JPH0646554B2 - Automatic focusing method in electron beam equipment - Google Patents

Automatic focusing method in electron beam equipment

Info

Publication number
JPH0646554B2
JPH0646554B2 JP58160521A JP16052183A JPH0646554B2 JP H0646554 B2 JPH0646554 B2 JP H0646554B2 JP 58160521 A JP58160521 A JP 58160521A JP 16052183 A JP16052183 A JP 16052183A JP H0646554 B2 JPH0646554 B2 JP H0646554B2
Authority
JP
Japan
Prior art keywords
lens
value
current value
electron beam
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58160521A
Other languages
Japanese (ja)
Other versions
JPS6054152A (en
Inventor
久猛 横内
玄也 松岡
正秀 奥村
進 小笹
喜一 高本
恒夫 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Ltd
Priority to JP58160521A priority Critical patent/JPH0646554B2/en
Publication of JPS6054152A publication Critical patent/JPS6054152A/en
Publication of JPH0646554B2 publication Critical patent/JPH0646554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、自動焦点調節法に係り、特に電子線装置にお
ける自動焦点調節法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic focusing method, and more particularly to an automatic focusing method in an electron beam apparatus.

〔発明の背景〕[Background of the Invention]

焦点検出に必要な波形信号は下記のようにして得られ
る。すなわち第1の方法は十字に張られた直径数十μm
の金属ワイヤ上を電子線でX方向、あるいはY方向に走
査し、その時得られる透過電子信号をワイヤの上部に設
けたフアラデーカツプで検出する方法である。第2の方
法はSi上に作られた巾数十μm、高さ0.2〜0.3μm、
長さ数100μmの十字金属マーク上を電子線で走査
し、その時得られる反射電子信号を半導体検出器SSD
で検出する方法である。
The waveform signal required for focus detection is obtained as follows. That is, the first method is a cross-shaped diameter of several tens of μm.
This is a method in which the metal wire is scanned with an electron beam in the X direction or the Y direction, and the transmitted electron signal obtained at that time is detected by the Faraday cup provided on the upper part of the wire. The second method is a width of several tens of μm and a height of 0.2 to 0.3 μm formed on Si.
The crossed metal mark with a length of several 100 μm is scanned with an electron beam, and the reflected electron signal obtained at that time is detected by the semiconductor detector SSD.
It is a method to detect with.

次に上記の2信号のうちどちらか1つの信号を使つて下
記のようにして焦点検出を行なう。
Then, using one of the above two signals, focus detection is performed as follows.

焦点検出の第1の方法は、上記の波形信号の巾が最小に
なるように焦点調整を行なう。第2の方法は、上記の波
形信号から1回微分信号を得て、その微分信号の巾が最
小になるように焦点調整を行なう。第3の方法は、上記
の波形信号から2回微分信号を得て、その微分信号のピ
ーク値が最大になるように焦点調整を行なう。第4の方
法は、波形信号を得る時のターゲットとして使用する電
子線の寸法より十分小さな寸法を有するマークを使用
し、その時得られる波形信号が既に第1の方法で述べた
微分信号と同等の性質を有する信号となるため、その信
号の巾が最小になるように焦点調整を行なう。第5の方
法は、第3の方法を行う際に得られる信号を1回微分
し、その微分信号のピーク値が最大になるように焦点調
整を行なう。
The first method of focus detection adjusts the focus so that the width of the waveform signal is minimized. The second method obtains a differential signal once from the above waveform signal and adjusts the focus so that the width of the differential signal is minimized. The third method obtains a differential signal twice from the above waveform signal and performs focus adjustment so that the peak value of the differential signal becomes maximum. The fourth method uses a mark having a size sufficiently smaller than the size of an electron beam used as a target when obtaining a waveform signal, and the waveform signal obtained at that time is equivalent to the differential signal already described in the first method. Since the signal has characteristics, the focus is adjusted so that the width of the signal is minimized. The fifth method differentiates the signal obtained when performing the third method once, and performs focus adjustment so that the peak value of the differentiated signal becomes maximum.

