antenna
US6879290B1 (en) Compact printed “patch” antenna
US5539420A (en) Multilayered, planar antenna with annular feed slot, passive resonator and spurious wave traps
JP4263820B2 (en) Flat antenna for circular polarization
US5703601A (en) Double layer circularly polarized antenna with single feed
EP0509636B1 (en) Miniature dual mode planar filters
US5945959A (en) Surface mounting antenna having a dielectric base and a radiating conductor film
JPH0671171B2 (en) Wideband antenna
US5512910A (en) Microstrip antenna device having three resonance frequencies
WO2022198931A1 (en) Single-layer broadband microstrip patch antenna and method for forming same
JP4364439B2 (en) antenna
CN106816696B (en) A kind of Vivaldi antenna
Liang et al. Quasi-reflectionless tunable filtering antenna for multicarrier transceiver
US20020113736A1 (en) Compact printed "patch" antenna
US5777584A (en) Planar antenna
US6765537B1 (en) Dual uncoupled mode box antenna
CN109802225B (en) Microstrip filter antenna
JPH0216804A (en) Micro strip antenna of one end-short type
KR100286005B1 (en) Microstrip dipole antenna array
CN109075452B (en) Broadband back cavity type slotted antenna
JP3798063B2 (en) Antenna with switching mechanism