JPH0645901Y2 - Current detector - Google Patents

Current detector

Info

Publication number
JPH0645901Y2
JPH0645901Y2 JP1986086521U JP8652186U JPH0645901Y2 JP H0645901 Y2 JPH0645901 Y2 JP H0645901Y2 JP 1986086521 U JP1986086521 U JP 1986086521U JP 8652186 U JP8652186 U JP 8652186U JP H0645901 Y2 JPH0645901 Y2 JP H0645901Y2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
loop
current detector
induced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986086521U
Other languages
Japanese (ja)
Other versions
JPS62199677U (en
Inventor
憲太郎 堀内
直樹 若生
弘 沼倉
泰堂 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1986086521U priority Critical patent/JPH0645901Y2/en
Publication of JPS62199677U publication Critical patent/JPS62199677U/ja
Application granted granted Critical
Publication of JPH0645901Y2 publication Critical patent/JPH0645901Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は,電気,電子機器,または電気機械等に使用さ
れ,強磁性体コアの磁気ギャップ内にホール素子,又は
磁気抵抗素子等の感磁素子を挿入してなる電流検出器に
関し,特に磁界の変化時に感磁素子の出力側に発生する
誘起電圧を消去することのできる電流検出器に関する。
[Detailed Description of the Invention] [Industrial field of application] The present invention is used in electric, electronic devices, electric machines, etc., and a sensor such as a Hall element or a magnetoresistive element is provided in a magnetic gap of a ferromagnetic core. The present invention relates to a current detector having a magnetic element inserted therein, and particularly to a current detector capable of eliminating an induced voltage generated on the output side of a magnetic sensitive element when the magnetic field changes.

〔従来技術〕[Prior art]

この種,従来の電流検出器について,図面を参照して説
明すると,第3図の概略図において,周状の強磁性体コ
ア2に被測定電流が流れる電線が貫通又はコイル状に巻
回されている。第3図ではコイルで表わしている。強磁
性体コア2には磁気ギャップ1が設けられており,コイ
ル5に流れる被測定電流に比例した磁界が磁気ギャップ
1内に発生する。磁気ギャップ1内には,ホール素子,
又は磁気抵抗素子等の感磁素子3が挿入されており,感
磁素子3によって磁界の強さは,電圧又は電気抵抗等の
電気量に変換されて出力側から得られる。
A conventional current detector of this type will be described with reference to the drawings. In the schematic diagram of FIG. 3, an electric wire through which a current to be measured flows is wound around a ferromagnetic core 2 having a circular shape in a penetrating or coiled manner. ing. In FIG. 3, it is represented by a coil. A magnetic gap 1 is provided in the ferromagnetic core 2, and a magnetic field proportional to the measured current flowing in the coil 5 is generated in the magnetic gap 1. Hall element,
Alternatively, a magnetic sensitive element 3 such as a magnetoresistive element is inserted, and the magnetic sensitive element 3 converts the strength of the magnetic field into an electric quantity such as voltage or electric resistance and obtains it from the output side.

この種の電流検出器に於いては、被測定電流としてパル
ス電流のように時間に対して電流値が急に変化すると,
感磁素子3の出力側では,本来の磁界に比例した電気信
号の他に磁界変化に比例した誘起電圧が発生し,その分
だけ本来の電気信号に誤差として重畳されるという問題
があった。
In this type of current detector, if the current value suddenly changes with time like the pulse current as the measured current,
On the output side of the magnetic sensing element 3, there is a problem that an induced voltage proportional to the magnetic field change is generated in addition to the electric signal proportional to the original magnetic field, and the induced voltage is superposed as an error on the original electric signal.

そこで,上記問題となる誘起電圧を消去する方法とし
て,感磁素子としてホール素子を用いた場合の例を第4
図に示すと,2つのホール素子8-1,8-2を磁気ギャップ内
で上下に配置し,一方のホール素子8-1に発生する誘起
電圧と他の一方のホール素子8-2に発生する誘起電圧と
を相殺するように,出力電圧側のリードを接続する。な
お,この方法の詳細については,特開昭45-71681号公報
および特開昭57-128854号公報の内容を参照されたい。
Therefore, as a method of eliminating the induced voltage that causes the above problem, an example in which a Hall element is used as a magnetic sensing element
As shown in the figure, two Hall elements 8-1 and 8-2 are placed one above the other in the magnetic gap, and the induced voltage generated in one Hall element 8-1 and the other Hall element 8-2 are generated. Connect the lead on the output voltage side so as to cancel the induced voltage. For details of this method, refer to the contents of JP-A-45-71681 and JP-A-57-128854.

