JP3444624B2 - Highly branched β-glucan, its production method and use - Google Patents

Highly branched β-glucan, its production method and use

Info

Publication number
JP3444624B2
JP3444624B2 JP15413993A JP15413993A JP3444624B2 JP 3444624 B2 JP3444624 B2 JP 3444624B2 JP 15413993 A JP15413993 A JP 15413993A JP 15413993 A JP15413993 A JP 15413993A JP 3444624 B2 JP3444624 B2 JP 3444624B2
Authority
JP
Japan
Prior art keywords
glucan
highly branched
ppm
present
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15413993A
Other languages
Japanese (ja)
Other versions
JPH06340701A (en
Inventor
君子 渡邉
洋子 内山
隆 清田
和宏 八木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP15413993A priority Critical patent/JP3444624B2/en
Publication of JPH06340701A publication Critical patent/JPH06340701A/en
Application granted granted Critical
Publication of JP3444624B2 publication Critical patent/JP3444624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分岐度β−グルカ
ン、その製造法及び感染症予防剤あるいは抗腫瘍剤に関
する。本発明の感染症予防剤あるいは抗腫瘍剤は、医薬
あるいは食品添加剤、飼料添加剤などとして有用であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly branched β-glucan, a method for producing the same and an infectious disease preventive agent or antitumor agent. The infectious disease preventive agent or antitumor agent of the present invention is useful as a drug, a food additive, a feed additive, or the like.

【0002】[0002]

【従来の技術】従来、オウレオバシディウム属(Aureoba
sidium sp.) がβ−1, 3−1, 6−D−グルカンを生成す
ることは知られていた (Acta Chemica Scandinavia 1
7, 1351-1356(1963) 、Agric. Biol. Chem. 47 (6), 11
67-1172(1983)) 。これらのグルカンはリン酸基、リン
ゴ酸基またはスルホン酸基が付いており、活性を高める
ためにはこれらの官能基を取り除かななければならない
という問題があった。一方、多数分岐を有するのグルカ
ンも知られているが(Chem.Pharm.Bull.,40, 2215(199
2)) 、分岐のない主鎖のグルコース単独同志の結合が多
数存在しているものであり、またこのグルカンは抗腫瘍
活性を有していないものであった。
2. Description of the Related Art Conventionally, the genus Aureobasidium(Aureoba
sidium sp.) produces β-1, 3-1, 6-D-glucan
Was known (Acta Chemica Scandinavia  1
7, 1351-1356 (1963), Agric. Biol. Chem.47(6), 11
67-1172 (1983)). These glucans have a phosphate group, phosphorus
Includes a goric acid group or sulfonic acid group to enhance activity
In order to remove these functional groups
There was a problem. On the other hand, gluca with multiple branches
Is also known (Chem.Pharm.Bull.,40, 2215 (199
2)), the main chain glucose without branching has many bonds of glucose alone.
There are a number of them, and this glucan is an antitumor
It had no activity.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは、このよ
うなオウレオバシディウム属の産生する高分子多糖に注
目し、新規で、かつさらに生理活性の高いβ−グルカン
を得ようとして検討を重ねたところ、オウレオバシディ
ウム プルランス IFO 4466 株が高分岐度のβ−グ
ルコシド結合をもつ新規グルカンを産生し、このグルカ
ンがリン酸基等と結合しないグルコースのみからなる多
糖で経口的に高い抗腫瘍活性及び免疫賦活作用を示すこ
とを見出して本発明を完成するに至った。
DISCLOSURE OF THE INVENTION The present inventors have paid attention to such a high molecular polysaccharide produced by the genus Aureobasidium and have tried to obtain a novel β-glucan having high physiological activity. As a result of repeated studies, the Aureobasidium pullulans IFO 4466 strain produced a novel glucan having a highly branched β-glucoside bond, and this glucan was orally administered as a polysaccharide consisting of glucose that does not bind to a phosphate group. The present invention has been completed by finding that they exhibit high antitumor activity and immunostimulatory activity.

