JPH0645647B2 - Chemically modified polysaccharide and method for producing the same - Google Patents

Chemically modified polysaccharide and method for producing the same

Info

Publication number
JPH0645647B2
JPH0645647B2 JP950584A JP950584A JPH0645647B2 JP H0645647 B2 JPH0645647 B2 JP H0645647B2 JP 950584 A JP950584 A JP 950584A JP 950584 A JP950584 A JP 950584A JP H0645647 B2 JPH0645647 B2 JP H0645647B2
Authority
JP
Japan
Prior art keywords
formula
repeating unit
glu
group
numbers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP950584A
Other languages
Japanese (ja)
Other versions
JPS60155203A (en
Inventor
成次 小岩
裕二 澤田
喬雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP950584A priority Critical patent/JPH0645647B2/en
Publication of JPS60155203A publication Critical patent/JPS60155203A/en
Publication of JPH0645647B2 publication Critical patent/JPH0645647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は化学修飾多糖及びその製造法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a chemically modified polysaccharide and a method for producing the same.

担子菌由来の多糖は、抗腫瘍性を示すことで注目されて
いる。この例としては、シイタケよりのレンチナン,ス
エヒロタケよりのシゾフイランなどが知られている。こ
れらは、いずれも、β−1,3−グルカンを主鎖とし、
β−1,6−結合でグルコースが分岐しているといわれ
ている。
Polysaccharides derived from basidiomycetes have attracted attention because they show antitumor properties. Known examples of this include lentinan from Shiitake mushrooms, and schizophyllan from Suehirotake mushrooms. All of these have β-1,3-glucan as the main chain,
It is said that glucose is branched by β-1,6-bond.

担子菌ブクリョウよりのバキマン、スクレロチウム属の
微生物よりのスクレログルカン、キクラゲ由来の多糖等
も同様の構造を持つといわれている。
It is said that bakiman from Basidiomycetes, scleroglucan from microorganisms of the genus Sclerotium, and polysaccharides derived from jellyfish have the same structure.

しかしながらこのような類似した構造を持つ多糖であっ
ても、それらの抗腫瘍性には、差が認められるのであ
り、その原因の一つとして、分岐した糖、即ち側鎖の形
態(例えば、側鎖の数や長さ)の違いによることが考え
られる。
However, even with polysaccharides having such a similar structure, there is a difference in their antitumor properties, and one of the causes is a branched sugar, that is, a side chain form (for example, side chain). It may be due to the difference in the number and length of chains.

これらの多糖類はいずれもその起原である菌類から単純
な抽出分離操作を行って得たものか、又はこうして得た
多糖類から酸化や還元等の単純な反応によって誘導され
たものであった。
All of these polysaccharides were obtained by a simple extraction and separation operation from the fungus that is the origin, or were derived from the thus obtained polysaccharide by a simple reaction such as oxidation or reduction. .

本発明は式(I)、 (式中Gluはグルコピラノシル基を、数字は結合位置
を示す)で表されるβ−1,3−グルコピラノシル基単
位を繰り返し単位とする第一の繰り返し単位、並びに式
(II)、 (式中Glu及び数字は前記同様の意味を表し、XはN
−ヒドロキシアミノカルボニル基又は(2−ヒドロキシ
エチル)アミノ基を表し、mは0ないし2の整数を示
す)で表される第二の繰り返し単位、又はこの第二の繰
り返し単位及び式(III)、 (式中Glu及び数字は前記同様の意味を表し、nは0
ないし2の整数を示す)で表される第三の繰り返し単位
からなり、式(I)のグルコピラノシル基単位100個あたり
第二の繰り返し単位の数が約20ないし約85個、第三の繰
り返し単位の数が、0ないし約30個であり、濃度0.1モ
ル/の塩化ナトリウム水溶液を移動相とするゲル過
高速液体クロマトグラフィにおいて、分子量の値として
約10万ないし約150万を示す化学修飾多糖である。
The present invention has the formula (I): (In the formula, Glu represents a glucopyranosyl group, and a number represents a bonding position), a first repeating unit having a β-1,3-glucopyranosyl group unit as a repeating unit, and a formula
(II), (In the formula, Glu and numbers have the same meanings as described above, and X is N.
A hydroxyaminocarbonyl group or a (2-hydroxyethyl) amino group, and m represents an integer of 0 to 2), or a second repeating unit represented by the formula (III), (In the formula, Glu and the numbers have the same meanings as described above, and n is 0.
To an integer of 2), the number of the second repeating unit is about 20 to about 85 per 100 glucopyranosyl group units of the formula (I), the third repeating unit. Is a chemically modified polysaccharide showing a molecular weight of about 100,000 to about 1,500,000 in gel ultra high performance liquid chromatography using an aqueous solution of sodium chloride having a concentration of 0.1 mol / mol as a mobile phase. .

本発明の化学修飾多糖は代表的には以下の様な物理的、
化学的特性を示す。
The chemically modified polysaccharide of the present invention typically has the following physical properties,
It exhibits chemical properties.

(1)分子量 濃度0.1モル/の塩化ナトリウム溶液を移動相とする
ゲル過高速液体クロマトグラフイーで、カラムとして
東洋曹達製G−6000PWを用い、ゲル過を行うと、分
子量10万〜150万のリテンションタイムの位置に溶
出する。
(1) Molecular weight A gel permeation liquid chromatography using a sodium chloride solution with a concentration of 0.1 mol / mobile as a mobile phase, and using G-6000PW manufactured by Toyo Soda Co., Ltd. as a column, gel filtration was performed to obtain a molecular weight of 100,000 to 1,500,000. Elute at the retention time position.