従来行なわれてきた方法は、第1〜第3の方法が多い。
例えば特開昭51−23065号に記載された方法は、
第1の方法であるが、焦点がずれた状態で波形信号の
巾を抽出するのが困難かつ不安定であること、焦点検
出能が微分法に比較して劣ること、などの欠点がある。
The first to third methods are often used as the conventional methods.
For example, the method described in JP-A-51-23065 is
The first method has drawbacks such that it is difficult and unstable to extract the width of the waveform signal in a defocused state, and the focus detectability is inferior to that of the differential method.

第2〜第5の方法は、微分信号を利用するため焦点検出
能は優れているが、微分信号をそのまま利用するため焦
点検出が不安定になりやすい欠点がある。
The second to fifth methods are excellent in focus detection ability because they use differential signals, but have a drawback that focus detection tends to be unstable because they use differential signals as they are.

〔発明の目的〕[Object of the Invention]

本発明は、かかる点に着目してなされたものであり、電
子線装置において高い検出能を保持しながら安定かつ高
速性の優れた自動焦点調節法を提供することを目的とす
る。
The present invention has been made in view of this point, and an object thereof is to provide an automatic focusing method which is stable and has high speed while maintaining high detectability in an electron beam apparatus.

〔発明の概要〕[Outline of Invention]

本発明は、焦点の状態を検出するのに焦点検出能の優れ
た微分法を利用し、微分法の採用にともなつて生ずる焦
点検出の不安定さに対しては多数の焦点検出信号に対し
て曲線近似を行ない、その近似曲線を利用して最終的な
焦点検出を行なう方法を採用することによつて解決した
ものである。
The present invention utilizes a differentiating method with excellent focus detectability to detect the state of focus, and with respect to the instability of focus detection that occurs with the adoption of the differentiating method, a large number of focus detection signals are detected. This is solved by adopting a method of performing curve approximation and performing final focus detection using the approximation curve.

更に1回の曲線近似で合焦点が検出できなかつた場合
は、その曲線から得られる結果を利用して再度焦点検出
信号の抽出、曲線近似、焦点検出の一連の動作をくり返
し最終的に合焦点検出を行なう方法も併用するものであ
る。
If the in-focus point cannot be detected by one curve approximation, the result obtained from the curve is used again to repeat the series of operations of extracting the focus detection signal, curve approximation, and focus detection to finally achieve the in-focus point. The method of detection is also used together.

〔発明の実施例〕Example of Invention

最初に本発明の原理について説明する。 First, the principle of the present invention will be described.

第1図(a)に示すように、例えばAuで作られたターゲ
ット又はマーク2を電子ビーム1で矢印の方向に走査
し、その時の反射電子(あるいは2次電子、透過電子)
を半導体検出器SSDで検出し電気信号に変換すると、
同図(b)に示すようなマーク波形信号が得られる。この
波形信号を1回微分すると同図(c)のような電子ビーム
の寸法に対応する1回微分信号(1次微分信号)が得ら
れ、その信号を更に微分、すなわち2回微分すると、同
図(d)のような電子ビームの分布の鋭さを示す2回微分
信号(2次微分信号)が得られる。つまり2回微分信号
の最大値を尖鋭度と定義する。この尖鋭度の値はビーム
のボケに逆比例する。即ち、焦点が合つている場合はこ
の尖鋭度の値は大きく、逆に焦点が合つてない場合は上
記の値が小さくなる。
As shown in FIG. 1 (a), a target or mark 2 made of Au, for example, is scanned with an electron beam 1 in the direction of the arrow, and reflected electrons (or secondary electrons or transmitted electrons) at that time are scanned.
Is detected by the semiconductor detector SSD and converted into an electric signal,
A mark waveform signal as shown in FIG. When this waveform signal is differentiated once, a one-time differential signal (first-order differential signal) corresponding to the size of the electron beam as shown in FIG. 7C is obtained, and the signal is further differentiated, that is, twice differentiated. A two-time differential signal (secondary differential signal) indicating the sharpness of the electron beam distribution as shown in FIG. That is, the maximum value of the twice differentiated signal is defined as the sharpness. The sharpness value is inversely proportional to the blur of the beam. That is, when the focus is achieved, the sharpness value is large, and conversely, when the focus is not achieved, the above value is small.