【0004】従って、本発明の課題は、新規な高分岐度
のβ−グルコシド結合をもつグルカンを提供することに
ある。また、本発明の課題は、オウレオバシディウム
プルランスIFO4466株を用いる新規な高分岐度β−グ
ルカンの製造法を提供することにある。さらに本発明の
課題は、このような新規な高分岐度β−グルカンを有効
成分とする抗腫瘍剤及び感染症予防剤を提供することに
ある。
Therefore, an object of the present invention is to provide a glucan having a novel highly branched β-glucoside bond. Moreover, the subject of this invention is Aureobasidium.
It is an object of the present invention to provide a novel method for producing β-glucan having a high degree of branching using the pullulans IFO4466 strain. A further object of the present invention is to provide an antitumor agent and an infectious disease preventive agent containing such a novel highly branched β-glucan as an active ingredient.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明者ら
は、前記したようにオウレオバシディウム属の産生する
多糖について注目し、オウレオバシディウム属に属する
種々の微生物を用いて多糖の産生について検討を重ねた
ところ、オウレオバシディウム プルランス IFO 4
466 株がキシロースおよびビタミンCを必須成分として
含有する液体培地において高い収率で生理活性が高く、
高分岐度のβ−グルコシド結合をもつβ−グルカンを産
生することを見出した。
[Means for Solving the Problems] That is, the present inventors have paid attention to the polysaccharides produced by the genus Aureobasidium, as described above, and used various microorganisms belonging to the genus Aureobasidium. After repeated studies on the production of Aureobasidium pullulans IFO 4
466 strain has a high yield and high physiological activity in a liquid medium containing xylose and vitamin C as essential components,
It was found to produce β-glucan with a highly branched β-glucoside bond.

【0006】本発明をさらに具体的に説明する。オウレ
オバシディウム属には、森永力著「講座/真菌の分類・
同定」(J. Antibact. Antifung. Agents. 18 (6) 295
-297(1990)によれば、14種1変種があり、そのほとんど
がオウレオバシディウム プルランス(Aureobasidium
pullulans)である。オウレオバシデイウム プルランス
には2つの変種がある。 これらの形態的特徴は、コロ
ニーは滑面でしばしば粘性のある分生子の塊りで被わ
れ、通常、気中菌糸はまばらに存在する。コロニーの色
は明るい褐色、黄色、ピンクあるいは黒色とさまざまで
ある。菌糸は透明、しばしば褐色になり厚壁である。分
生子形成細胞は透明で、菌糸上に分岐して先端にあるい
は中間部にそれぞれ形成される。分生子は同調的に出芽
法により、分生子形成細胞上から密に作られる。色は透
明・滑面壁で単細胞、形や大きさはさまざまである。こ
れらのオウレオバシディウム プルランスのなかで天然
から分離して純化、継代培養してその形質を保持してい
るものあるいは寄託機関に寄託されている菌株のうち、
本発明の高分岐度β−グルカンを産生することができる
ものであれば、どのような菌株でも用いられる。しか
し、財団法人 発酵研究所に寄託されているオウレオバ
シディウム プルランス IFO 4466 を使用すること
が高分岐度β−グルカンの収率及び単離しやすさの点で
好ましい。
The present invention will be described more specifically. For the genus Aureobasidium, refer to Riki Morinaga "Lecture / Classification of Fungi /
Identification '' (J. Antibact . Antifung . Agents . 18 (6) 295
-297 (1990), there are 14 varieties and 1 varieties, most of which are Aureobasidium pullulans.
pullulans) . There are two variants of Aureobasidium pullulans. These morphological features are that colonies are often covered on the smooth surface with a mass of viscous conidia and sparsely present aerial hyphae. Colors of colonies vary from light brown to yellow, pink or black. Hyphae are clear, often brown and thick-walled. Conidia-forming cells are transparent and branch on hyphae to form at the tip or in the middle. Conidia are produced densely on the conidia-forming cells by the budding method synchronously. The color is transparent and has a smooth wall, and it is a single cell with various shapes and sizes. Of these Aureobasidium pullulans, those isolated from nature, purified, subcultured, and retaining their traits, or strains deposited at depositary institutions,
Any strain can be used as long as it can produce the highly branched β-glucan of the present invention. However, it is preferable to use Aureobasidium pullulans IFO 4466, which has been deposited at the Fermentation Research Institute, in terms of the yield of the highly branched β-glucan and the ease of isolation.