さらに,従来例として,第5図に示すように,感磁素子
としてホール素子を用いた場合で示すと,1つのホール素
子8-3の出力端子の一方からホール素子8-3を中心にして
ほぼ対称にリード線4-1と4-2を出し,ホール素子8-3の
もう一方の出力端子の近傍で再び接続することによって
正のループと負のループを作り,それぞれのループに発
生する誘起電圧を相殺する方法がある。なお,この方法
は,特開昭58-221172号公報の参照により詳しく知るこ
とができる。
Further, as a conventional example, as shown in FIG. 5, when a Hall element is used as a magnetic sensitive element, one Hall element 8-3 is centered around the Hall element 8-3 from one of the output terminals. Lead wires 4-1 and 4-2 are output almost symmetrically, and a positive loop and a negative loop are created by reconnecting near the other output terminal of the Hall element 8-3, and generated in each loop. There is a method of canceling the induced voltage. This method can be known in detail by referring to JP-A-58-221172.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

しかし乍ら,第4図に示すような従来例においては,リ
ード線に誘起する電圧を消去することはできるが,感磁
素子を2個使用しなければならず,材料コストや作業コ
ストが上昇するという欠点があった。また,第5図に見
えられる従来例は,量産時にリード線4-1と4-2とでそれ
ぞれ対称形状のループをつくる際のバラツキを小さくす
ることが困難なために,可変抵抗R1およびR2をそれぞれ
のリード線に直列に接続して,それぞれのループ内に誘
起する電圧を1個ごとに調節する等の作業が必要であ
り,コスト高になるという欠点があった。
However, in the conventional example as shown in FIG. 4, although the voltage induced in the lead wire can be erased, two magnetic sensitive elements must be used, which increases the material cost and the work cost. There was a drawback to do. Further, the conventional example is seen in Figure 5, at the time of order respectively and leads 4-1 and 4-2 it is difficult to reduce variations in making the loops symmetrical shape for mass production, variable resistors R 1 and It is necessary to connect R 2 in series to each lead wire and adjust the voltage induced in each loop individually, which is a drawback of high cost.

又、誘起電圧を相殺するために回路基板の表裏に印刷パ
ターンを配する方法もあるが、印刷ずれによって対応仕
切れない欠点があり、更に表裏印刷による工程の繁雑さ
によるコスト高と言う欠点もあった。
There is also a method of arranging print patterns on the front and back of the circuit board to cancel out the induced voltage, but there is a drawback that it cannot be completed due to misalignment of printing, and there is also the drawback of high cost due to the complexity of the process by front and back printing. It was

〔問題点を解決するための手段〕[Means for solving problems]

そこで,本考案は,感磁素子を他の信号処理用部品とと
もに基板上に一体に面実装した状態で磁気ギャップ内に
挿入し,感磁素子の出力端子から引き出されたリード線
を上記基板に片面印刷配線することにより,量産時にル
ープ形状のバラツキを無くし,量産性と経済性を向上す
ることのできる電流検出器を提供することを目的とす
る。
Therefore, in the present invention, the magnetic sensitive element is inserted into the magnetic gap in a state where the magnetic sensitive element is integrally surface-mounted on the substrate together with other signal processing components, and the lead wire pulled out from the output terminal of the magnetic sensitive element is mounted on the substrate. It is an object of the present invention to provide a current detector capable of eliminating variations in loop shape during mass production and improving mass productivity and economical efficiency by using one-sided printed wiring.

