JPH0646177U - heat pipe - Google Patents

heat pipe

Info

Publication number
JPH0646177U
JPH0646177U JP8398192U JP8398192U JPH0646177U JP H0646177 U JPH0646177 U JP H0646177U JP 8398192 U JP8398192 U JP 8398192U JP 8398192 U JP8398192 U JP 8398192U JP H0646177 U JPH0646177 U JP H0646177U
Authority
JP
Japan
Prior art keywords
heat
heat pipe
pipe
receiving portion
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8398192U
Other languages
Japanese (ja)
Inventor
秋美 首藤
寛美 浅井
Original Assignee
ダイヤモンド電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイヤモンド電機株式会社 filed Critical ダイヤモンド電機株式会社
Priority to JP8398192U priority Critical patent/JPH0646177U/en
Publication of JPH0646177U publication Critical patent/JPH0646177U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 発熱体との放熱に使用するヒートパイプにお
いて、この発熱体とヒートパイプをろう付けすることな
く極めて容易に密着し、かつ優れた放熱効果を維持す
る。 【構成】 円筒形のヒートパイプ20において、ヒートパ
イプ20の中心付近に受熱部23と、この両端に放熱部21が
あり、前記受熱部23と発熱体12との当接部分が平面状に
加工、密着され、前記ヒートパイプの放熱部21の少なく
とも一方に放熱用のフィン25が備えられている。
(57) [Abstract] [Purpose] In a heat pipe used for heat dissipation from a heating element, the heating element and the heat pipe are extremely easily adhered to each other without brazing, and an excellent heat dissipation effect is maintained. [Structure] In a cylindrical heat pipe 20, a heat receiving portion 23 is provided near the center of the heat pipe 20, and heat radiating portions 21 are provided at both ends of the heat pipe 20, and a contact portion between the heat receiving portion 23 and the heating element 12 is processed into a flat shape. The heat dissipating fins 25 are provided on at least one of the heat dissipating portions 21 of the heat pipe.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案はヒートパイプ構造のヒートシンクに関し、特に発熱体との密着と放 熱部の構造に関する。 The present invention relates to a heat sink having a heat pipe structure, and more particularly to the structure of a heat sink and a heat sink.

【0002】[0002]

【従来の技術】[Prior art]

近年の電子回路においては高速化、高密度化(高集積化)が常に求められてお り、これに従い大規模集積回路や半導体装置、特に演算処理装置ではより一層の 高速動作と高密度化が実現され、またこれら演算処理装置等を組み込む電子機器 製品では急速に小型化が進んでいる。 In recent years, electronic circuits have always been required to have higher speed and higher density (high integration), and accordingly, in large-scale integrated circuits and semiconductor devices, especially in arithmetic processing devices, higher speed operation and higher density are required. Electronic equipment products that have been realized and incorporate these arithmetic processing units are rapidly becoming smaller.

【0003】 これに共い前記半導体装置に発生する熱を抑える、または効果的に放出するこ とが重要な課題となっている。この放熱手段(装置)では前記半導体装置等の発 熱部に熱伝導性の良い材料で形成されるヒートシンクを設けるか、或いは半導体 装置を強制空冷する小型のファン等が最もよく用いられている。Along with this, it is an important issue to suppress or effectively dissipate heat generated in the semiconductor device. In this heat radiating means (device), a heat sink formed of a material having a high thermal conductivity is provided in the heat generating portion of the semiconductor device, or a small fan for forcedly cooling the semiconductor device is most often used.

【0004】 しかし上述の半導体装置はさらに高速化、高密度化が進んでおり、上記放熱装 置では充分な放熱効果が得られなくなってきている。また近年の電子機器の小型 化要求に伴い、放熱効果向上のためだけに余分なスペースを特定の場所に確保す ることは極めて困難である。However, the semiconductor device described above is further increasing in speed and density, and the heat dissipation device is no longer able to obtain a sufficient heat dissipation effect. In addition, with the recent demand for miniaturization of electronic devices, it is extremely difficult to secure an extra space in a specific place only to improve the heat dissipation effect.