【0007】本発明で使用する培地は、炭素源、窒素
源、リン、カリウム、マグネシウム等の通常微生物の培
養に必要な栄養成分を含む液体培地が用いられる。炭素
源としては少なくともキシロースおよびビタミンCを必
須成分として用いる。炭素源として、これ以外に例えば
グルコースやシュークロースを用いることができる。使
用割合は炭素源としてキシロース5〜150g/L、好ましく
は10〜100g/L、最も好ましくは20〜60g/L 、ビタミンC
0.01 〜100g/L、好ましくは 0.1〜60g/L 、最も好まし
くは 0.5〜20g/L が用いられる。炭素源以外の成分の使
用割合はNaNO3 0.5g/L〜20g/L 、好ましくは 1〜10g/L
、K2HPO4 0.05〜10g/L 、好ましくは 0.1〜5g/L、KH2
PO4 0〜20g/L 、好ましくは 0.5〜5g/L、KCl 0.1〜10g
/L 、 0.2〜5g/L、 MgSO4・7H2O 0.05〜5.0g/L、好ま
しくは 0.1〜2.0g/L、 FeSO4・7H2O 0〜5g/L、好ましく
は 0.005〜2.0g/Lが用いられる。また本発明の液体培地
にビタミンB1 を添加することもできる。培養は、通
常、温度 5〜40℃で1 〜10日間培養する。好ましくはは
通気下で行う。こうして培養液中に本発明の高分岐度β
−グルカンが産生される。
As the medium used in the present invention, a liquid medium containing carbon sources, nitrogen sources, phosphorus, potassium, magnesium and other nutrients necessary for culturing ordinary microorganisms is used. As the carbon source, at least xylose and vitamin C are used as essential components. Other than this, for example, glucose or sucrose can be used as the carbon source. The use ratio of carbon source is xylose 5-150 g / L, preferably 10-100 g / L, most preferably 20-60 g / L, vitamin C
0.01 to 100 g / L, preferably 0.1 to 60 g / L, most preferably 0.5 to 20 g / L are used. The proportion of components other than the carbon source used is NaNO 3 0.5 g / L to 20 g / L, preferably 1 to 10 g / L
, K 2 HPO 4 0.05-10 g / L, preferably 0.1-5 g / L, KH 2
PO 4 0~20g / L, preferably 0.5~5g / L, KCl 0.1~10g
/ L, 0.2~5g / L, MgSO 4 · 7H 2 O 0.05~5.0g / L, preferably 0.1~2.0g / L, FeSO 4 · 7H 2 O 0~5g / L, preferably 0.005~2.0G / L is used. Vitamin B 1 can also be added to the liquid medium of the present invention. The culture is usually carried out at a temperature of 5 to 40 ° C for 1 to 10 days. It is preferably carried out under aeration. Thus, the high degree of branching β of the present invention
-Glucan is produced.

【0008】培養終了後、培養液に遠心分離等の手段を
施して培養液から菌体を除去し、培養上清から本発明の
高分岐度β−グルカンを採取する。採取方法としては培
養上清に有機溶媒を加えて本発明の高分岐度β−グルカ
ンを沈澱させる方法を好ましく用いることができる。有
機溶媒として特に制限はないが、例えばアルコール、ケ
トン、ニトリル等が用いられる。具体的にはエタノー
ル、イソプロピルアルコール、アセトンやアセトニトリ
ルなどが挙げられるが、特にエタノールが好ましい。得
られる生成物は、本発明の高分岐度β−グルカンのほか
に、通常、低分子化合物、タンパク、水不溶性のグルカ
ン等の不純物を含有している。本発明において本発明の
高分岐度β−グルカンを食品添加剤あるいは飼料添加剤
として用いるときは、前記生成物をそのままあるいは乾
燥して用いることができる。
After completion of the culture, the culture is subjected to a means such as centrifugation to remove the cells from the culture, and the highly branched β-glucan of the present invention is collected from the culture supernatant. As a collection method, a method of adding an organic solvent to the culture supernatant to precipitate the highly branched β-glucan of the present invention can be preferably used. The organic solvent is not particularly limited, but for example, alcohol, ketone, nitrile, etc. are used. Specific examples thereof include ethanol, isopropyl alcohol, acetone and acetonitrile, with ethanol being particularly preferable. In addition to the highly branched β-glucan of the present invention, the obtained product usually contains impurities such as low molecular weight compounds, proteins, and water-insoluble glucan. In the present invention, when the highly branched β-glucan of the present invention is used as a food additive or a feed additive, the above product can be used as it is or after dried.

