JPH0646568B2 - Molten salt fuel cell - Google Patents

Molten salt fuel cell

Info

Publication number
JPH0646568B2
JPH0646568B2 JP59171820A JP17182084A JPH0646568B2 JP H0646568 B2 JPH0646568 B2 JP H0646568B2 JP 59171820 A JP59171820 A JP 59171820A JP 17182084 A JP17182084 A JP 17182084A JP H0646568 B2 JPH0646568 B2 JP H0646568B2
Authority
JP
Japan
Prior art keywords
molten salt
gas
fuel cell
electrolyte
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59171820A
Other languages
Japanese (ja)
Other versions
JPS6149381A (en
Inventor
久朗 行天
順二 新倉
昭宏 細井
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59171820A priority Critical patent/JPH0646568B2/en
Publication of JPS6149381A publication Critical patent/JPS6149381A/en
Publication of JPH0646568B2 publication Critical patent/JPH0646568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、溶融炭酸塩などの溶融塩を電解質とし、ガス
状の活物質を用いた燃料電池の改良に関する。
TECHNICAL FIELD The present invention relates to an improvement in a fuel cell using a molten salt such as a molten carbonate as an electrolyte and a gaseous active material.

従来例の構成とその問題点 溶融塩を電解質に用いた燃料電池を代表する溶融炭酸塩
燃料電池の構成の従来例を第4図に示す。炭酸カリウ
ム,炭酸リチウムなどの混合炭酸塩(LiCO:K
CO=62:38)をアルミン酸リチウムの微粉末
と混合しホットプレスした電解質体1(アルミン酸リチ
ウム重量比55%)をニッケル焼結体より成る燃料極
(負極)2と、リチウムニッケル酸化物の酸化極(正
極)3とで挟み、それぞれのガス室4,5には集電と電
極の固定を兼ねた集電体6,7が配されている。活物質
ガスは、ガス室入口8,9から供給され、排ガスはガス
室出口10,11から排出される。12はバイポーラ板
である。
Configuration of Conventional Example and Problems Thereof FIG. 4 shows a conventional example of the configuration of a molten carbonate fuel cell representing a fuel cell using a molten salt as an electrolyte. Mixed carbonates such as potassium carbonate and lithium carbonate (Li 2 CO 3 : K
2 CO 3 = 62: 38) was mixed with fine powder of lithium aluminate and hot-pressed, and an electrolyte body 1 (55% by weight of lithium aluminate) was used as a fuel electrode (negative electrode) 2 made of a nickel sintered body and lithium nickel. The gas chambers 4 and 5 are sandwiched between the oxide electrodes (positive electrodes) 3 of oxides, and current collectors 6 and 7 are disposed in the gas chambers 4 and 5 for both collecting current and fixing the electrodes. The active material gas is supplied from the gas chamber inlets 8 and 9, and the exhaust gas is discharged from the gas chamber outlets 10 and 11. 12 is a bipolar plate.

この溶融炭酸塩型燃料電池に用いる酸化剤ガスは空気と
二酸化炭素の混合ガスで、このガスが正極で還元されて
生じた炭酸イオンが溶融塩中に放出される。一方、負極
では燃料として供給した水素ガスが炭酸イオンと反応
し、水と二酸化炭素が発生する。その際、電解質中の電
流は炭酸イオンの移動によって担われている。このよう
に電解質体1には、燃料ガスと酸化剤ガスの混合を防ぐ
仕切り板としての役割と、正極反応によって生じた炭酸
イオンを速やかに負極上の反応部位に運ぶ役割がある。
The oxidant gas used in this molten carbonate fuel cell is a mixed gas of air and carbon dioxide, and carbonate ions generated by reducing this gas at the positive electrode are released into the molten salt. On the other hand, in the negative electrode, hydrogen gas supplied as a fuel reacts with carbonate ions to generate water and carbon dioxide. At that time, the electric current in the electrolyte is carried by the movement of carbonate ions. As described above, the electrolyte body 1 has a role as a partition plate for preventing the mixing of the fuel gas and the oxidant gas, and a role for promptly transporting carbonate ions generated by the positive electrode reaction to the reaction site on the negative electrode.

しかしながら、第4図に示した従来型の燃料電池の運転
を続けると、電解質体中の溶融炭酸塩電解質の量が減少
し、これらの重要な役割に支障をきたすようになる。す
なわち、電解質体の乾燥,ひび割れによって酸化剤ガス
と燃料ガスの混合が発生したり、電池内部抵抗の増加が
生じたりする。
However, if the operation of the conventional fuel cell shown in FIG. 4 is continued, the amount of the molten carbonate electrolyte in the electrolyte body decreases, and these important roles are hindered. That is, due to the drying and cracking of the electrolyte, mixing of the oxidant gas and the fuel gas may occur, or the internal resistance of the battery may increase.

