JPH0645931Y2 - Laser scanning optical system - Google Patents
Laser scanning optical systemInfo
- Publication number
- JPH0645931Y2 JPH0645931Y2 JP1989098620U JP9862089U JPH0645931Y2 JP H0645931 Y2 JPH0645931 Y2 JP H0645931Y2 JP 1989098620 U JP1989098620 U JP 1989098620U JP 9862089 U JP9862089 U JP 9862089U JP H0645931 Y2 JPH0645931 Y2 JP H0645931Y2
- Authority
- JP
- Japan
- Prior art keywords
- scanning
- lens
- scanner
- optical system
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Mechanical Optical Scanning Systems (AREA)
Description
【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、主にレーザ光の高速かつ高精度な位置決め、
走査を行う必要のあるレーザトリミング装置や、レーザ
光を利用した物体の厚さ検出装置で用いられるレーザス
キャニング光学系に関する。[Detailed Description of the Invention] [Industrial field of application] The present invention is mainly directed to high-speed and high-precision positioning of laser light,
The present invention relates to a laser scanning optical system used in a laser trimming device that needs to perform scanning and an object thickness detection device that uses laser light.
従来、この種の光学系においては一般的に任意の走査量
を得たい場合は、偏向ミラーの駆動にガルバノメータ型
オプティカルスキャナを用い、集光には偏向ミラーの回
転角と結像面での移動量が比例関係になるように設計さ
れたfθレンズを用いている。Conventionally, in this type of optical system, generally, when it is desired to obtain an arbitrary scanning amount, a galvanometer type optical scanner is used to drive the deflection mirror, and the converging light is rotated by the rotation angle of the deflection mirror and the movement on the image plane. An fθ lens designed to have a proportional amount is used.
しかし、上述した従来の方法において、ガルバノメータ
型オプティカルスキャナの制御をいくら正確に行っても
fθレンズ自身の工学的歪みに起因する結像面での走査
歪みは、fθレンズの特性を改善しない限り、なかなか
解決しない場合が多い。特に第2図に示すように大きな
走査幅を得るために出力側の主光線がレンズ中心から遠
ざかるほど、主軸に対して傾くような特性(テレセント
リック性のずれが大きい)のfθレンズが用いられる場
合に、レンズと試料面との距離が変化すると像がぼける
だけで無く、像の大きさ(走査幅)も変ってしまうとい
う欠点がある。これを解決するためには、走査幅と入射
ビーム径とを加えた口径の十分大きなfθレンズを用い
て、出力側の主光線が、レンズの主軸と全く平行になる
ような特性(完全にテレセントリック性)の光学系を製
作するか、又は、試料面とfθレンズの距離を試料が変
っても精密に一定に保つ制御系及び機構が必要となる。However, in the above-described conventional method, no matter how accurately the galvanometer type optical scanner is controlled, the scanning distortion in the image plane caused by the engineering distortion of the fθ lens itself does not improve the characteristics of the fθ lens unless the characteristics of the fθ lens are improved. In many cases, it is difficult to solve the problem. In particular, as shown in FIG. 2, in the case of using an fθ lens having a characteristic (the deviation of the telecentricity is large) with respect to the principal axis as the principal ray on the output side is further away from the lens center in order to obtain a large scanning width. In addition, there is a drawback that not only the image is blurred when the distance between the lens and the sample surface is changed, but also the size (scanning width) of the image is changed. In order to solve this, an fθ lens having a sufficiently large aperture including the scanning width and the incident beam diameter is used, and the characteristic that the chief ray on the output side is completely parallel to the principal axis of the lens (completely telecentric). (2) an optical system, or a control system and mechanism for keeping the distance between the sample surface and the fθ lens precisely constant even if the sample changes.
上述した従来の光学系では、走査面とビーム径を加味し
た大口径レンズや、fθレンズと試料との距離を測定す
る手段と、試料面を光軸に対して軸方向に移動させる機
構が必要となるのに対し、本考案の光学系では、これら
の手段を用いず単に試料となる物体の厚みを計測して、
その差に応じて、演算により走査幅の変化を求めこれを
ガルバノメータ型オプティカルスキャナの制御部へフィ
ードバックするという相違点を有する。The above-mentioned conventional optical system requires a large-diameter lens that takes the scanning surface and the beam diameter into consideration, a unit that measures the distance between the fθ lens and the sample, and a mechanism that moves the sample surface in the axial direction with respect to the optical axis. On the other hand, in the optical system of the present invention, the thickness of the sample object is simply measured without using these means,
The difference is that the change of the scanning width is obtained by calculation according to the difference and is fed back to the control unit of the galvanometer type optical scanner.