第2図に電子光学系の焦点調整と2回微分信号例を示
す。同図(a)は1回微分波形、(b)は2回微分波形であ
る。この図において、真中の波形が合焦点時の2回微分
信号である。その左右の波形は、それぞれ下方,上方に
(この例では)100μmの焦点ずれを生起した場合を
示す。
FIG. 2 shows an example of the focus adjustment of the electron optical system and the twice differentiated signal. In the figure, (a) is a once-differentiated waveform, and (b) is a twice-differentiated waveform. In this figure, the waveform in the middle is the two-time differential signal at the time of focusing. The left and right waveforms show the case where defocus of 100 μm occurs (in this example) downward and upward, respectively.

第3図に電子光学系の焦点面を物面の上下120μmの
範囲に60μmステップで5段階変化(同図(c)は2次
微分波形図で、各波形の1サイクルが1段階分に相当)
させ、その各ステップ毎に得られる2回微分信号の最大
値即ち尖鋭度を抽出し、それらの尖鋭度に対して2次曲
線近似を施した結果の一例を示す。この図より近似曲線
(a)の最大値(b)が合焦点(焦点誤差0の時)と一致して
いることが分る。
Fig. 3 shows that the focal plane of the electron optical system changes in 5 steps in the range of 120 µm above and below the object surface in 60 µm steps ((c) in the figure is the second derivative waveform diagram, and one cycle of each waveform corresponds to one step) )
An example of the result obtained by extracting the maximum value of the twice-differentiated signal obtained at each step, that is, the sharpness, and applying the quadratic curve approximation to the sharpness is shown. From this figure, the approximate curve
It can be seen that the maximum value (b) of (a) matches the in-focus point (when the focus error is 0).

次に本発明を電子線描画装置で採用した場合における具
体例について説明する。上記の装置では通常焦点調整用
レンズとしてO,OSの2つがある。まず最初、Oレン
ズの電流値Iをあらかじめ決められている値に設定す
る。その状態でOSレンズの電流値Iosを9段階に変化
させ、各段階毎にマーク波形信号を取込み2回微分処理
を行ない尖鋭度を検出する。その後、各Iosと検出され
た尖鋭度に対して2次、ないし3次曲線のあてはめを行
ない、この近似曲線の最大値が9点のIos変化幅の真中
付近で発生しているかどうかを調べる。真中付近に発生
していれば合焦点を検出したことになるのでその時のI
osを抽出し、OSレンズをあらかじめ決められた一定値
osl(例えば零)にすると同時に、抽出された電流値
osをOレンズの電流値に換算し(IosとIの換算式
はあらかじめ決められている。)、その電流値IojをO
レンズに流すことにより同じ位置に焦点が合うようにす
る。
Next, a specific example when the present invention is adopted in an electron beam drawing apparatus will be described. In the above device, there are usually two focus adjusting lenses, O and OS. First, the current value I o of the O lens is set to a predetermined value. In this state, the current value I os of the OS lens is changed in 9 steps, the mark waveform signal is taken in at each step, and the differentiation process is performed twice to detect the sharpness. After that, a quadratic or cubic curve is fitted to each I os and the detected sharpness, and it is determined whether the maximum value of this approximate curve occurs near the middle of the I os change width of 9 points. Find out. If it occurs near the center, it means that the in-focus point is detected.
os is extracted and the OS lens is set to a predetermined constant value I osl (for example, zero), and at the same time, the extracted current value I os is converted into the current value of the O lens (the conversion formula of I os and I o is Predetermined ), and the current value I oj is O
Focus on the same position by pouring it into the lens.

一方、近似曲線の最大値が真中付近になければ、その時
求まつた最大値に対応するOSレンズの電流値を参考に
し、Oレンズの電流値Iを少し変化させ同様の方法で
焦点検出する。この合焦点を検出する回数はあらかじめ
決められているので、その回数内で合焦点検出が出来な
い場合は検出不能としてオペレータに知らせる。
On the other hand, if the maximum value of the approximate curve is not near the center, the current value of the OS lens corresponding to the maximum value found at that time is referred to, the current value I o of the O lens is slightly changed, and focus detection is performed by the same method. . Since the number of times of detecting the in-focus point is predetermined, if the in-focus point cannot be detected within the number of times, the operator is notified that the in-focus point cannot be detected.