(2)元素分析値 化学式から期待される値と実質的に一致する値を与え
る。即ち式(II)のXがN−ヒドロキシアミノカルボニル
基の場合には C:32.5%〜43.2% H: 4.5%〜 6.2% N: 1.9%〜 8.6% 程度の値を与え、(2−ヒドロキシエチル) アミノ基の場合には C:35.0%〜43.0% H: 5.0%〜 6.2% N: 2.0%〜11.0% 程度の値を与える。
(2) Elemental analysis value Gives a value that substantially matches the value expected from the chemical formula. That is, when X in the formula (II) is an N-hydroxyaminocarbonyl group, C: 32.5% to 43.2% H: 4.5% to 6.2% N: 1.9% to 8.6% is given to give (2-hydroxyethyl) In the case of an amino group, a value of C: 35.0% to 43.0%, H: 5.0% to 6.2%, N: 2.0% to 11.0% is given.

(3)硫酸分解 2N−硫酸で、80℃、18時間で化学修飾多糖を完全
に加水分解し、ガスクロマトグラフイーで分析すると、
グルコースは認められるが、グリセロールは認められな
い。
(3) Sulfuric acid decomposition The chemically modified polysaccharide was completely hydrolyzed with 2N-sulfuric acid at 80 ° C. for 18 hours, and analyzed by gas chromatography.
Glucose is found but glycerol is not.

(4)塩酸分解 1N−塩酸水溶液に、化学修飾多糖を溶解し、煮沸して
も、何らの沈澱をも生じない。
(4) Hydrochloric acid decomposition No precipitation occurs even if the chemically modified polysaccharide is dissolved in a 1N-hydrochloric acid aqueous solution and boiled.

(5)溶解性 水及びジメチルスルホキシドに可溶で、メタノール、エ
タノール、アセトン、ベンゼンに不溶である。
(5) Solubility Soluble in water and dimethyl sulfoxide, but insoluble in methanol, ethanol, acetone, and benzene.

(6)赤外吸収スペクトル 臭化カリウム錠剤法による赤外吸収スペクトルを第1図
(式(II)のXがN−ヒドロキシアミノカルボニル基の場
合)及び第2図(同じく(2−ヒドロキシエチル)アミ
ノ基の場合)に示す。
(6) Infrared absorption spectrum Infrared absorption spectra obtained by the potassium bromide tablet method are shown in Fig. 1 (when X in the formula (II) is an N-hydroxyaminocarbonyl group) and Fig. 2 (also (2-hydroxyethyl)). (In the case of amino group).

(7)メチル化分析 メチル化後加水分解して得られるメチル化糖をアルジト
ールアセテートに誘導し、ガスクロマトグラフイーによ
る分析を行うと、2,4−ジ−O−メチルグルコース及び
2,4,6−トリ−O−メチルグルコースが分離同定され
る。2,3,4−トリ−O−メチルグルコース及び、2,3,4,6
−テトラ−O−メチルグルコースは分離・同定される場
合と、全く認められない場合がある。
(7) Methylation analysis When methylated sugar obtained by hydrolysis after methylation was induced to alditol acetate and analyzed by gas chromatography, 2,4-di-O-methyl glucose and
2,4,6-Tri-O-methyl glucose is isolated and identified. 2,3,4-tri-O-methyl glucose and 2,3,4,6
-Tetra-O-methyl glucose may be separated or identified, or may not be detected at all.

本発明の化学修飾多糖は非常に強い抗腫瘍性を有するが
哺乳動物への毒性は極めて低く、マウスに対する急性毒
性はLD50値で1,500mg/kg以上である。
The chemically modified polysaccharide of the present invention has a very strong antitumor property, but its toxicity to mammals is extremely low, and its acute toxicity to mice has an LD 50 value of 1,500 mg / kg or more.

本発明の化学修飾多糖は公知の抗腫瘍性多糖と同様、生
理的に許容し得る基剤に溶解または分散させて、皮下、
筋肉内、静脈内などへの注射その他の慣用の方法によっ
て投与することができる。投与量は体重1kg当り約0.1
ないし約100mg程度好ましくは同約1ないし約20mg
程度である。
The chemically modified polysaccharide of the present invention is dissolved or dispersed in a physiologically acceptable base material like a known antitumor polysaccharide, and then subcutaneously,
It can be administered by intramuscular, intravenous injection or other conventional methods. Dosage is about 0.1 per kg body weight
To about 100 mg, preferably about 1 to about 20 mg
It is a degree.