【0005】 そこで、より効果的な放熱を行なう場合には上記放熱装置に代わり積極的な放 熱が行なえる後述のヒートパイプ構造のヒートシンク(以下単に「ヒートパイプ 」と呼ぶ)が普及しつつある。Therefore, a heat sink having a later-described heat pipe structure (hereinafter simply referred to as “heat pipe”), which can perform positive heat discharge in place of the above-mentioned heat dissipation device in order to perform more effective heat dissipation, is becoming popular. .

【0006】 周知の如く前記ヒートパイプとは、図3に示すように密閉した銅、アルミニウ ム等の熱伝導率の良い筒状または平面状容器22の内部長手方向(場合によっては 短手方向でも良い)に毛細管力の大きいウイック24を設け、前記容器22の内部に 作動流体と呼ばれる気体層と液体層に交互に変化し易い流体(例えば水、アルコ ール等)を作動液注入口26を通して適量注入させた後前記注入口26を密閉してい る。As is well known, the heat pipe means the inside of the cylindrical or planar container 22 having a good thermal conductivity such as copper, aluminum, etc., which is sealed as shown in FIG. However, a wick 24 having a large capillary force is provided to the inside of the container 22, and a fluid called a working fluid that easily changes alternately into a gas layer and a liquid layer (for example, water, alcohol, etc.) is introduced into the working fluid inlet port 26. After injecting an appropriate amount through the above, the injection port 26 is sealed.

【0007】 この動作原理は、容器22の一端の蒸発部(受熱部)23に発熱があると、内部に 封入されている作動流体が蒸発し、発生した蒸気は前記蒸発部より低温の容器22 の他端の凝縮部(放熱部)21に移動し液体に変化し、この液体はウイック24の毛 細管力により受熱部に戻される。この蒸発潜熱により、大量の熱がわずかの温度 差しかない一端から他端に輸送される。The operating principle is that when heat is generated in the evaporation part (heat receiving part) 23 at one end of the container 22, the working fluid enclosed inside is evaporated, and the generated steam has a temperature lower than that of the evaporation part 22. The liquid moves to the condensation part (heat dissipation part) 21 at the other end and is changed into a liquid, and this liquid is returned to the heat receiving part by the capillary force of the wick 24. Due to this latent heat of vaporization, a large amount of heat is transferred from one end to the other end where there is no slight temperature difference.

【0008】 なお図3に示すヒートパイプでは、受熱部と放熱部は逆の位置に配置してもよ く、設置状態は放熱部を上にするほど熱伝導効率が良い。In the heat pipe shown in FIG. 3, the heat receiving portion and the heat radiating portion may be arranged in opposite positions, and the heat conduction efficiency is higher as the heat radiating portion is placed higher in the installed state.

【0009】[0009]

【考案が解決しようとする課題】[Problems to be solved by the device]

前述の図3に示すヒートパイプでは、図4に示すようにヒートパイプの受熱部 は半導体装置(発熱体)12に熱伝導性が極めて優れたろう付け材料4でろう付け できればこの断面が円形を保ち、蒸気の通路となる断面部を最大にでき、ヒート パイプの特性上最高の放熱効果が得られるが、前記手段では実用上において熱伝 導性に優れたろう付け材料4は非常に高価であり、ろう付け作業においてもこの 作業が確実に行なわなければ放熱効果は充分に発揮できず、製造工程において非 常に手間がかかる。 In the heat pipe shown in FIG. 3 described above, as shown in FIG. 4, if the heat receiving portion of the heat pipe can be brazed to the semiconductor device (heating element) 12 with the brazing material 4 having extremely excellent thermal conductivity, this cross section will keep a circular shape. However, the cross-section that becomes the passage of steam can be maximized, and the best heat dissipation effect can be obtained due to the characteristics of the heat pipe, but with the above means, the brazing material 4 with excellent heat conductivity in practice is very expensive, Even in the brazing work, if this work is not performed reliably, the heat radiation effect cannot be fully exerted and the manufacturing process will be extremely troublesome.