第5図に従来の電池の寿命試験の結果を示して電解質量
が減少する様子を具体的にした。150mA/cm2の一定電流
で運転を続けると、運転開始後約1000時間で電池出
力電圧の低下が始まり、その後1000時間毎に0.025
Vの割合で出力電圧が下がって行き、約5000時間後
には運転開始時より0.1V低い0.65Vまで低下した。そ
の間、図中黒丸で示した内部抵抗は0.6Ω/cm2から1.2
Ω/cm2まで上昇した。この内部抵抗の増加は明らかに
電解質体中の電解質の散逸に由来している。なお、運転
温度は650℃である。
FIG. 5 shows the result of the life test of the conventional battery to concretely show how the electrolytic mass decreases. When the operation is continued at a constant current of 150mA / cm 2 , the battery output voltage begins to drop about 1000 hours after the start of operation and then 0.025 every 1000 hours.
The output voltage decreased at the rate of V, and after about 5000 hours, it decreased to 0.15V, which is 0.1V lower than that at the start of the operation, to 0.65V. Meanwhile, the internal resistance indicated by the black circle in the figure is 0.6Ω / cm 2 to 1.2.
It rose to Ω / cm 2 . This increase in internal resistance is apparently due to the dissipation of the electrolyte in the electrolyte body. The operating temperature is 650 ° C.

電池運転中の電解質の散逸・乾燥による電池性能の低下
を防止するために、あらかじめ余分の炭酸塩を電解質体
中に保持させておいたり、運転途中で炭酸塩を直接添加
したりする方法も検討されているが、炭酸塩の量の制御
が難しかったり、運転操作が複雑になつたりするなど、
種々の問題をかかえていた。またそれらの方法は炭酸塩
の減少の主たる2つの原因、すなわち、1)電極,集電
体,パイポーラ板などの他の電池構成材料への浸み出
し、2)活物質ガス中への蒸散、のうち前者に対しては
有効であったが、後者については根本的解決とならなか
った。
In order to prevent the deterioration of battery performance due to the dissipation and drying of the electrolyte during battery operation, we are also considering ways to keep excess carbonate in the electrolyte beforehand or to add carbonate directly during operation. However, it is difficult to control the amount of carbonate, the driving operation becomes complicated, etc.
He had various problems. In addition, these methods have two main causes of the reduction of carbonates: 1) leaching into other battery constituent materials such as electrodes, current collectors, and bipolar plates, 2) evaporation into active material gas, Of these, the former was effective, but the latter was not a fundamental solution.

このように、従来の電池では電解質の蒸散,乾燥を根本
的に防ぐことができず、実用化のために不可欠な長寿命
化の大きな障害となっていた。
As described above, the conventional battery cannot fundamentally prevent the evaporation and drying of the electrolyte, which is a major obstacle to extending the life, which is essential for practical use.

発明の目的 本発明は、溶融塩燃料電池の電解質を補給し、同時に電
解質の量を制御できる構成にすることにより、電池の長
寿命化を図ることを目的とする。
OBJECT OF THE INVENTION It is an object of the present invention to provide a molten salt fuel cell with an electrolyte that can be replenished and at the same time control the amount of the electrolyte, thereby prolonging the life of the cell.

発明の構成 本発明は、活物質ガスの給気側前段に溶融塩バブラーを
設け、そのバブラーを経たガスを電池内部に導入するよ
うに構成したことを特徴とするものである。
Structure of the Invention The present invention is characterized in that a molten salt bubbler is provided in the upstream side of the active material gas supply side, and the gas passing through the bubbler is introduced into the battery.