本発明の化学修飾多糖は式(I)、 (式中Gluはグルコピラノシル基を、数字は結合位置
を示す)で表されるβ−1,3−グルコピラノシル基単
位を繰り返し単位とする第一の繰り返し単位、並びに式
(IV)、 (式中Glu及び数字は前記同様の意味を表し、mは0
ないし2の整数を示す)で表されるカルボニル基を有す
る繰り返し単位、又はこのカルボニル基を有する繰り返
し単位及び式(III)、 (式中Glu及び数字は前記同様の意味を表し、nは0
ないし2の整数を示す)で表される第三の繰り返し単位
から成るアルデヒド型−β−1,3−グルカンであっ
て、式(I)のグルコピラノシル基単位100個あたり、式(I
V)で表されるカルボニル基を有する繰り返し単位の数が
約20ないし約85個、式(III)で表される第三の繰り返し
単位の数が、0ないし約30個である多糖を、ヒドロキシ
尿素又は2−ヒドラジノエタノールと反応させてシッフ
塩基を形成させ、これを還元することによって製造する
ことができる。
The chemically modified polysaccharide of the present invention has the formula (I), (In the formula, Glu represents a glucopyranosyl group, and a number represents a bonding position), a first repeating unit having a β-1,3-glucopyranosyl group unit as a repeating unit, and a formula
(IV), (In the formula, Glu and the numbers have the same meanings as described above, and m is 0.
A repeating unit having a carbonyl group represented by the formula (III) or a repeating unit having the carbonyl group and the formula (III), (In the formula, Glu and the numbers have the same meanings as described above, and n is 0.
Or an aldehyde-β-1,3-glucan composed of a third repeating unit represented by the formula (I) per 100 glucopyranosyl group units of the formula (I).
V), wherein the number of repeating units having a carbonyl group is about 20 to about 85, and the number of the third repeating unit of formula (III) is 0 to about 30, It can be produced by reacting with urea or 2-hydrazinoethanol to form a Schiff base, and reducing the Schiff base.

この方法(以下本発明の方法と云う)で出発物質である
アルデヒド型β−1,3−グルカンの式(IV)で表わされ
るカルボニル基を有する繰り返し単位は以下の反応式に
従って式(II)で表わされる繰り返し単位に変換される。
In this method (hereinafter referred to as the method of the present invention), the repeating unit having a carbonyl group represented by the formula (IV) of the aldehyde type β-1,3-glucan as a starting material is represented by the formula (II) according to the following reaction formula. Converted to the represented repeat unit.

本発明の方法で出発物質として用いるアルデヒ型β−
1,3−グルカンは、例えば特開昭55−25409号公報
に開示されている方法と同様にして、ただし、最後の還
元処理及び酸加水分解をすることなく得ることができ
る。すなわち、キクラゲ(Auricularia auriculajudae)
子実体を、アルカリ性水溶液で抽出し、そのアルカリ性
水溶液に溶解しない部分(以下アルカリ不溶部と云う)
を過ヨウ素酸塩で分解することによって調製することが
できる。
Aldehi type β-used as a starting material in the method of the present invention
1,3-Glucan can be obtained, for example, by the same method as disclosed in JP-A-55-25409, but without the final reduction treatment and acid hydrolysis. That is, the fungus, Auricularia auriculajudae
A portion of the fruiting body that is extracted with an alkaline aqueous solution and is not dissolved in the alkaline aqueous solution (hereinafter referred to as the alkali-insoluble portion)
Can be prepared by decomposing the compound with periodate.

本発明の方法で、アルデヒド型β−1,3−グルカンと
ヒドロキシ尿素又は2−ヒドラジノエタノールからシッ
フ塩基を形成させる反応は、水性媒体中前者1gに対し
て後者約0.001ないし約0.5モル、好ましくは0.01ないし
0.1モルを添加することによって行うことができる。そ
の際のアルデヒド型β−1,3−グルカンは水性媒体中
によく分散させる。アルデヒド型β−1,3−グルカン
に対する水性媒体の量は重量比で約10ないし約1.000
倍量、好ましくは約30ないし300倍量程度である。
反応の際の液性はpH約5ないし約10、好ましくは約6
ないし約8とする。液性調整のために酸、例えば塩酸、
又はアルカリ、例えば水酸化ナトリウム等を使用するこ
とができる。
In the method of the present invention, the reaction of forming a Schiff base from an aldehyde β-1,3-glucan and hydroxyurea or 2-hydrazinoethanol is carried out in an aqueous medium in the amount of 1 g of the former to about 0.001 to about 0.5 mol of the latter, preferably about 1 mol of the latter. Is 0.01 or
This can be done by adding 0.1 mol. The aldehyde β-1,3-glucan at that time is well dispersed in the aqueous medium. The amount of the aqueous medium relative to the aldehyde β-1,3-glucan is about 10 to about 1.000 in weight ratio.
The amount is double, preferably about 30 to 300 times.
The liquidity during the reaction has a pH of about 5 to about 10, preferably about 6
Or about 8 An acid such as hydrochloric acid for adjusting the liquidity,
Alternatively, an alkali, such as sodium hydroxide, can be used.

反応は、通常温度約5ないし約80℃、好ましくは約1
0ないし約50℃程度で行なう。反応時間は通常約10
時間ないし5日間程度、好ましくは2日間程度である。
The reaction is usually carried out at a temperature of about 5 to about 80 ° C., preferably about 1
Perform at 0 to about 50 ° C. Reaction time is usually about 10
Time to about 5 days, preferably about 2 days.

こうしてシッフ塩基を形成させたのち還元を行う。還元
剤としては強い還元剤、例えば水素化ホウ素ナトリウ
ム、シアノ化水素化ホウ素ナトリウムなどを用いる。特
にシアノ化水素化ホウ素ナトリウムが好ましい。還元剤
の量は出発物質として用いたアルデヒド型β−1,3−
グルカン中のカルボニル基に対して当量以上である。還
元剤の濃度は限定的ではないが約0.001モル濃度以上、
例えば約0.001ないし約0.1モル程度を例示することがで
きる。反応温度は約0ないし約80℃、好ましくは約1
0ないし約50℃程度、反応時間は通常数時間ないし5
日間程度、好ましくは2日間程度である。
After forming the Schiff base in this way, reduction is carried out. As the reducing agent, a strong reducing agent such as sodium borohydride or sodium cyanoborohydride is used. Particularly, sodium cyanoborohydride is preferable. The amount of the reducing agent is the aldehyde type β-1,3-used as the starting material.
It is at least equivalent to the carbonyl group in the glucan. The concentration of the reducing agent is not limited, but about 0.001 molar concentration or more,
For example, about 0.001 to about 0.1 mol can be exemplified. The reaction temperature is about 0 to about 80 ° C., preferably about 1
0 to about 50 ° C, the reaction time is usually several hours to 5
It is about one day, preferably about two days.