この目的を達成するために、本考案は、回周形状を有す
る磁路の一部に磁気ギャップの設けられた強磁性体コア
と、回路実装用基板に実装され、前記磁気ギャップ内に
おける磁界の大部分が貫通する一部の領域に配置された
感磁素子とからなり、電流により生ずる磁界を前記感磁
素子で感応させることにより該感磁素子から前記電流の
大きさを検出する電流検出器において、前記感磁素子の
対の出力端子の一方から引き出されたリード配線パター
ンが、前記一部の領域上で、前記引き出された側で前記
磁界の変動により電磁誘導電圧が正(または負)に誘起
される第1のループを形成した後該感磁素子の面と前記
回路実装用基板の一面上で交叉し、この交叉の後続いて
延びるリード配線パターンが、前記一部の領域上で、前
記対の出力端子の他方から引き出されたリード配線パタ
ーンとともに前記磁界の変動により電磁誘導電圧が負
(または正)に誘起され且つこの誘起された電磁誘導電
圧の絶対値が前記第1のループに誘起される電磁誘導電
圧の絶対値にほぼ等しい第2のループを形成したことを
特徴とする。
To achieve this object, the present invention provides a ferromagnetic core in which a magnetic gap is provided in a part of a magnetic path having a circular shape, and a magnetic field in the magnetic gap, which is mounted on a circuit mounting board. A current detector comprising a magnetic sensing element arranged in a part of the most penetrating region, and detecting the magnitude of the current from the magnetic sensing element by making the magnetic field generated by the current sensitive by the magnetic sensing element. In, the lead wiring pattern drawn from one of the output terminals of the pair of magnetic sensing elements has a positive (or negative) electromagnetic induction voltage due to the fluctuation of the magnetic field on the drawn side on the partial area. After forming the first loop induced on the surface of the magnetic sensing element and on the one surface of the circuit mounting substrate, a lead wiring pattern extending after the crossing over the partial area, Of the output terminals of the pair The electromagnetic induction voltage is negatively (or positively) induced by the fluctuation of the magnetic field together with the lead wiring pattern drawn from one side, and the absolute value of the induced electromagnetic induction voltage is induced in the first loop. Is characterized by forming a second loop approximately equal to the absolute value of

[考案の実施例] 次に,本考案による実施例について図面を参照して説明
する。第1図は本考案による実施例の全体構成を示した
ものである。第1図において,ホール素子,又は磁気抵
抗素子等からなる感磁素子3が他の回路部品8と共に回
路実装基板6の面上に実装されている。回路実装基板6
は周状の強磁性体コア2に設けられた磁気ギャップ1の
ほぼ中央部に感磁素子3が位置するように配置されてい
る。被測定電流を流すための電線がコア2を貫通又は回
りにコイル状に巻回されており,第1図ではコイル5で
示してある。
[Embodiment of the Invention] Next, an embodiment according to the present invention will be described with reference to the drawings. FIG. 1 shows the overall construction of an embodiment according to the present invention. In FIG. 1, a magnetic sensing element 3 including a Hall element or a magnetoresistive element is mounted on the surface of a circuit mounting board 6 together with other circuit components 8. Circuit mounting board 6
Is arranged such that the magnetic sensitive element 3 is located substantially at the center of the magnetic gap 1 provided in the circumferential ferromagnetic core 2. An electric wire for passing a current to be measured is wound around the core 2 or wound around the core 2, and is shown as a coil 5 in FIG. 1.

第2図(a)は,感磁素子としてホールセンサを使用し
た場合を例に挙げ,回路実装基板6のホールセンサ3′
付近の上面図を示したものである。この図に於いて,ホ
ールセンサ3′の出力端子9-1,9-2と制御電流端子12-1,
12-2に接続された配線(図には出力端子側の配線のみ記
入)は回路実装基板6の面上に印刷等により固定されて
いる。ホールセンサ3′は接着剤,ハンダ等により回路
実装基板6に固定され,その端子は上記の配線(リード
線)とハンダ等により電気的に接続されている。ホール
センサ3′の内部には,ほぼ中央部にホール素子が内蔵
されており,各端子と電気的に接続されている。図に見
られるように出力端子9-1からの配線は大きく右回りに
ループを画いたのちホールセンサ3′の中央真下部でセ
ンサ部と絶縁を保って交叉している。この交叉部を通っ
た配線は大きく左回りにループを画きもう一方の出力端
子9-2の配線と共に回路実装基板6の磁界領域11の外側
に導かれ,検出回路に接続される。この場合,出力端子
9-1側の作るループを貫く磁束量と出力端子9-2側の作る
ループを貫く磁束量とが相等しくなるように磁界領域11
の磁束密度分布に合せて,配線のパターンが設定されて
いる。
FIG. 2A exemplifies a case where a Hall sensor is used as a magnetic sensing element, and the Hall sensor 3'of the circuit mounting board 6 is used.
It is a top view of the vicinity. In this figure, Hall sensor 3'output terminals 9-1, 9-2 and control current terminals 12-1,
The wiring connected to 12-2 (only the wiring on the output terminal side is shown in the drawing) is fixed on the surface of the circuit mounting board 6 by printing or the like. The hall sensor 3'is fixed to the circuit mounting board 6 with an adhesive, solder or the like, and its terminal is electrically connected to the above-mentioned wiring (lead wire) by solder or the like. Inside the hall sensor 3 ', a hall element is built in substantially in the center and electrically connected to each terminal. As shown in the figure, the wiring from the output terminal 9-1 forms a large clockwise loop, and then intersects with the sensor section directly below the center of the Hall sensor 3'while maintaining insulation. The wiring passing through this crossing portion forms a large left-handed loop and is guided to the outside of the magnetic field region 11 of the circuit mounting board 6 together with the wiring of the other output terminal 9-2 and connected to the detection circuit. In this case, the output terminal
Make sure that the amount of magnetic flux penetrating the loop made on the 9-1 side and the amount of magnetic flux penetrating the loop made on the output terminal 9-2 side are equal.
The wiring pattern is set according to the magnetic flux density distribution of.