本考案による光学系では、ガルバノメータ型オプティカ
ルスキャナと、スキャナの軸に取付けられたスキャンミ
ラー、fθレンズと、試料の厚さを計測する手段と、厚
さの変化を走査幅の変化に変換して前記ガルバノメータ
型オプティカルスキャナの回転角を補正する制御部とを
有している。In the optical system according to the present invention, a galvanometer type optical scanner, a scan mirror attached to the axis of the scanner, an fθ lens, a means for measuring the thickness of the sample, and a change in the thickness converted into a change in the scanning width. And a control unit for correcting the rotation angle of the galvanometer type optical scanner.
次に、本考案の実施例について図面を参照して説明す
る。Next, an embodiment of the present invention will be described with reference to the drawings.
第1図は本考案の一実施例の構成概略図である。図にお
いて、レーザ光2はガルバノメータ型オプティカルスキ
ャナ(以下スキャナ)3を経てfθレンズ1を通して試
料4に集光する。こでレーザ光2がfθレンズ1の最も
周辺に近い部分を用いて集光された場合、第2図に示す
ようにレンズの主軸からΔθだけ光線が傾いている。し
たがって、もし試料4の厚みがΔt変化すると振幅Δは
Δt・tanΔθ変化してl′になる。あらかじめfθレ
ンズ1の特性が判っていれば任意の位置での試料4の厚
みの変化に対する振幅の変化(Δt・tanΔθ)は演算
で求めることが可能である。FIG. 1 is a schematic view of the configuration of an embodiment of the present invention. In the figure, a laser beam 2 passes through a galvanometer type optical scanner (hereinafter, scanner) 3 and is focused on a sample 4 through an fθ lens 1. Here, when the laser light 2 is condensed using the portion closest to the periphery of the fθ lens 1, the light beam is inclined by Δθ from the main axis of the lens as shown in FIG. Therefore, if the thickness of the sample 4 changes by Δt, the amplitude Δ changes by Δt · tan Δθ and becomes 1 ′. If the characteristics of the fθ lens 1 are known in advance, the change in the amplitude (Δt · tan Δθ) with respect to the change in the thickness of the sample 4 at an arbitrary position can be calculated.
第3図はその演算を行う制御部5のブロック図である。FIG. 3 is a block diagram of the control unit 5 that performs the calculation.
ここで厚み計測部6は詳細は記さないが、周知の手段を
用いて試料4の厚さΔtを測る部分である。又、演算処
理部7はソフトウェアを含めた制御ユニットである。さ
らに、スキャナドライバ8は、スキャナ3を演算処理部
7からの信号により駆動するものである。これらの各制
御部のユニットが試料の厚みに応じて、スキャナの回転
角を補正し、試料面での振幅Δを一定に保つことを可能
とする。もちろん、試料の厚みの変化は、無制限という
わけでは無く、レーザ光の焦点深度の範囲内で許容され
るものである。Here, the thickness measuring unit 6 is a unit for measuring the thickness Δt of the sample 4 using a well-known means, although the details are not described. The arithmetic processing unit 7 is a control unit including software. Further, the scanner driver 8 drives the scanner 3 with a signal from the arithmetic processing unit 7. The unit of each of these control units makes it possible to correct the rotation angle of the scanner according to the thickness of the sample and keep the amplitude Δ on the sample surface constant. Of course, the change in the thickness of the sample is not limited, but is allowed within the range of the depth of focus of the laser light.
以上説明したように本考案は、ガルバノメータ型オプテ
ィカルスキャナと、fθレンズを組み合せてレーザ光を
試料面に走査するレーザ光走査装置において試料の厚み
を測定し、その変化を演算により振幅の変化に変換して
前記ガルバノメータ型オプティカルスキャナの回転角を
制御する信号としてフィードバックすることにより大口
径のfθレンズや、試料の位置を軸方向に移動する機構
等を用いないで、試料の厚み変化に対する走査振幅の補
正が可能となるので、特に精密な振幅精度が要求される
場合に非常に有効である。As described above, the present invention measures the thickness of a sample in a laser beam scanning device that scans a laser beam on a sample surface by combining a galvanometer type optical scanner and an fθ lens, and converts the change into an amplitude change by calculation. Then, by feeding back the rotation angle of the galvanometer type optical scanner as a signal for controlling, a fθ lens having a large aperture, a mechanism for moving the position of the sample in the axial direction, or the like is used, and the scanning amplitude of the change of the sample thickness Since correction is possible, it is very effective when particularly precise amplitude accuracy is required.