【0010】 また前記ヒートパイプ20全体を平板状にすることも可能であるが、前述したよ うにヒートパイプ20は蒸気の通路となる断面部が大きい程、すなわち円形の方が よりよい放熱効果が得られる。従って平板状ヒートパイプ20では筒状のものに比 べ放熱効果が低下する。さらにヒートパイプの両端を平板状に加工することは加 工工数を多く要する等により非常に高価となる。It is also possible to make the entire heat pipe 20 into a flat plate shape. However, as described above, the larger the cross section of the heat pipe 20 that is a passage for steam, that is, the circular shape, the better the heat radiation effect. can get. Therefore, the heat dissipation effect of the flat heat pipe 20 is lower than that of the flat heat pipe 20. Further, processing both ends of the heat pipe into a flat plate is very expensive because it requires a large number of processing steps.

【0011】[0011]

【課題を解決するための手段】 上記課題を解決するため、本考案では半導体装置(発熱体)に銅、アルミニウ ム等熱伝導性の良い材質で形成される筒状のヒートパイプの受熱部を密着させる 。ここでこの受熱部がヒートパイプ長手方向の中心付近、若しくは短手方向の中 心付近に配置され、前記ヒートパイプの放熱部がこの両端に配置され、前記受熱 部は平面状で発熱体に密着している。[Means for Solving the Problems] In order to solve the above problems, in the present invention, a semiconductor device (heating element) is provided with a heat receiving portion of a cylindrical heat pipe formed of a material having good thermal conductivity such as copper or aluminum. Make them adhere closely. Here, this heat receiving part is arranged near the center in the longitudinal direction of the heat pipe or near the center in the lateral direction, and the heat radiating parts of the heat pipe are arranged at both ends thereof, and the heat receiving part is flat and closely adheres to the heating element. is doing.

【0012】 またヒートパイプの両端に配置されている放熱部の少なくとも一方にヒートパ イプと一体または別部品として放熱用のフィンを設ける。Further, fins for heat dissipation are provided on at least one of the heat dissipation parts arranged at both ends of the heat pipe, either integrally with the heat pipe or as separate parts.

【0013】[0013]

【作用】[Action]

上記のように筒状のヒートパイプの中心付近に配置される、半導体装置(発熱 体)に密着する受熱部を平板状にすれば、高価なろう付け材料を使用しなくても 、半導体装置と受熱部の密着度がよくなり、これらの間で効率の良い熱伝達が可 能になる。 As described above, if the heat-receiving part, which is arranged near the center of the cylindrical heat pipe and is in close contact with the semiconductor device (heating element), is formed into a flat plate shape, the semiconductor device can be connected to the semiconductor device without using an expensive brazing material. Adhesion of the heat receiving part is improved, and efficient heat transfer between them is possible.

【0014】 ヒートパイプの蒸気の通路と両端に設けられている放熱部は筒状であるので最 大の断面積が得られるために蒸気の凝縮が速やかに行なわれ、ヒートパイプの特 性を失うことなく最高の放熱効果が得られる。Since the steam passage of the heat pipe and the heat radiating portions provided at both ends are cylindrical, the maximum cross-sectional area is obtained, so that the steam is quickly condensed, and the characteristics of the heat pipe are lost. The best heat dissipation effect can be obtained without.

【0015】 またヒートパイプの両端に配置されている放熱部の少なくとも一方にヒートパ イプと一体または別部品として放熱用のフィンを設けるため放熱面積が増大し、 より大きなヒートパイプを利用する場合と同等の放熱効果が得られる。Further, since at least one of the heat radiating portions arranged at both ends of the heat pipe is provided with a heat radiating fin integrally with the heat pipe or as a separate component, the heat radiating area is increased, which is equivalent to the case of using a larger heat pipe. The heat radiation effect of is obtained.