第4図にかかる焦点検出および調整の様子の一例を示
す。図の例ではX方向の合焦点検出に4回かかつてお
り、同図(a)に示すように第1回目のOレンズの電流値
が164.3mAであつたものが、合焦点時には(d)に示
すように162.9mA、OSレンズの電流値の変化範囲は
4回とも同じ−100mA〜100mAとなつている。
なお同図(b),(c)は、それぞれX方向の第2回目、第3
回目のIの変化を示す。かくして、X方向の合焦点が
求まると、その時のIでY方向の焦点も合つているか
どうか調らべる。これは非点の状態をチエツクするため
であり、両者の電流差が許容値内ならば両者の平均値で
もつて合焦点電流値とし、許容値を越えた時は非点大と
してオペレータに知らせる。第4図の例ではX方向の焦
点調整後、同図(e)に示すように1回でY方向の合焦点
検出が終了しており、非点が許容値内に入つていること
が分る。
FIG. 4 shows an example of the state of focus detection and adjustment according to FIG. In the example of the figure, the focus detection in the X direction has been performed four times, and the current value I o of the first O lens is 164.3 mA as shown in FIG. As shown in d), the current range of the OS lens is 162.9 mA, and the range of change in the current value of the OS lens is the same -100 mA to 100 mA for all four times.
Note that (b) and (c) in the figure show the second time and the third time in the X direction, respectively.
The change of Io of the time is shown. Thus, once the in-focus point in the X direction is obtained, it is possible to adjust whether or not the in-focus point in the Y direction is also in focus at I o at that time. This is to check the state of astigmatism, and if the current difference between the two is within the allowable value, the average value of the two is also used as the in-focus current value, and when it exceeds the allowable value, the operator is notified as astigmatism. In the example of FIG. 4, after the focus adjustment in the X direction, as shown in (e) of the figure, the focus detection in the Y direction is completed once, and it is known that the astigmatism is within the allowable value. It

第5図は本発明の一実施例である。図において、1は電
子ビーム、2は試料台に設けられた金(Au)等のマー
ク、3′,3″は反射電子(あるいは2次電子)の検出
器、4,5はビームを走査するためのX,Y偏向器、
6′,6″は電流−電圧変換器、7は加算器、8はアナ
ログ−デイジタル変換器(A/D変換器)、9,10,
16,17はデイジタル−アナログ変換器(D/A変換
器)、11,12は偏向データを与えるカウンタ、13
は入力信号のデータ確立のためのラツチメモリ、14は
焦点レンズO、15は他の焦点レンズOS、18,19
はOレンズ、およびOSレンズの電流値I,Iosを与
えるデータを一時記憶するラツチメモリ、20はZos
例えば9段階変化させた時に得られるマーク波形信号を
記憶するメモリ、21は波形信号に対して2次微分処理
を行なうための積和演算を行なう微分回路、22は各2
次微分信号Qの最大値即ち尖鋭度Q(i=1〜m、こ
の例ではm=9)を抽出するため最大値検出回路、23
はQ〜Qを一時記憶するメモリ、24はマイクロコ
ンピュータ等で構成される制御回路であり、近似曲線 (この例では、n=3) を決定し、かつQmaxを求め、更にQmaxの時のOSコイ
ル電流Iosmaxを求める。
FIG. 5 shows an embodiment of the present invention. In the figure, 1 is an electron beam, 2 is a mark such as gold (Au) provided on a sample stage, 3'and 3 "are detectors of backscattered electrons (or secondary electrons), and 4 and 5 scan the beam. X, Y deflector for
6 ', 6 "are current-voltage converters, 7 is an adder, 8 is an analog-digital converter (A / D converter), 9, 10,
Reference numerals 16 and 17 denote digital-analog converters (D / A converters), 11 and 12 counters for providing deflection data, and 13
Is a latch memory for establishing input signal data, 14 is a focus lens O, 15 is another focus lens OS, 18, 19
Is a latch memory for temporarily storing data that gives the current values I o and I os of the O lens and the OS lens, 20 is a memory for storing a mark waveform signal obtained when Z os is changed, for example, in 9 steps, and 21 is a waveform signal. A differential circuit for performing a sum-of-products operation for performing a second-order differential processing on
A maximum value detection circuit for extracting the maximum value of the second derivative signal Q, that is, the sharpness Q i (i = 1 to m, m = 9 in this example), 23
Is a memory for temporarily storing Q 1 to Q m , and 24 is a control circuit composed of a microcomputer, etc. (In this example, n = 3) is determined, Q max is determined, and the OS coil current I osmax at Q max is determined.