上記の配線のパターンから判るように,出力端子9-1側
のループと出力端子9-2側のループとは磁束の貫く方向
に対して電気信号の流れの方向が互に逆の関係となって
いるので,コイル5にパルス状の電流が流れ,時間に対
して大きな磁界の変化が磁気ギャップ1に発生しても,
ホールセンサ3′の出力端子側の配線に誘起する電圧は
相殺されるため,本来の磁界に比例したセンサ出力,す
なわち電気信号のみが検出される。
As can be seen from the above wiring pattern, the loops on the output terminal 9-1 side and the loops on the output terminal 9-2 side have opposite flow directions of electric signals with respect to the magnetic flux penetrating direction. Therefore, even if a pulsed current flows through the coil 5 and a large change in the magnetic field with time occurs in the magnetic gap 1,
Since the voltage induced in the wiring on the output terminal side of the Hall sensor 3'is canceled out, only the sensor output proportional to the original magnetic field, that is, the electric signal is detected.

第2図(b)は,ホールセンサ3′の配線のパターンを
第2図(a)と異ならせた場合の例を示したものであ
る。図において,回路実装基板6の上の配線は磁気ギャ
ップ1の磁界領域11から外側の磁界の印加されていない
非磁界領域10にかけて,ホールセンサ3′の出力端子9-
1側の作るループの形状を引き延ばし,出力端子9-2側の
作るループの形状に類似をもたせることによって,第1
図における強磁性体コア2と回路実装基板6の磁気ギャ
ップ1内の相対位置のバラツキが原因で磁界領域11と非
磁界領域10との境界線の位置が変っても,出力端子9-1
側のループを貫く磁束量と出力端子9-2側のループを貫
く磁束量を等しくすることができる。
FIG. 2 (b) shows an example in which the wiring pattern of the Hall sensor 3'is different from that of FIG. 2 (a). In the figure, the wiring on the circuit mounting board 6 extends from the magnetic field region 11 of the magnetic gap 1 to the non-magnetic field region 10 to which the external magnetic field is not applied, and the output terminal 9- of the Hall sensor 3 '.
By extending the shape of the loop created on the 1st side and making it similar to the shape of the loop created on the output terminal 9-2 side,
Even if the position of the boundary line between the magnetic field region 11 and the non-magnetic field region 10 is changed due to the variation in the relative positions of the ferromagnetic core 2 and the circuit mounting substrate 6 in the figure, the output terminal 9-1
It is possible to equalize the amount of magnetic flux penetrating the side loop and the amount of magnetic flux penetrating the loop on the output terminal 9-2 side.

なお,上記の実施例においては,配線の誘起電圧を相殺
することに限って説明したが,一定比率の誘起電圧を重
畳する目的にも使用できることは言うまでもない。又,
本考案は,電流検出器を目的とし,電流測定用の電線を
含まない状態のものも対象としていることは言うまでも
ない。
In the above-mentioned embodiment, the explanation has been limited to canceling out the induced voltage of the wiring, but it goes without saying that it can also be used for the purpose of superimposing a certain ratio of induced voltage. or,
Needless to say, the present invention is intended for a current detector, and also for a state in which a current measuring wire is not included.