これらの反応によって水溶性の本発明の多糖は水性媒体
中へ溶出される。水性媒体中へ溶出した本発明の多糖は
遠心分離などの慣用の方法で不溶性画分を除去したの
ち、透析、凍結乾燥等の常法によって単離することがで
きる。
By these reactions, the water-soluble polysaccharide of the present invention is eluted into the aqueous medium. The polysaccharide of the present invention eluted in an aqueous medium can be isolated by a conventional method such as dialysis or freeze-drying after removing the insoluble fraction by a conventional method such as centrifugation.

以下本発明を実施例によりさらに詳しく説明する。Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 容量250mlのフラスコに原料調製例1で得たアルデヒ
ド型β−1,3−グルカン1gをとり、これにヒドロキ
シ尿素0.1モルを加え蒸留水を加えて全量100mlとし
た。アルデヒド型β−1,3−グルカンをデイスパーザ
ーでよく分散させた後、塩酸でpH7に調整し、2日間マ
グネチックスターラーで攪拌した。
Example 1 1 g of the aldehyde type β-1,3-glucan obtained in Preparation Example 1 of a raw material was placed in a flask having a volume of 250 ml, to which 0.1 mol of hydroxyurea was added and distilled water was added to make a total amount of 100 ml. The aldehyde β-1,3-glucan was well dispersed with a disperser, adjusted to pH 7 with hydrochloric acid, and stirred with a magnetic stirrer for 2 days.

そのあと塩酸でpH6.5に調整した後、シアノ化水素化ホ
ウ素ナトリウム1.16gを加え、攪拌しながら、さらに2
日間反応させた。反応終了後、けん濁物を含んだ反応液
を、遠心分離,ロ過し、水溶性画分を、水道水で流水透
析した。透析チューブ内容液を凍結乾燥して目的とする
化学修飾多糖72mgを得た。(収率7.2%)。得られた
化学修飾多糖の分析結果は以下の通りであった。
After that, adjust the pH to 6.5 with hydrochloric acid, add 1.16 g of sodium cyanoborohydride, and add 2 more while stirring.
Reacted for days. After the completion of the reaction, the reaction liquid containing the suspension was centrifuged and filtered, and the water-soluble fraction was dialyzed against running water. The content of the dialysis tube was freeze-dried to obtain 72 mg of the desired chemically modified polysaccharide. (Yield 7.2%). The analysis results of the obtained chemically modified polysaccharide were as follows.

分子量 濃度0.1モル/の塩化ナトリウム水溶液を移動相とす
るゲル過高速液体クロマトグラフイーで、カラムとし
て東洋曹達工業(株)製G−6000PWを用い、ゲル
過を行なうと、分子量21万のリテンションタイムの
位置に溶出した。
The retention time of the molecular weight of 210,000 was obtained by gel permeation using G-6000PW manufactured by Toyo Soda Industry Co., Ltd. Was eluted at the position.

元素分析値 C:36.7% H: 5.1% N: 4.2% 赤外吸収スペクトル 臭化カリウム錠剤法による赤外吸収スペクトルを第1図
に示す。
Elemental analysis value C: 36.7% H: 5.1% N: 4.2% Infrared absorption spectrum The infrared absorption spectrum by the potassium bromide tablet method is shown in FIG.

メチル化分析 メチル化分析の結果から 式(II)で表わされる繰り返し単位の個数 (式(I)100個当り) 82.5個 式(III)で表わされる繰り返し単位の個数 (式(I)100個当り) 0個 実施例2 原料調製例2で得たアルデヒド型多糖を用いて実施例1
と同様にして化学修飾を行い、化学修飾多糖を得た。
(収率5.1%)。実施例1と同様にして行った分析の結
果は以下の通りであった。
Methylation analysis From the results of methylation analysis, the number of repeating units represented by the formula (II) (per 100 formulas (I)) 82.5 The number of repeating units represented by the formula (III) (per 100 formulas (I)) ) 0 Example 2 Example 1 using the aldehyde-type polysaccharide obtained in Raw Material Preparation Example 2
Chemical modification was performed in the same manner as above to obtain a chemically modified polysaccharide.
(Yield 5.1%). The results of the analysis conducted in the same manner as in Example 1 are as follows.

分子量 分子量95万のリテンションタイムの位置に溶出した。Molecular weight It eluted at the retention time position of molecular weight 950,000.