(1)式におけるbnkは、最小自乗法を用いて (ここでr=0〜n) より求められる。ここでr=0〜n まず最初に、制御回路24よりラツチメモリ18,19
にデータを与えOおよび第1回目のOSレンズの電流値
を設定する。続いて11,12に偏向データを与え電子
ビーム1で3のマークを走査し波形信号を得る。続いて
第2回目のOSレンズの電流値を設定し、同様の方法で
波形信号を得ると同時に、21,22,23の各回路を
使つて第1回目の波形信号より尖鋭度Qを求める。以
上のようにして波形信号の取込みと尖鋭度の抽出を同時
に行なう。
B nk in equation (1) is calculated using the method of least squares. (Here, r = 0 to n). Here, r = 0 to n First, the control circuit 24 causes the latch memories 18 and 19 to operate.
Data is set to 0 and the current value of the first OS lens is set. Subsequently, deflection data is given to 11 and 12, and the mark 3 is scanned by the electron beam 1 to obtain a waveform signal. Then, the current value of the OS lens for the second time is set, a waveform signal is obtained by the same method, and at the same time, the sharpness Q 1 is obtained from the first time waveform signal by using each circuit of 21, 22, and 23. . As described above, the waveform signal is captured and the sharpness is extracted at the same time.

os値を9段階に変化させたのち(2)式を使つてb30
33の係数を求め、(1)式を完成させる。次に(1)式を使
つて尖鋭度の最大値Qmax、およびIosmaxを求める。こ
のIosmaxに対応するOレンズの電流値Iojを求め、そ
のデータを18のラツチメモリに転送する。この時I
osmaxが9段階に変化させたIos値Ios1〜Ios9の中間
値Ios5付近ならば合焦点検出が終了したとしてOSレ
ンズの電流値をあらかじめ定められた一定値Ioslに設
定する。一方、IosmaxがIos5付近にない場合は合焦点
が未検出として、Oレンズの電流値をIojにして再度、
osを9段階に変化させ、各段階でのマーク波形信号の
取込みからQmax,Iosmaxの抽出までの一連の動作をく
り返す。また、X方向の焦点検出および焦点調整が終了
するとY方向の焦点検出、調整を行なう。
After changing the I os value in 9 steps, using the equation (2), b 30 ~
calculated coefficients b 33, to complete the equation (1). Next, the maximum value Q max of sharpness and I osmax are obtained using the equation (1). The current value I oj of the O lens corresponding to this I osmax is obtained and the data is transferred to 18 latch memories. At this time I
If the osmax is in the vicinity of the intermediate value I os5 of the I os values I os1 to I os9 changed in 9 steps, the current value of the OS lens is set to a predetermined constant value I osl because the focus detection is completed. On the other hand, if I osmax is not near I os5 , the in-focus point is not detected, the current value of the O lens is set to I oj , and
I os is changed in 9 steps, and a series of operations from the acquisition of the mark waveform signal to the extraction of Q max and I osmax at each step are repeated. When focus detection and focus adjustment in the X direction are completed, focus detection and adjustment in the Y direction are performed.

上述から分るように合焦点検出の判定は、 |Iosmax−Ios5|≦α で行なわれ、この判定パラメータはあらかじめ与えら
れ、本実施例ではα=5mAを使用した。
As can be seen from the above, the determination of in-focus detection is performed by | I osmax −I os5 | ≦ α, and this determination parameter is given in advance, and α = 5 mA is used in this embodiment.