〔考案の効果〕[Effect of device]

以上の説明より明らかなように,本考案によれば,所望
の配線形状が片面印刷技術等の利用によってバラツキを
少なく得られるから,個々の調整工数が低減され,量産
性の高められた状態で被測定電流を誤差なく忠実に検出
出来,経済性および信頼性を向上すべく得られる効果は
大きい。
As is clear from the above description, according to the present invention, the desired wiring shape can be obtained with little variation by using the single-sided printing technique, etc., so that the number of adjustment man-hours for each is reduced and the mass productivity is improved. The measured current can be faithfully detected without error, and the effect obtained in order to improve economy and reliability is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案による実施例の全体構成を示す図,第2
図(a)および(b)は,第1図における感磁素子とし
てホールセンサを用いた場合の回路実装基板のホールセ
ンサ付近の構造例をそれぞれ示す平面図,第3図は従来
の電流検出器の全体の構成例を示す図,第4図は従来の
誘起電圧消去機能を備えたホール素子の接続状態の例を
示す斜視図,第5図は従来の誘起電圧消去機能を備えた
ホール素子の接続状態の他の例を示す斜視図である。 図において,1は磁気ギャップ,2は強磁性体コア,3は感磁
素子,3′はホールセンサ,5はコイル,6は回路実装基板,7
は外部端子,8は回路部品,9-1,9-2は出力端子,10は非磁
界領域,11は磁界領域,12-1,12-2は制御電流端子であ
る。
FIG. 1 is a diagram showing the overall construction of an embodiment according to the present invention, and FIG.
1 (a) and 1 (b) are plan views showing an example of the structure around the Hall sensor on the circuit mounting board when the Hall sensor is used as the magnetic sensing element in FIG. 1, and FIG. 3 is a conventional current detector. FIG. 4 is a perspective view showing an example of a connection state of a conventional Hall element having an induced voltage erasing function, and FIG. 5 is a conventional Hall element having an induced voltage erasing function. It is a perspective view which shows the other example of a connection state. In the figure, 1 is a magnetic gap, 2 is a ferromagnetic core, 3 is a magnetic sensing element, 3'is a hall sensor, 5 is a coil, 6 is a circuit board, and 7 is a circuit board.
Is an external terminal, 8 is a circuit component, 9-1 and 9-2 are output terminals, 10 is a non-magnetic field area, 11 is a magnetic field area, and 12-1 and 12-2 are control current terminals.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 若生 直樹 宮城県仙台市太子堂21番1号 東北金属工 業株式会社内 (72)考案者 沼倉 弘 神奈川県鎌倉市大船2丁目14番40号 三菱 電機株式会社商品研究所内 (72)考案者 坂本 泰堂 静岡県静岡市小鹿3丁目18番1号 三菱電 機株式会社静岡製作所内 (56)参考文献 特開 昭57−34465(JP,A) 特開 昭59−151064(JP,A) 特開 昭57−40662(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Naoki Waka 21-1 Taishi-do, Sendai-shi, Miyagi Tohoku Metal Industry Co., Ltd. (72) Hiroshi Numakura 2-14-40 Ofuna, Kamakura-shi, Kanagawa Mitsubishi Electric Product Research Institute Co., Ltd. (72) Inventor, Taido Sakamoto 3-18-1, Oka, Shizuoka City, Shizuoka Prefecture Mitsubishi Electric Corporation Shizuoka Factory (56) Reference JP-A-57-34465 (JP, A) JP 59-151064 (JP, A) JP-A-57-40662 (JP, A)