【0016】[0016]

【実施例】【Example】

本考案の実施例を示すヒートパイプの側面図を図1に、このヒートパイプの上 面図を図2に示す。図1と2において、筒状のヒートパイプ20の両端に放熱部21 -21が、この両端のいずれか一方に作動液注入口26が設けられ、これを介してヒ ートパイプ20内に作動液が注入され、この後前記注入口26が封入されている。ま た半導体装置12等発熱体が密着する受熱部23がこのヒートパイプ20の中心付近に 配置され、前記受熱部23は筒状のヒートパイプ20をつぶすことにより形成される 平板状で、前記半導体装置12との当接部分はシリコーングリス等で密着されてい る。 FIG. 1 is a side view of a heat pipe showing an embodiment of the present invention, and FIG. 2 is a top view of the heat pipe. In FIGS. 1 and 2, a heat radiating portion 21 -21 is provided at both ends of the tubular heat pipe 20, and a hydraulic fluid inlet 26 is provided at either one of the both ends, through which the hydraulic fluid is introduced into the heat pipe 20. After the injection, the injection port 26 is sealed. Further, a heat receiving portion 23 to which a heating element is closely attached such as the semiconductor device 12 is arranged near the center of the heat pipe 20, and the heat receiving portion 23 is a flat plate formed by crushing the cylindrical heat pipe 20 The contact portion with the device 12 is adhered with silicone grease or the like.

【0017】 また図1と2に示すように、前記放熱部21-21に放熱用のフィン25-25を設ける が、この場合前記フィン25-25は放熱部21-21の少なくとも一方に設けるだけでも よく、さらに前記フィン25-25はヒートパイプ20と一体に、または別部品として これに取り付けてもよい。As shown in FIGS. 1 and 2, the heat radiating portion 21-21 is provided with a heat radiating fin 25-25. In this case, the fin 25-25 is provided only on at least one of the heat radiating portions 21-21. However, the fins 25-25 may be attached to the heat pipe 20 either integrally or as a separate component.

【0018】[0018]

【考案の効果】[Effect of device]

上記構成のように、筒状のヒートパイプ20の中心付近に配置される、半導体装 置12に密着する受熱部23を平板状にすれば、図4に示すような高価なろう付け材 料4を使用しなくても、半導体装置12と受熱部23の密着度がよくなり、これらの 間で効率の良い熱伝達が可能になる。 If the heat receiving portion 23, which is arranged near the center of the cylindrical heat pipe 20 and is in close contact with the semiconductor device 12, is formed into a flat plate shape as in the above-described configuration, an expensive brazing material 4 as shown in FIG. Even without using, the degree of adhesion between the semiconductor device 12 and the heat receiving portion 23 is improved, and efficient heat transfer between them is possible.

【0019】 またヒートパイプ20の受熱部23を平板状にし半導体装置12との当接部分をシリ コーングリス等で密着するため、前記ろう付けの作業が不要になり、半導体装置 12への取り付けが極めて容易になる。Further, since the heat receiving portion 23 of the heat pipe 20 is formed into a flat plate shape and the contact portion with the semiconductor device 12 is closely adhered with a silicone grease or the like, the brazing work is not required and the semiconductor device 12 can be mounted. It will be extremely easy.

【0020】 さらに通常上記放熱用のフィン25の加工は、平板状よりも筒状のパイプに取り 付ける手段の方が平易かつ安価であり、本考案では前述の通りフィン25を設ける 放熱部21は筒状であり、従ってこの加工が平易かつ安価に行なえる。Further, generally, in the processing of the heat radiation fins 25, the means for attaching to the tubular pipe is simpler and cheaper than the flat plate shape. In the present invention, the heat radiation portion 21 provided with the fins 25 is provided as described above. Since it is tubular, this processing can be performed easily and inexpensively.

【図面の簡単な説明】[Brief description of drawings]

【図1】 半導体装置に密着している本考案の実施例を
示すヒートパイプである。
FIG. 1 is a heat pipe showing an embodiment of the present invention in close contact with a semiconductor device.