〔発明の効果〕〔The invention's effect〕

以上詳述したように、本発明によれば、電子レンズの焦
点距離をm点ステップ状に変化させ、各ステップにおけ
る検出信号波形から抽出された焦点情報により焦点外れ
の状態を求め、かつこれらの量を最小自乗法を用いてn
次の多項式に近似し、この近似式から最適の位置を求
め、その結果を電子レンズに帰還せしめて電子レンズを
調節するように構成することにより、焦点検出と焦点調
整が安定に、かつ高分解能で実施することが出来る。そ
して、特に、上記の場合、m≧5,n≦3の時に、安定
かつ高速に焦点調節が可能となる。
As described in detail above, according to the present invention, the focal length of the electron lens is changed in steps of m points, the out-of-focus state is obtained from the focus information extracted from the detection signal waveform at each step, and The quantity n using the method of least squares
By approximating to the following polynomial, obtaining the optimum position from this approximation formula, and feeding back the result to the electron lens to adjust the electron lens, stable focus detection and focus adjustment, and high resolution Can be implemented in. In particular, in the above case, when m ≧ 5 and n ≦ 3, stable and high-speed focus adjustment becomes possible.

また、焦点検出時にOS電流のサンプル点を多数採用す
る必要がなく、近似の多項式を決定するに必要なサンプ
ル点で十分であり、多数点をサンプルしなくても近似曲
線で最適値が得られるため処理時間が大巾に短縮され
る。すなわち、本発明によれば焦点検出と焦点調整が短
時間で実施することが出来る。
Further, it is not necessary to employ a large number of OS current sample points at the time of focus detection, and the sample points necessary for determining an approximate polynomial are sufficient, and an optimum value can be obtained with an approximate curve without sampling a large number of points. Therefore, the processing time is greatly shortened. That is, according to the present invention, focus detection and focus adjustment can be performed in a short time.

このように、本発明は、電子線等を電子レンズを介して
ターゲット上で偏向走査し、反射電子、2次電子あるい
は透過電子を検出し、その検出信号から電子線の焦点状
態を認識するように構成された電子線装置、例えば電子
線露光装置や走査型電子顕微鏡などに適用して極めて有
効なものであるが、その基本的考え方は、これらの電子
線装置に限らず例えばレーザ光等の焦点検出やイオン線
等を用いた荷電粒子線装置において適用しても有効であ
る。
As described above, according to the present invention, the electron beam or the like is deflected and scanned on the target through the electron lens, the reflected electrons, the secondary electrons or the transmitted electrons are detected, and the focus state of the electron beam is recognized from the detection signal. Is very effective when applied to an electron beam apparatus configured in, for example, an electron beam exposure apparatus or a scanning electron microscope, but its basic idea is not limited to these electron beam apparatuses, and for example, laser light, etc. It is also effective when applied to a charged particle beam device that uses focus detection or ion beams.