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】回周形状を有する磁路の一部に磁気ギャッ
プの設けられた強磁性体コアと、回路実装用基板に実装
され、前記磁気ギャップ内における磁界の大部分が貫通
する一部の領域に配置された感磁素子とからなり、電流
により生ずる磁界を前記感磁素子で感応させることによ
り該感磁素子から前記電流の大きさを検出する電流検出
器において、前記感磁素子の対の出力端子の一方から引
き出されたリード配線パターンが、前記一部の領域上
で、前記引き出された側で前記磁界の変動により電磁誘
導電圧が正(または負)に誘起される第1のループを形
成した後該感磁素子の面と前記回路実装用基板の一面上
で交叉し、この交叉の後続いて延びるリード配線パター
ンが、前記一部の領域上で、前記対の出力端子の他方か
ら引き出されたリード配線パターンとともに前記磁界の
変動により電磁誘導電圧が負(または正)に誘起され且
つこの誘起された電磁誘導電圧の絶対値が前記第1のル
ープに誘起される電磁誘導電圧の絶対値にほぼ等しい第
2のループを形成したことを特徴とする電流検出器。
1. A ferromagnetic core in which a magnetic gap is provided in a part of a magnetic path having a circular shape, and a part which is mounted on a circuit mounting board and through which most of a magnetic field in the magnetic gap penetrates. In a current detector for detecting the magnitude of the current from the magnetic sensitive element by causing a magnetic field generated by a current to be sensed by the magnetic sensitive element. The lead wiring pattern drawn out from one of the pair of output terminals has a first (first or negative) electromagnetic induction voltage induced on the parted region by the fluctuation of the magnetic field on the drawn side. After forming a loop, the surface of the magnetic sensitive element and the one surface of the circuit mounting substrate are crossed, and the lead wiring pattern extending after the crossing is the other of the pair of output terminals on the partial area. Lee drawn from The electromagnetic induction voltage is negatively (or positively) induced by the variation of the magnetic field together with the wiring pattern, and the absolute value of the induced electromagnetic induction voltage is substantially equal to the absolute value of the electromagnetic induction voltage induced in the first loop. A current detector characterized in that a second loop is formed.
【請求項2】実用新案登録請求の範囲第1項に記載の電
流検出器において、前記第1のループおよび前記第2の
ループのつくる形状の一部が、前記磁界の大部分が貫通
する前記一部の領域から磁界の殆ど貫通しない領域にか
けて平行に延びるように形成されたことを特徴とする電
流検出器。
2. The current detector according to claim 1, wherein a part of the shape formed by the first loop and the second loop penetrates most of the magnetic field. A current detector characterized in that it is formed so as to extend in parallel from a partial region to a region where a magnetic field hardly penetrates.
JP1986086521U 1986-06-09 1986-06-09 Current detector Expired - Lifetime JPH0645901Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986086521U JPH0645901Y2 (en) 1986-06-09 1986-06-09 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986086521U JPH0645901Y2 (en) 1986-06-09 1986-06-09 Current detector

Publications (2)

Publication Number Publication Date
JPS62199677U JPS62199677U (en) 1987-12-19
JPH0645901Y2 true JPH0645901Y2 (en) 1994-11-24

Family

ID=30942898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986086521U Expired - Lifetime JPH0645901Y2 (en) 1986-06-09 1986-06-09 Current detector

Country Status (1)

Country Link
JP (1) JPH0645901Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086297Y2 (en) * 1989-10-09 1996-02-21 株式会社トーキン Current detector
US8339134B2 (en) * 2010-10-08 2012-12-25 Allegro Microsystems, Inc. Apparatus and method for reducing a transient signal in a magnetic field sensor
JP6423199B2 (en) * 2014-08-18 2018-11-14 大崎電気工業株式会社 Current detection device and connection device usable for current detection device
JP7044094B2 (en) * 2019-05-13 2022-03-30 株式会社デンソー Rotation angle detector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734465A (en) * 1980-08-09 1982-02-24 Matsushita Electric Ind Co Ltd Current sensor for high voltage distribution line
JPS5740662A (en) * 1980-08-25 1982-03-06 Toshiba Corp Circuit substrate device
JPS59151064A (en) * 1983-02-18 1984-08-29 Hitachi Ltd Electric current detector

Also Published As

Publication number Publication date
JPS62199677U (en) 1987-12-19

Similar Documents

Publication Publication Date Title
JP3028377B2 (en) Magnetoresistive proximity sensor
US7106046B2 (en) Current measuring method and current measuring device
JP4579538B2 (en) Current sensor and method of manufacturing current sensor
US10418169B2 (en) Inductance element for magnetic sensor and current sensor including the same
JP3946629B2 (en) Method for manufacturing magnetic field detection element integrated on printed circuit board
JPH04364472A (en) Magnetoelectric conversion device
EP1037057B1 (en) Electrical current sensing apparatus
JP5957706B2 (en) Current sensor
JP3712389B2 (en) Magnetic field detection element integrated on printed circuit board and method for manufacturing the same
JP6007381B2 (en) Method for determining position of magnetoelectric transducer of current sensor
JPH0645901Y2 (en) Current detector
JPS63191069A (en) Current detector
JPH0424453Y2 (en)
JP2897996B2 (en) Magnetic field detector
JPH0622221Y2 (en) Current detector
JPH086297Y2 (en) Current detector
JPH0730170A (en) Ferromagnetic magnetoresistance element
US20040027120A1 (en) Printed circuit fluxgate sensor
JP3603360B2 (en) Method of manufacturing magnetic sensor and magnetic sensor
JPH04282481A (en) Magnetoelectric converter
JP2559474Y2 (en) Current detector
JPH0416939Y2 (en)
JPH02195269A (en) Current sensing unit
JPH0747742Y2 (en) Current detector
JP2980460B2 (en) Current detector