【図2】 図1のヒートパイプをA−A断面で矢印方向
に見た断面図である。
FIG. 2 is a cross-sectional view of the heat pipe of FIG. 1 taken along the line AA in the arrow direction.

【図3】 ヒートパイプの断面図である。FIG. 3 is a cross-sectional view of a heat pipe.

【図4】 半導体装置にろう付けされている筒状のヒー
トパイプである。
FIG. 4 is a cylindrical heat pipe brazed to a semiconductor device.

【符号の説明】[Explanation of symbols]

図において同一符号は同一、または相当部分を示す。 12 半導体装置 20 ヒートパイプ 21 放熱部 23 受熱部 25 フィン In the drawings, the same reference numerals indicate the same or corresponding parts. 12 semiconductor device 20 heat pipe 21 heat dissipation part 23 heat receiving part 25 fins

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 円筒形のヒートパイプ構造を備えるヒー
トシンクにおいて、ヒートパイプの中心付近に受熱部
と、この両端に放熱部があり、前記受熱部と発熱体との
当接部分が平面状に加工、密着され、前記ヒートパイプ
の放熱部の少なくとも一方に放熱用のフィンを備えてい
るヒートパイプ。
1. In a heat sink having a cylindrical heat pipe structure, a heat receiving portion is provided near the center of the heat pipe, and heat radiating portions are provided at both ends of the heat pipe, and a contact portion between the heat receiving portion and the heating element is processed into a flat shape. A heat pipe that is closely attached and has a fin for heat radiation on at least one of the heat radiation portions of the heat pipe.
JP8398192U 1992-11-11 1992-11-11 heat pipe Pending JPH0646177U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8398192U JPH0646177U (en) 1992-11-11 1992-11-11 heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8398192U JPH0646177U (en) 1992-11-11 1992-11-11 heat pipe

Publications (1)

Publication Number Publication Date
JPH0646177U true JPH0646177U (en) 1994-06-24

Family

ID=13817717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8398192U Pending JPH0646177U (en) 1992-11-11 1992-11-11 heat pipe

Country Status (1)

Country Link
JP (1) JPH0646177U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002084A (en) * 2008-06-18 2010-01-07 Fujitsu Ltd Loop-type heat pipe, computer, and cooling apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002084A (en) * 2008-06-18 2010-01-07 Fujitsu Ltd Loop-type heat pipe, computer, and cooling apparatus

Similar Documents

Publication Publication Date Title
US7331379B2 (en) Heat dissipation device with heat pipe
US7312994B2 (en) Heat dissipation device with a heat pipe
US10410954B2 (en) Cooling module, water-cooled cooling module and cooling system
US7025125B2 (en) Heat dissipating device with heat pipe
US20070000646A1 (en) Heat dissipation device with heat pipe
US20070029072A1 (en) Heat dissipation device
US20080216990A1 (en) Heat dissipation device with a heat pipe
JPH0735955B2 (en) Integrated heat pipe / heat exchanger / tightening assembly and method for obtaining same
JP2009198173A (en) Heat sink with heat pipes and method for manufacturing the same
JP4426684B2 (en) heatsink
JP2011086951A (en) Thermal diffusion apparatus
US20080093052A1 (en) Heat dissipation device with heat pipes
JP2010522996A (en) Thin thermal diffusion liquid chamber using boiling
EP1708261B1 (en) Heat pipe radiator for a heat-generating component
US20080314554A1 (en) Heat dissipation device with a heat pipe
US20070144709A1 (en) Heat dissipation device with heat pipes
JP2009076622A (en) Heat sink and electronic apparatus using the same
JPH0646177U (en) heat pipe
JPH11243289A (en) Electronic equipment
TWM628154U (en) Air-liquid dual cooling radiator for memory modules
JP4360624B2 (en) Heat sink for semiconductor element cooling
JP5485450B1 (en) Heat spreader
JP5624771B2 (en) Heat pipe and heat sink with heat pipe
JP2000018853A (en) Cooling structure using plate type heat pipe
TWI799084B (en) Gas-liquid dual-cooled radiator for memory module