【図面の簡単な説明】 第1図,第2図,第3図,第4図は、本発明の原理を説
明する図、第5図は本発明の一実施例を示すブロツク図
である。 1……電子ビーム、2……マーク、3′,3″……検出
器、4,5……X,Y偏向器、6′,6″……電流−電
圧変換器、7……加算器、8……A/D変換器、9,1
0……D/A変換器、11,12……カウンタ、13…
…ラツチメモリ、14……焦点レンズO、15……他の
焦点レンズOS、16,17……D/A変換器、18,
19……ラツチメモリ、20……メモリ、21……微分
回路、22……最大値検出回路、23……メモリ、24
……制御回路。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1, 2, 3, and 4 are diagrams for explaining the principle of the present invention, and FIG. 5 is a block diagram showing an embodiment of the present invention. 1 ... Electron beam, 2 ... Mark, 3 ', 3 "... Detector, 4,5 ... X, Y deflector, 6', 6" ... Current-voltage converter, 7 ... Adder , 8 ... A / D converter, 9, 1
0 ... D / A converter, 11, 12 ... Counter, 13 ...
... Latch memory, 14 ... Focus lens O, 15 ... Other focus lens OS, 16, 17 ... D / A converter, 18,
19 ... Latch memory, 20 ... Memory, 21 ... Differentiation circuit, 22 ... Maximum value detection circuit, 23 ... Memory, 24
...... Control circuit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/027 H04N 5/232 A (72)発明者 松岡 玄也 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 奥村 正秀 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 小笹 進 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 高本 喜一 神奈川県厚木市小野1831番地 日本電信電 話公社厚木電気通信研究所内 (72)発明者 大久保 恒夫 神奈川県厚木市小野1831番地 日本電信電 話公社厚木電気通信研究所内 (56)参考文献 特開 昭56−138926(JP,A) 特開 昭56−41663(JP,A) 特開 昭53−128975(JP,A) 特開 昭56−7341(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location H01L 21/027 H04N 5/232 A (72) Inventor Genya Matsuoka 1-280, Higashikoigakubo, Kokubunji, Tokyo Address: Central Research Laboratory, Hitachi, Ltd. (72) Masahide Okumura, 1-280, Higashikoigakubo, Kokubunji, Tokyo Metropolitan Research Laboratory, Hitachi, Ltd. (72) Susumu Kosasa, 1-280, Higashikoigakubo, Kokubunji, Tokyo Hitachi, Ltd. Central Research Laboratory (72) Inventor Kiichi Takamoto 1831 Ono, Atsugi-shi, Kanagawa Nippon Telegraph and Telephone Public Corporation Atsugi Telecommunications Research Laboratories (72) Inventor Tsuneo Okubo 1831, Ono, Atsugi-shi, Kanagawa Nippon Telegraph and Telephone Atsugi Electric Communication Research Laboratory (56) Reference JP-A-56-138926 (JP, A) JP-A-56-416 63 (JP, A) JP 53-128975 (JP, A) JP 56-7341 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電子線を電子レンズを介してターゲット上
で偏向走査して、反射電子、二次電子あるいは透過電子
を検出し、その検出信号から電子線の焦点状態を認識す
るように構成された電子線装置において、 上記電子レンズを第1および第2のレンズにより構成し
ておき、 上記第1のレンズのレンズ電流をある一定値に設定した
状態で、上記第2のレンズのレンズ電流値をm点(m≧
5)についてステップ状に変化させ、 各ステップにおける前記検出信号からその時々の電子線
の尖鋭度を求め、このm点についての上記第2のレンズ
のレンズ電流値と求められた尖鋭度の値とを用いて上記
第2のレンズのレンズ電流値の変化に対する尖鋭度の値
の変化の関係を最小自乗法を用いてn次(n≦3)の多
項式曲線に曲線近似させ、 この得られた近似曲線が上記第2のレンズのレンズ電流
値の変化範囲内で最大値を示すようになるまで上記第1
のレンズのレンズ電流の設定値を段階状に変化させて上
記の操作を繰返し、該近似曲線が上記第2のレンズのレ
ンズ電流値の変化範囲内で最大値を示すようになった時
の該最大値に対応する上記第2のレンズのレンズ電流値
を求め、 この求められた上記第2のレンズのレンズ電流値とその
時の上記第1のレンズのレンズ電流値をもって最適焦点
状態を実現するための最適レンズ電流値とすることを特
徴とする電子線装置における自動焦点調節法。
1. A structure for detecting a reflected electron, a secondary electron or a transmitted electron by deflecting and scanning an electron beam on a target through an electron lens, and recognizing a focus state of the electron beam from a detection signal thereof. In the electron beam apparatus, the electron lens is composed of first and second lenses, and the lens current value of the second lens is set in a state where the lens current of the first lens is set to a certain constant value. At m points (m ≧
5) is changed stepwise, the sharpness of the electron beam at each time is obtained from the detection signal at each step, and the lens current value of the second lens at this m point and the obtained sharpness value are obtained. Is used to curve-fit the relationship of the change in the sharpness value with respect to the change in the lens current value of the second lens to a polynomial curve of the n-th order (n ≦ 3) using the least squares method, and the obtained approximation Until the curve reaches the maximum value within the change range of the lens current value of the second lens, the first value
When the set value of the lens current of the second lens is changed stepwise and the above operation is repeated, the approximate curve shows the maximum value within the change range of the lens current value of the second lens. To obtain the lens current value of the second lens corresponding to the maximum value, and to realize the optimum focus state with the obtained lens current value of the second lens and the lens current value of the first lens at that time An automatic focusing method in an electron beam apparatus, which is characterized in that the optimum lens current value of
JP58160521A 1983-09-02 1983-09-02 Automatic focusing method in electron beam equipment Expired - Lifetime JPH0646554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58160521A JPH0646554B2 (en) 1983-09-02 1983-09-02 Automatic focusing method in electron beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58160521A JPH0646554B2 (en) 1983-09-02 1983-09-02 Automatic focusing method in electron beam equipment