実施例の説明 溶融炭酸塩は正極材料であるリチウムニッケル酸化物に
比べて、負極に用いたニッケルの方が接触角が大きく、
その結果一般に負極側の方が電解質不足の状態になりや
すい。したがって本発明の実施例として負極ガス給気前
段に溶融塩バブラーを備えた例を示す。第1図に本発明
による電池系を示し、第2図に溶融塩バブラーの構造図
を示した。13は第4図のような構成の燃料電池本体で
あり、その負極側のガス室には燃料の供給路14とガス
排出路15が、また正極側のガス室には酸化剤ガスの供
給路16とガス排出路17が接続されている。18は燃
料供給路14のバイパス路に設けた溶融塩バブラーであ
る。燃料電池本体13及び溶融塩バブラ18は電気炉1
9内に設置されている。
Description of Examples Molten carbonate has a larger contact angle in nickel used in the negative electrode than in lithium nickel oxide, which is the positive electrode material,
As a result, in general, the negative electrode side is more likely to be in a state of electrolyte shortage. Therefore, as an embodiment of the present invention, an example in which a molten salt bubbler is provided before the negative gas supply is shown. FIG. 1 shows a battery system according to the present invention, and FIG. 2 shows a structural diagram of a molten salt bubbler. Reference numeral 13 denotes a fuel cell main body having the structure as shown in FIG. 4, in which a fuel supply passage 14 and a gas discharge passage 15 are provided in a gas chamber on the negative electrode side, and an oxidant gas supply passage is provided in a gas chamber on the positive electrode side. 16 and the gas discharge path 17 are connected. Reference numeral 18 is a molten salt bubbler provided in a bypass passage of the fuel supply passage 14. The fuel cell body 13 and the molten salt bubbler 18 are the electric furnace 1.
It is installed in 9.

通常の運転時には、コック20をとじ、コック21を開
けるが、電池内の電解質を添加したり、電解質の散逸を
防止しながら運転する場合には、コック20を開けコッ
ク21をとじて水素ガスが電気炉内に設けた溶融塩バブ
ラ18を経て、電池本体14に供給される。第2図に示
した溶融塩バブラーでは水素ガス供給管22から供給さ
れた水素ガスは、ガス吹き込み管の先より、溶融塩リザ
ーブ室に貯められた電解質溶融塩中に吹き込まれ、気泡
となる。生成した気泡が液面にてはじける際に発生した
飛沫が溶融塩の霧となって水素ガス中に混入し排気管2
4から電池におくられる。本実施例では溶融塩バブラー
を溶融塩燃料電池と同じ電気炉内に配し、溶融塩の融点
以上の温度(〜650℃)となるようにした。
During normal operation, the cock 20 is closed and the cock 21 is opened. However, when operating while adding the electrolyte in the battery or preventing the dissipation of the electrolyte, open the cock 20 and close the cock 21 to release hydrogen gas. It is supplied to the battery main body 14 via the molten salt bubbler 18 provided in the electric furnace. In the molten salt bubbler shown in FIG. 2, the hydrogen gas supplied from the hydrogen gas supply pipe 22 is blown into the electrolyte molten salt stored in the molten salt reserve chamber from the tip of the gas blowing pipe to form bubbles. Splashes generated when the generated bubbles burst on the liquid surface become mist of molten salt and mix into hydrogen gas, and the exhaust pipe 2
It is put in the battery from 4. In this example, the molten salt bubbler was placed in the same electric furnace as the molten salt fuel cell so that the temperature was up to the melting point of the molten salt (up to 650 ° C).

また、溶融塩バブラーの容量及び運転条件は用いる溶融
塩燃料電池の大きさ・構成によっても異なるが実施例と
して用いた電極面積約25cm2の単一電池に対しては、
リザーブ室には80mlの溶融塩を用い、電解質の補給時
には水素ガスの吹き込み供給ガス流量は80〜200ml
/minであった。吹き込み供給ガス流量が多すぎると、溶
融塩によるガス流路の閉塞を来し、逆に少ないと電解質
の補給効果が少なかった。
The capacity and operating conditions of the molten salt bubbler vary depending on the size and configuration of the molten salt fuel cell used, but for a single cell with an electrode area of about 25 cm 2 used as an example,
80 ml of molten salt is used in the reserve chamber, and when supplying electrolyte, hydrogen gas is blown in and the supply gas flow rate is 80 to 200 ml.
It was / min. When the flow rate of the supplied gas for blowing was too high, the gas flow path was blocked by the molten salt, and conversely, when the flow rate was low, the effect of replenishing the electrolyte was low.

一方、電池内部では水素ガス中の溶融炭酸塩の霧は、電
池構成材料表面、特に高比表面積を有する負極や電解質
保持体の表面に付着し、液化する。こうして液化した溶
融炭酸塩は電解質保持体に吸収保持され、電解質として
働く。
On the other hand, inside the battery, the mist of the molten carbonate in the hydrogen gas adheres to the surface of the battery constituent material, in particular, the surface of the negative electrode or the electrolyte holder having a high specific surface area, and is liquefied. The molten carbonate thus liquefied is absorbed and held by the electrolyte holding body, and functions as an electrolyte.