第1図は本考案の一実施例の構成概略図、第2図はfθ
レンズ周辺での光線の傾きを説明するための図、第3図
は制御部のブロック図である。 1……fθレンズ、2……レーザ光、3……ガルバノメ
ータ型オプティカルスキャナ、4……試料面、5……制
御部、6……厚み計測部、7……演算処理部、8……ス
キャナドライバ。FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, and FIG. 2 is fθ.
FIG. 3 is a block diagram of a control unit, and FIG. 3 is a diagram for explaining the inclination of a light beam around the lens. 1 ... f.theta. Lens, 2 ... laser light, 3 ... galvanometer type optical scanner, 4 ... sample surface, 5 ... control unit, 6 ... thickness measuring unit, 7 ... arithmetic processing unit, 8 ... scanner driver.
Claims (2)
fθレンズと組み合せてレーザ光を試料面に走査するレ
ーザ光走査装置において、前記試料の厚みを測定する測
定手段と、前記測定手段の出力に応じて前記厚みの変化
を前記ガルバノメータ型オプティカルスキャナによる走
査幅の変化に変換して前記スキャナの制御にフィードバ
ックする制御部とを含むレーザスキャニング光学系。1. A laser beam scanning device for scanning a laser beam on a sample surface in combination with a galvanometer type optical scanner and an fθ lens, and a measuring means for measuring the thickness of the sample, and the thickness according to the output of the measuring means. Laser scanning optical system including a control unit for converting a change in the scanning width into a change in the scanning width by the galvanometer type optical scanner and feeding back the control to the scanner.
みをΔtとすると走査ビームの振幅の変化量Δt・tan
Δθ(Δθはfθレンズの主軸に最も離れた所のビーム
の前記主軸に対する傾き)を零にするように前記スキャ
ナの回転角を制御することを特徴とする特許請求の範囲
第(1)項記載のレーザスキャニング光学系。2. The controller controls the amount of change in the amplitude of the scanning beam Δt · tan, where Δt is the thickness measured by the measuring means.
The rotation angle of the scanner is controlled so that Δθ (Δθ is the inclination of the beam farthest from the main axis of the fθ lens with respect to the main axis) is zero, and the rotation angle of the scanner is controlled. Laser scanning optical system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1989098620U JPH0645931Y2 (en) | 1989-08-23 | 1989-08-23 | Laser scanning optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1989098620U JPH0645931Y2 (en) | 1989-08-23 | 1989-08-23 | Laser scanning optical system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0337413U JPH0337413U (en) | 1991-04-11 |
JPH0645931Y2 true JPH0645931Y2 (en) | 1994-11-24 |
Family
ID=31647704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1989098620U Expired - Lifetime JPH0645931Y2 (en) | 1989-08-23 | 1989-08-23 | Laser scanning optical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0645931Y2 (en) |
-
1989
- 1989-08-23 JP JP1989098620U patent/JPH0645931Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0337413U (en) | 1991-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4950862A (en) | Laser machining apparatus using focusing lens-array | |
US5185676A (en) | Beam scanning apparatus and apparatus for writing image information | |
JPS63136017A (en) | Light beam scanning device | |
US5461601A (en) | Light beam recording device having a reflecting mirror movable a long an optical axis to compensate an un-focused point on the surface of a recording medium | |
US4686359A (en) | Picture scanning and recording using a photoelectric focusing system | |
JPS58200214A (en) | Scanning optical system | |
JP2000194082A (en) | Skew correction in printing lenticular material | |
JP2572300B2 (en) | Image scanning device | |
JPH0645931Y2 (en) | Laser scanning optical system | |
JP2696364B2 (en) | Monitor mechanism of scanning optical device | |
JP2000227639A (en) | Method for detecting and correcting skew between reference beam and lenticule in lenticular material | |
JPH03113410A (en) | Laser scanning device | |
JPH10267624A (en) | Measuring apparatus for three-dimensional shape | |
JPH04127981A (en) | Laser marker | |
JPH02150399A (en) | Image drawn surface control mechanism of scanning type image drawing device | |
US6735005B2 (en) | Cartesian scanning system | |
KR20190122515A (en) | Apparatus for automatically correcting the position of laser scanning system | |
JPH05257077A (en) | Rotary polygon mirror | |
JPH0668581B2 (en) | Focus position adjusting device for laser drawing device | |
JPH0219782Y2 (en) | ||
JPH0580525A (en) | Plotting device | |
JPH02192710A (en) | Lithography device | |
JP2569537B2 (en) | Alignment device | |
JPH0548085Y2 (en) | ||
JPH0287112A (en) | Optical scanning device |