Publications (2)

Publication Number Publication Date
JPS6054152A JPS6054152A (en) 1985-03-28
JPH0646554B2 true JPH0646554B2 (en) 1994-06-15

Family

ID=15716751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58160521A Expired - Lifetime JPH0646554B2 (en) 1983-09-02 1983-09-02 Automatic focusing method in electron beam equipment

Country Status (1)

Country Link
JP (1) JPH0646554B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446494A (en) * 1986-03-04 1995-08-29 Canon Kabushiki Kaisha Focus detecting system
JP2554051B2 (en) * 1986-03-04 1996-11-13 キヤノン株式会社 Autofocus device
JPH0772763B2 (en) * 1986-09-30 1995-08-02 キヤノン株式会社 Automatic focus adjustment method
JPH01283757A (en) * 1988-05-11 1989-11-15 Jeol Ltd Automatic focusing method
JP2833836B2 (en) * 1990-07-17 1998-12-09 日本電子株式会社 Autofocus method for scanning electron microscope

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608580B2 (en) * 1977-04-15 1985-03-04 株式会社島津製作所 Automatic focus adjustment device for scanning electron beam equipment, etc.
JPS567341A (en) * 1979-06-29 1981-01-26 Jeol Ltd Automatic astigmatism compensation and focussing in scanning electron microscope
JPS5641663A (en) * 1979-09-12 1981-04-18 Akashi Seisakusho Co Ltd Focusing method and its device for scanning electron microscope and the like

Also Published As

Publication number Publication date
JPS6054152A (en) 1985-03-28

Similar Documents

Publication Publication Date Title
EP0769799B1 (en) Scanning electron microscope
JP3409909B2 (en) Wafer pattern defect detection method and apparatus
US6570156B1 (en) Autoadjusting electron microscope
US5493116A (en) Detection system for precision measurements and high resolution inspection of high aspect ratio structures using particle beam devices
EP1302971A2 (en) Method and device for aligning a charged particle beam column
JP4383950B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP2877624B2 (en) Objective lens alignment control apparatus and control method for scanning electron microscope
US5144129A (en) Electron microscope
US7247849B1 (en) Automated focusing of electron image
US10460903B2 (en) Method and system for charge control for imaging floating metal structures on non-conducting substrates
JP2535695B2 (en) Scanning electron microscope automatic focusing method
JPH0646554B2 (en) Automatic focusing method in electron beam equipment
CN110057839A (en) Focusing control apparatus and method in a kind of Optical silicon wafer detection system
JP2000149853A (en) Observation device and adjustment thereof
JPH08195345A (en) Electron beam drawing device
US4160162A (en) Method for the pictorial display of a diffraction image in a transmission-type, scanning, corpuscular-beam microscope
TW202139236A (en) Multiple charged-particle beam apparatus with low crosstalk
JPS60126834A (en) Ion beam processing method and device thereof
JP2946857B2 (en) Charged particle beam equipment
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
WO2015190723A1 (en) Method for controlling scanning signal of charged particle microscope, and apparatus using same
RU2713090C1 (en) Method of processing signals in scanning devices with a highly focused electron beam
JP3364400B2 (en) Method of adjusting electron beam in scanning electron microscope and scanning electron microscope
JPH08148108A (en) Automatic focus adjustment
JP3037006B2 (en) Automatic image adjustment method for scanning electron microscope