電解質を溶かす溶媒を補給する手段として、バブラーを
用いる方法は、アルカリ水溶液型の燃料電池などですで
に試みられているが、本発明による方法は溶融炭酸塩な
どの電解質自身を霧状にして直接補給するものであり明
らかに異なる。またリン酸型燃料電池において検討され
ているような電解質のガスによる補給に比べると飛躍的
に大量補給が可能であり、したがって本発明によって、
電池運転時の電解質量の制御が容易になった。
A method using a bubbler as a means for replenishing a solvent that dissolves the electrolyte has already been tried in an alkaline aqueous solution type fuel cell or the like, but the method according to the present invention directly atomizes the electrolyte itself such as molten carbonate and the like. It is something that is replenished and obviously different. Further, as compared with the replenishment of the electrolyte gas by the gas as being considered in the phosphoric acid fuel cell, it is possible to dramatically replenish the gas. Therefore, according to the present invention,
It became easier to control the electrolytic mass during battery operation.

本発明の溶融塩バブラーを用いて行なった電池の寿命試
験結果を第3図に示した。図中白丸で示した運転開始2
00時間後から溶融塩バブラーを通して水素ガスの給気
を行なったものは5500時間経っても性能の劣化が見
られなかった。また黒丸で示した運転開始3000時間
後から3800時間後まで溶融塩バブラーを用いたもの
は、補液によって性能が急激に回復し、補液を停止する
と蒸散によって徐々に性能が低下する様子を端的に表し
ている。
FIG. 3 shows the results of battery life tests carried out using the molten salt bubbler of the present invention. Operation start 2 shown by white circles in the figure
After the hydrogen gas was supplied through the molten salt bubbler after 00 hours, the performance was not deteriorated even after 5500 hours. In addition, the one using the molten salt bubbler, which is indicated by a black circle from 3000 hours to 3800 hours after the start of operation, shows that the performance rapidly recovers by the replacement fluid and that the performance gradually decreases due to evaporation when the replacement fluid is stopped. ing.

発明の効果 以上のように本発明によれば、溶融塩燃料電池の電解質
の添加が容易であり、電解質の量を制御できるので、従
来の電池に比べて飛躍的に長寿命になる。
EFFECTS OF THE INVENTION As described above, according to the present invention, the electrolyte can be easily added to the molten salt fuel cell, and the amount of the electrolyte can be controlled. Therefore, the life of the fuel cell is dramatically longer than that of the conventional cell.

【図面の簡単な説明】[Brief description of drawings]

第1図は発明による電池系の構成例を示すブロック図、
第2図は溶融塩バブラーの構成例を示す縦断面図、第3
図は本発明による溶融炭酸塩型燃料電池の寿命試験結果
を示した図、第4図は溶融炭酸塩燃料電池の要部縦断面
図、第5図は従来の燃料電池の寿命試験の結果を表した
図である。 1……電解質体、2……負極、3……正極、4,5……
ガス室、6,7……集電体、8,9……ガス室入口、1
0,11……ガス室出口、13……電池本体、14……
燃料ガス供給路、16……酸化剤ガス供給路、18……
溶融塩バブラ、23……溶融炭酸塩。
FIG. 1 is a block diagram showing a configuration example of a battery system according to the invention,
FIG. 2 is a vertical cross-sectional view showing a constitutional example of a molten salt bubbler, and FIG.
FIG. 4 is a view showing a life test result of a molten carbonate fuel cell according to the present invention, FIG. 4 is a longitudinal sectional view of a main part of the molten carbonate fuel cell, and FIG. 5 is a result of a life test of a conventional fuel cell. FIG. 1 ... Electrolyte body, 2 ... Negative electrode, 3 ... Positive electrode, 4,5 ...
Gas chamber, 6, 7 ... Current collector, 8, 9 ... Gas chamber inlet, 1
0,11 …… Gas chamber outlet, 13 …… Battery body, 14 ……
Fuel gas supply path, 16 ... Oxidant gas supply path, 18 ...
Molten salt bubbler, 23 ... Molten carbonate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩城 勉 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭60−264055(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsutomu Iwaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-60-264055 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】溶融塩を構成要素とする電解質体と、前記
電解質体を挟持する一対の電極と、前記電極の負極側と
正極側の表面を別個に壁面とするガス室と、前記電極と
電気的に接触するように前記ガス室内に配した導電性の
集電体と、前記電極の負極側を壁面とするガス室と正極
側を壁面とするガス室へ燃料ガス、酸化剤ガスを供給、
もしくは反応ガスを排出するガス供給管と排出管を具備
する単一の溶融塩燃料電池、もしくは前記単一の溶融塩
燃料電池を複数個電気的に直列に積層した積層型溶融塩
燃料電池において、燃料ガスあるいは酸化剤ガスの供給
管の少なくとも一方に電解質溶融塩の霧化装置を備えた
ことを特徴とする溶融塩燃料電池。
1. An electrolyte body having a molten salt as a constituent element, a pair of electrodes sandwiching the electrolyte body, a gas chamber having separate wall surfaces on the negative electrode side and the positive electrode side of the electrode, and the electrode. Supplying fuel gas and oxidant gas to a conductive current collector arranged in the gas chamber so as to make electrical contact, and to the gas chamber having the negative electrode side wall surface and the positive electrode side wall surface of the electrode ,
Alternatively, in a single molten salt fuel cell having a gas supply pipe for discharging a reaction gas and a discharge pipe, or a laminated molten salt fuel cell in which a plurality of the single molten salt fuel cells are electrically stacked in series, A molten salt fuel cell, characterized in that at least one of supply pipes for fuel gas or oxidant gas is provided with an atomization device for molten electrolyte.
【請求項2】霧化装置が、溶融した状態の電解質溶融塩
を貯めるリザーブ室と、その電解質溶融塩の中に、燃料
ガス、もしくは酸化剤ガスを気泡状にして吹き込む管、
およびそれらのガスを装置外より給気、排気する管より
なり、前記リザーブ室の上部には生成した気泡がはじけ
る空隙を有するバブラーで構成されたことを特徴とする
特許請求の範囲第1項記載の溶融塩燃料電池。
2. A reserve chamber in which an atomizing device stores a molten electrolyte molten salt, and a pipe for blowing a fuel gas or an oxidant gas into the electrolytic molten salt in the form of bubbles,
2. A bubbler comprising a pipe for supplying and exhausting those gases from outside the device, and a bubbler having a void at the top of the reserve chamber for popping the generated bubbles. Molten salt fuel cell.
JP59171820A 1984-08-17 1984-08-17 Molten salt fuel cell Expired - Lifetime JPH0646568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171820A JPH0646568B2 (en) 1984-08-17 1984-08-17 Molten salt fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171820A JPH0646568B2 (en) 1984-08-17 1984-08-17 Molten salt fuel cell