元素分析値 C:39.1% H: 5.2% N: 3.5% メチル化分析 メチル化分析の結果から 式(II)で表わされる繰り返し単位の個数 (式(I)100個当り) 74個 式(III)で表わされる繰り返し単位の個数 (式(I)100個当り) 8.5 実施例3 ヒドロキシ尿素0.1モルに代えて2−ヒドラジノエタノ
ール0.1モルを用いた以外は実施例1と同様にしてアル
デヒド型β−1,3.−グルカンの化学修飾を行ない目
的とする化学修飾多糖83mgを得た。(収率8.3%)。
実施例1と同様にして行った分析の結果は以下の通りで
あった。
Elemental analysis value C: 39.1% H: 5.2% N: 3.5% Methylation analysis Number of repeating units represented by the formula (II) based on the result of the methylation analysis (per 100 formulas (I)) 74 formulas (III) Number of repeating units represented by (per 100 formula (I)) 8.5 Example 3 Aldehyde β- 1,3. -Glucan was chemically modified to obtain 83 mg of the desired chemically modified polysaccharide. (Yield 8.3%).
The results of the analysis conducted in the same manner as in Example 1 are as follows.

分子量 分子量21万のリテンションタイムの位置に溶出した。Molecular weight It eluted at the retention time position of molecular weight 210,000.

元素分析値 C:38.3% H: 5.4% N: 4.6% 赤外吸収スペクトル 臭化カリウム錠剤法による赤外吸収スペクトルを第2図
に示す。
Elemental analysis value C: 38.3% H: 5.4% N: 4.6% Infrared absorption spectrum An infrared absorption spectrum by the potassium bromide tablet method is shown in FIG.

メチル化分析 メチル化分析の結果から 式(II)で表わされる繰り返し単位の個数 (式(I)100個当り) 82.5個 式(III)で表わされる繰り返し単位の個数 (式(I)100個当り) 0個 実施例4 原料調製例2で得たアルデヒド型多糖を用いて実施例3
と同様にして化学修飾を行い、化学修飾多糖を得た。
(収率5.2%)。実施例1と同様にして行った分析の結
果は以下の通りであった。
Methylation analysis From the results of methylation analysis, the number of repeating units represented by the formula (II) (per 100 formulas (I)) 82.5 The number of repeating units represented by the formula (III) (per 100 formulas (I)) ) 0 Example 4 Using the aldehyde-type polysaccharide obtained in Raw Material Preparation Example 2, Example 3
Chemical modification was performed in the same manner as above to obtain a chemically modified polysaccharide.
(Yield 5.2%). The results of the analysis conducted in the same manner as in Example 1 are as follows.

分子量 分子量95万のリテンションタイムの位置に溶出した。Molecular weight It eluted at the retention time position of molecular weight 950,000.

元素分析値 C:40.5% H: 5.8% N: 3.1% メチル化分析 メチル化分析の結果から 式(II)で表わされる繰り返し単位の個数 (式(I)100個当り) 74個 式(III)で表わされる繰り返し単位の個数 (式(I)100個当り) 8.5個 実施例5 ICRマウス群で、本発明の化学修飾多糖のザルコーマ
180固形腫瘍に対する効果を試験した。ICRマウス
1匹につき、ザルコーマ180腹水癌細胞6×10
をそけい部皮下に接種した。実験群は1群6匹とした。
癌細胞移植後、翌日より10日間、1日1回薬剤を腹腔
内に0.1mlずつ投与した。試験群には、本発明の化学修
飾多糖(実施例1で得たもの)を5mg/kg・dayの投与量
になるようにして用い、対照群には生理食塩水のみを投
与した。腫瘍移植後35日目に腫瘍を摘出してその重量
を測定した。各群の腫瘍抑制率は次式により算出した。
Elemental analysis value C: 40.5% H: 5.8% N: 3.1% Methylation analysis Number of repeating units represented by formula (II) from the result of methylation analysis (per 100 formulas (I)) 74 formulas (III) The number of repeating units represented by (per 100 formula (I)) 8.5 Example 5 The effect of the chemically modified polysaccharide of the present invention on Sarcoma 180 solid tumor was tested in a group of ICR mice. For each ICR mouse, 6 × 10 6 Sarcoma 180 ascites tumor cells were subcutaneously inoculated into the groin. The experimental group consisted of 6 animals.
After the cancer cell transplantation, 0.1 ml of the drug was intraperitoneally administered once a day for 10 days from the next day. In the test group, the chemically modified polysaccharide of the present invention (obtained in Example 1) was used at a dose of 5 mg / kg · day, and in the control group, physiological saline alone was administered. The tumor was extracted 35 days after the tumor transplantation and the weight was measured. The tumor suppression rate of each group was calculated by the following formula.

ここでC:対照群の平均腫瘍重量 T:試験群の平均腫瘍重量 結果を第1表に示す。 Here, C: average tumor weight of control group T: average tumor weight of test group The results are shown in Table 1.

本発明で原料として用いたアルデヒド型β−1,3−グ
ルカンは以下の様にして調製した。
The aldehyde type β-1,3-glucan used as a raw material in the present invention was prepared as follows.

原料調製例1 アルカリ不溶部の調製 市販の乾燥させたキクラゲ504gを、1%塩化ナトリ
ウム水溶液6で、家庭用ミキサーにより十分粉砕し、
一昼夜静置、浸漬した。このあと1%塩化ナトリウム水
溶液3を加え、さらに60℃、6時間、攪拌しながら
加熱し、キクラゲを十分膨潤させた。さらにキクラゲを
微細化するため、ホモジナイザーで粉砕した後、120
℃、20分間オートクレーブで熱水抽出を行い遠心分離
して熱水抽出画分を除いた。残査画分について、もう一
度熱水抽出操作を同様にして行った。
Raw Material Preparation Example 1 Preparation of Alkali-Insoluble Part 504 g of commercially available dried chrysanthemum jellyfish was sufficiently pulverized with 1% sodium chloride aqueous solution 6 by a household mixer,
It was left standing overnight and immersed. Then, 1% aqueous sodium chloride solution 3 was added, and the mixture was further heated at 60 ° C. for 6 hours with stirring to sufficiently swell the fungus. To further miniaturize the fungus, crush it with a homogenizer and then
Hot water extraction was carried out in an autoclave at 20 ° C. for 20 minutes, followed by centrifugation to remove the hot water extraction fraction. The residual fraction was subjected to hot water extraction operation again in the same manner.