Publications (2)

Publication Number Publication Date
JPS6149381A JPS6149381A (en) 1986-03-11
JPH0646568B2 true JPH0646568B2 (en) 1994-06-15

Family

ID=15930340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171820A Expired - Lifetime JPH0646568B2 (en) 1984-08-17 1984-08-17 Molten salt fuel cell

Country Status (1)

Country Link
JP (1) JPH0646568B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL441399A1 (en) * 2022-06-07 2023-12-11 Politechnika Warszawska Method of electrolyte regeneration in a carbonate fuel cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518432A (en) * 1983-01-20 1985-05-21 Henkel Corporation Slag briquette

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530887A (en) * 1984-06-06 1985-07-23 Energy Research Corporation Fuel cell system with electrolyte conservation and/or replenishment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL441399A1 (en) * 2022-06-07 2023-12-11 Politechnika Warszawska Method of electrolyte regeneration in a carbonate fuel cell

Also Published As

Publication number Publication date
JPS6149381A (en) 1986-03-11

Similar Documents

Publication Publication Date Title
WO2021109721A1 (en) Molten carbonate fuel cell stack electrolyte replenishment method
JP2746751B2 (en) Method and apparatus for charging and discharging electrical energy
JP2004342584A (en) Battery having miniaturized sofc fuel cell
Savaskan et al. Further studies of a zinc-air cell employing a packed bed anode part I: discharge
JPH0646568B2 (en) Molten salt fuel cell
JP3575650B2 (en) Molten carbonate fuel cell
JPH05258781A (en) Lithium/air cell
JPS63298974A (en) Operating method for molten carbonate fuel cell
JPH10321245A (en) Molten carbonate type fuel cell
US4898793A (en) Fuel cell device
CN111834649A (en) Rechargeable sodium-water gas fuel cell unit
CN210778821U (en) Rechargeable sodium-water gas fuel cell unit
JP3094767B2 (en) Fuel cell electrolyte replenishment method
JPS58128668A (en) Electrolyte of liquid fuel cell
KR20180089809A (en) Metal-air battery based solid electrolyte possible quick charging
JPH03219564A (en) Fuel cell power generator device
JP2018092870A (en) Electrochemical device system
JPH0145945B2 (en)
JPH10513306A (en) Galvo sorption reaction battery
JPS63170863A (en) Fused carbonate fuel cell
JPS61502714A (en) Sealed lead-acid battery for oxygen gas recombination
JPH08153528A (en) Molten carbonate fuel cell
JPH07114127B2 (en) Molten carbonate fuel cell electrolyte replenishment method
JPH0133030B2 (en)
JPH08153529A (en) Device and method for replenishing electrolyte of molten carbonate fuel cell