このようにして得られた残査画分に水9と水酸化ナト
リウム324gを加え(この時全容量は12となっ
た)、60℃、4時間、窒素雰囲気下でアルカリ抽出を
行った。遠心分離を行ないアルカリ抽出画分を除き、ア
ルカリ抽出残査を得た。このアルカリ抽出残査に水8
と水酸化ナトリウム156gを加え(この時全容量は9
となった。)、再び同様にしてアルカリ抽出操作を行
った。
To the residual fraction thus obtained, water 9 and 324 g of sodium hydroxide were added (at this time, the total volume became 12), and alkali extraction was carried out at 60 ° C. for 4 hours under a nitrogen atmosphere. Centrifugation was performed to remove the alkali-extracted fraction to obtain an alkali-extracted residue. Water is added to this alkali extraction residue.
And 156 g of sodium hydroxide are added (at this time, the total volume is 9
Became. ), And alkali extraction operation was performed again in the same manner.

アルカリ抽出残査に水10を加え洗浄、遠心分離及び
再懸濁の操作を懸濁液のpHが約9になるまで繰り返し
た。懸濁液に希塩酸を加えpHを7に調整した。
Water 10 was added to the alkali extraction residue, washing, centrifugation and resuspension were repeated until the pH of the suspension reached about 9. Dilute hydrochloric acid was added to the suspension to adjust the pH to 7.

次にこの懸濁液に水5を加え、ホモジナイザー処理
し、アルカリ抽出残査をさらに細分化した。懸濁液にさ
らに水を加えて凍結乾燥し、146gのアルカリ不溶部
を得た(収率29%)。このものは実質的に式(I) (式中Glu及び数字は前記同様の意味を表わす)で表
わされるβ−1,3−グルコピラノシル基単位を繰り返
し単位とする第一の繰り返し単位と式(III) (式中Glu及び数字は前記同様の意味を表わす)で表わ
される繰り返し単位からなり、式(I)の繰り返し単位1
00個当り式(III)の繰り返し単位の数が約82.5個であ
る多糖であった。nの値は平均値で約0.1であった。
Next, water 5 was added to this suspension and treated with a homogenizer to further subdivide the alkali extraction residue. Water was further added to the suspension and freeze-dried to obtain 146 g of an alkali-insoluble portion (yield 29%). This is essentially of formula (I) The first repeating unit having a β-1,3-glucopyranosyl group unit represented by the formula (Glu and the numbers have the same meanings as described above) and the formula (III) (Wherein Glu and the numbers have the same meanings as described above), and the repeating unit 1 of the formula (I)
It was a polysaccharide having about 82.5 repeating units of the formula (III) per 00. The value of n was about 0.1 on average.

アルデヒド型多糖の調製 内容量5の細口かっ色びんに、アルカリ不溶部25g
を入れ、蒸留水5を加え、マグネチックスターラーで
アルカリ不溶部をよく分散させた後、アスピレーターを
用い脱気した。そのあとメタ過ヨウ素酸ナトリウム66
gを加え、溶解させた後、攪拌しながら、室温で7日間
反応させた。反応が終了後水洗と遠心分離を3回繰り返
して行い、生成したギ酸及び残存のメタ過ヨウ素酸ナト
リウムを除去した。固相に水を加え、凍結乾燥して20.5
gのアルデヒド型多糖を得た(収率82%)このアルデ
ヒド型多糖は実質的に式(I)で表わされる繰り返し単位
と式(IV)で表わされる繰り返し単位からなるβ−1,3
−グルカンであった。式(IV)のmの値は平均値で約0.1
であった。また式(I)で表わされる繰り返し単位100
個当りの式(IV)で表わされる繰り返し単位の個数は82.5
個であった。このアルデヒド型多糖の窒素の含有量は定
量限界以下であった。
Preparation of aldehyde-type polysaccharide In a narrow-mouth brown bottle with a content of 5, 25 g of alkali-insoluble part
Then, distilled water 5 was added, the alkali-insoluble portion was well dispersed with a magnetic stirrer, and then degassed using an aspirator. Then sodium metaperiodate 66
After g was added and dissolved, the mixture was reacted with stirring at room temperature for 7 days. After the reaction was completed, washing with water and centrifugation were repeated 3 times to remove the generated formic acid and the residual sodium metaperiodate. Add water to the solid phase and freeze-dry to 20.5
g of aldehyde-type polysaccharide was obtained (yield: 82%). This aldehyde-type polysaccharide is composed of β-1,3 consisting essentially of the repeating unit represented by the formula (I) and the repeating unit represented by the formula (IV).
-It was a glucan. The value of m in formula (IV) is about 0.1 on average.
Met. Further, the repeating unit represented by the formula (I) is 100
The number of repeating units represented by formula (IV) per unit is 82.5.
It was an individual. The nitrogen content of this aldehyde-type polysaccharide was below the limit of quantification.

原料調製例2 原料調製例1のアルデヒド型多糖の調製で用いたメタ過
ヨウ素酸ナトリウムの量を13.2gとした以外は同調製例
と同様にして原料調製を行い、アルデヒド型多糖を得
た。このアルデヒド型多糖は実質的に式(I)で表わされ
る繰り返し単位と式(III)で表わされる繰り返し単位及
び式(IV)で表わされる繰り返し単位からなるβ−1,3
−グルカンであった。式(III)のn、式(IV)のmの値は
ともに平均値で約0.1であった。また式(I)で表わされる
繰り返し単位100個当りの、式(III)で表わされる繰
り返し単位の個数は8.5個、式(IV)で表わされる繰り返
し単位の個数は74個であった。
Raw Material Preparation Example 2 A raw material was prepared in the same manner as in Preparation Example 1 except that the amount of sodium metaperiodate used in the preparation of the aldehyde-type polysaccharide of Raw Material Preparation Example 1 was changed to 13.2 g to obtain an aldehyde-type polysaccharide. This aldehyde-type polysaccharide is substantially β-1,3 consisting of a repeating unit represented by the formula (I), a repeating unit represented by the formula (III) and a repeating unit represented by the formula (IV).
-It was a glucan. The values of n in the formula (III) and m in the formula (IV) were both about 0.1 on average. In addition, the number of repeating units represented by the formula (III) was 8.5 and the number of repeating units represented by the formula (IV) was 74 per 100 repeating units represented by the formula (I).

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は、本発明の化学修飾多糖の赤外吸収
スペクトルを示す図である。
FIG. 1 and FIG. 2 are diagrams showing infrared absorption spectra of the chemically modified polysaccharide of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】式(I)、 (式中Gluはグルコピラノシル基を、数字は結合位置
を示す)で表されるβ−1,3−グルコピラノシル基単
位を繰り返し単位とする第一の繰り返し単位、並びに式
(II)、 (式中Glu及び数字は前記同様の意味を表し、XはN
−ヒドロキシアミノカルボニル基又は(2−ヒドロキシ
エチル)アミノ基を表し、mは0ないし2の整数を示
す)で表される第二の繰り返し単位、又はこの第二の繰
り返し単位及び式(III)、 (式中Glu及び数字は前記同様の意味を表し、nは0
ないし2の整数を示す)で表される第三の繰り返し単位
からなり、式(I)のグルコピラノシル基単位100個あたり
第二の繰り返し単位の数が約20ないし約85個、第三の繰
り返し単位の数が、0ないし約30個であり、濃度0.1モ
ル/の塩化ナトリウム水溶液を移動相とするゲル過
高速液体クロマトグラフィにおいて、分子量の値として
約10万ないし約150万を示す化学修飾多糖。
1. A formula (I), (In the formula, Glu represents a glucopyranosyl group, and a number represents a bonding position), a first repeating unit having a β-1,3-glucopyranosyl group unit as a repeating unit, and a formula
(II), (In the formula, Glu and numbers have the same meanings as described above, and X is N.
A hydroxyaminocarbonyl group or a (2-hydroxyethyl) amino group, m is an integer of 0 to 2), or a second repeating unit represented by the formula (III), (In the formula, Glu and the numbers have the same meanings as described above, and n is 0.
To an integer of 2), the number of the second repeating unit is about 20 to about 85 per 100 glucopyranosyl group units of the formula (I), the third repeating unit Is a chemically modified polysaccharide having a molecular weight of about 100,000 to about 1,500,000 in gel ultra high performance liquid chromatography using an aqueous sodium chloride solution having a concentration of 0.1 mol / mol as a mobile phase.
【請求項2】式(I)、 (式中Gluはグルコピラノシル基を、数字は結合位置
を示す)で表されるβ−1,3−グルコピラノシル基単
位を繰り返し単位とする第一の繰り返し単位、並びに式
(IV)、 (式中Glu及び数字は前記同様の意味を表し、mは0
ないし2の整数を示す)で表されるカルボニル基を有す
る繰り返し単位、又はこのカルボニル基を有する繰り返
し単位及び式(III)、 (式中Glu及び数字は前記同様の意味を表し、nは0
ないし2の整数を示す)で表される第三の繰り返し単位
から成るアルデヒド型−β−1,3−グルカンであっ
て、式(I)のグルコピラノシル基単位100個あたり、式(I
V)で表されるカルボニル基を有する繰り返し単位の数が
約20ないし約85個、式(III)で表される第三の繰り返し
単位の数が、0ないし約30個である多糖を、ヒドロキシ
尿素又は2−ヒドラジノエタノールと反応させてシッフ
塩基を形成させ、これを還元することを特徴とする、式
(I)、 (式中Gluは及び数字は前記同様の意味を表す)で表
されるβ−1,3−グルコピラノシル基単位を繰り返し
単位とする第一の繰り返し単位、並びに式(II)、 (式中Glu、m及び数字は前記同様の意味を表し、X
はN−ヒドロキシアミノカルボニル基又は(2−ヒドロ
キシエチル)アミノ基を表す)で表される第二の繰り返
し単位、又はこの第二の繰り返し単位及び式(III)、 (式中Glu,n及び数字は前記同様の意味を表す)で
表される第三の繰り返し単位からなり、式(I)のグルコ
ピラノシル基単位100個あたり、式(II)で表される第二
の繰り返し単位の数が約20ないし約85個、式(III)で表
される第三の繰り返し単位の数が、0ないし約30個であ
り、濃度0.1モル/の塩化ナトリウム水溶液を移動相
とするゲル過高速液体クロマトグラフィにおいて、分
子量の値として約10万ないし約150万を示す化学修飾多
糖の製造法。
2. The formula (I), (In the formula, Glu represents a glucopyranosyl group, and a number represents a bonding position), a first repeating unit having a β-1,3-glucopyranosyl group unit as a repeating unit, and a formula
(IV), (In the formula, Glu and the numbers have the same meanings as described above, and m is 0.
A repeating unit having a carbonyl group represented by the formula (III) or a repeating unit having the carbonyl group and the formula (III), (In the formula, Glu and the numbers have the same meanings as described above, and n is 0.
Or an aldehyde-β-1,3-glucan composed of a third repeating unit represented by the formula (I) per 100 glucopyranosyl group units of the formula (I).
V) is a carbonyl group-containing repeating unit having a number of about 20 to about 85, and the third repeating unit of the formula (III) has a number of 0 to about 30. A formula characterized by reacting with urea or 2-hydrazinoethanol to form a Schiff base and reducing it.
(I), (Wherein Glu and the numbers have the same meanings as described above), a first repeating unit having a β-1,3-glucopyranosyl group unit as a repeating unit, and a formula (II), (In the formula, Glu, m and the numbers have the same meanings as described above, and X
Represents an N-hydroxyaminocarbonyl group or a (2-hydroxyethyl) amino group), or a second repeating unit represented by the formula (III), (In the formula, Glu, n and the numbers have the same meanings as described above), and a second repeating unit represented by the formula (II) per 100 glucopyranosyl group units of the formula (I). The number of repeating units is about 20 to about 85, the number of the third repeating unit represented by the formula (III) is about 0 to about 30, and an aqueous solution of sodium chloride having a concentration of 0.1 mol / l is used as a mobile phase. A method for producing a chemically modified polysaccharide having a molecular weight value of about 100,000 to about 1.5 million in gel ultra high performance liquid chromatography.
【請求項3】出発物質として用いるアルデヒド型−β−
1,3−グルカンがキクラゲ子実体のアルカリ不溶部分
を過ヨウ素酸で酸化して得たものである特許請求の範囲
第2項記載の製造方法。
3. Aldehyde type -β- used as a starting material
The production method according to claim 2, wherein the 1,3-glucan is obtained by oxidizing the alkali-insoluble portion of the fruiting body of Pleurotus cornucopiae with periodate.
JP950584A 1984-01-24 1984-01-24 Chemically modified polysaccharide and method for producing the same Expired - Lifetime JPH0645647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP950584A JPH0645647B2 (en) 1984-01-24 1984-01-24 Chemically modified polysaccharide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP950584A JPH0645647B2 (en) 1984-01-24 1984-01-24 Chemically modified polysaccharide and method for producing the same

Publications (2)

Publication Number Publication Date
JPS60155203A JPS60155203A (en) 1985-08-15
JPH0645647B2 true JPH0645647B2 (en) 1994-06-15

Family

ID=11722099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP950584A Expired - Lifetime JPH0645647B2 (en) 1984-01-24 1984-01-24 Chemically modified polysaccharide and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0645647B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69836496T2 (en) * 1997-09-01 2007-10-31 Seikagaku Corp. PROCESS FOR PREPARING BETA- (1,3) -D-GLUCAN FROM MUSHROOMS

Also Published As

Publication number Publication date
JPS60155203A (en) 1985-08-15

Similar Documents

Publication Publication Date Title
Šandula et al. Microbial (1→ 3)-β-d-glucans, their preparation, physico-chemical characterization and immunomodulatory activity
Kiho et al. (1→ 3)-α-D-glucan from an alkaline extract of Agrocybe cylindracea, and antitumor activity of its O-(carboxymethyl) ated derivatives
JPS6356881B2 (en)
CN111234044B (en) Low-molecular-weight tremella aurantialba glucuronic acid-xylan and preparation method and application thereof
CH634855A5 (en) PROCESS FOR THE PRODUCTION OF NEW BETA-1,3-GLUCAN DERIVATIVES.
US3893996A (en) Hydroxyalkyl and mercaptoalkyl derivatives of {62 -(1{43 3) glucans
JP3444624B2 (en) Highly branched β-glucan, its production method and use
US4229570A (en) Method of producing nitrogen-containing polysaccharides
US3883505A (en) Method of solubilizing polysaccharides
JPH026761B2 (en)
JP2003507539A (en) Modified reduced maltose-type oligosaccharides
US4398023A (en) β-1,3-Glucanpolyol, process for preparation thereof, and utilization thereof
EP0172559B1 (en) Polysaccharide ron substance, production of the same and use of the same
JPH0645645B2 (en) Chemically modified polysaccharide and method for producing the same
JPH0645647B2 (en) Chemically modified polysaccharide and method for producing the same
JPH0645644B2 (en) Chemically modified polysaccharide and method for producing the same
JPH0647605B2 (en) Chemically modified polysaccharide and method for producing the same
JPH0645646B2 (en) Chemically modified polysaccharide and method for producing the same
JP2630783B2 (en) Method for producing neutral polysaccharide having antitumor activity
JPS5953424A (en) Antitumor agent
JPH0376323B2 (en)
JPS60199001A (en) Antitumor polysaccharide derivative
JP4820956B2 (en) Method for producing apple vinegar-derived antitumor polysaccharide and apple vinegar-derived antitumor polysaccharide obtained thereby
JPH0248000B2 (en)
JPS6377901A (en) Novel polysaccharides