【0009】しかし、医薬品等の有効成分として用いる
場合は、セルロースチューブなどを用いて透析を行って
低分子化合物を除去し、また、トリクロロ酢酸、ピクリ
ン酸などの酸性物質あるいは、n−ブタノール、n−ブ
タノールのクロロホルム溶液等の有機溶剤を除タンパク
剤として用いてタンパクを沈澱除去する。さらに、高分
岐度β−グルカンの沈澱に、0.5N程度のアルカリ水溶液
を加えてこの沈澱を溶解し、不溶性のグルカンを沈澱除
去し、水可溶性のグルカンだけを酢酸、クエン酸、塩
酸、硫酸などの酸で中和して精製された高分岐度グルカ
ンを得る。不純物除去操作で使用した薬品は、透析、ゲ
ル透過、限外濾過などによって除去して純度が高い本発
明の高分岐度β−グルカンを得ることができる。
However, when it is used as an active ingredient of a drug or the like, it is dialyzed using a cellulose tube or the like to remove low molecular weight compounds, and an acidic substance such as trichloroacetic acid or picric acid, or n-butanol, n. -Precipitate and remove the protein using an organic solvent such as butanol in chloroform as a deproteinizing agent. Furthermore, to the precipitate of highly branched β-glucan, an alkaline aqueous solution of about 0.5N is added to dissolve the precipitate, insoluble glucan is removed by precipitation, and only water-soluble glucan is removed by acetic acid, citric acid, hydrochloric acid, sulfuric acid, etc. A highly branched glucan having a high degree of branching is obtained by neutralizing with the acid of The chemical used in the impurity removal operation can be removed by dialysis, gel permeation, ultrafiltration, etc. to obtain the highly branched β-glucan of the present invention with high purity.

【0010】このようにして得られた高分岐度β−グル
カンの理化学的性質を示すと次のとおりである。
The physicochemical properties of the highly branched β-glucan thus obtained are as follows.

【0011】(1)構成単糖 前記高分岐度β−グルカン50mgに1N硫酸2mlを加えて
8時間加熱して加水分解を行い、その後常法に従って水
素化ホウ素ナトリウムにより還元した上、ピリジンと無
水酢酸とによりアセチル化し、ガスクロマトグラフィー
(カラム:3重量%ECNSS-M/クロモソルブ W温度: 190
℃ キャリアガス:窒素ガス、キャリアガス流量:3ml
/分)により分析したところ、比旋光度〔α〕D 25は+
50゜であり、D−グルコース〔文献値〔α〕D 25+52.8
゜ (広川書店発行「有機定性分析」第 276頁) 〕のそれ
とほぼ一致することから99%以上がグルコースであるこ
とが認められた。さらに、また本発明の高分岐度β−グ
ルカンを、市販のキラターゼを精製して得られたエキソ
β−グルカナーゼにより酵素分解を行い、分解糖を薄層
クロマトグラフィー(TLC)で調べた。この精製酵素
はグルコースのβ-1,3結合のみからなるラミナリンに作
用させ、TLCで分解糖を調べるとグルコースのみが検
出されるが、本発明の高分岐度β−グルカンから得られ
た分解糖はグルコースおよびゲンチオビースと同じRf値
を持っていた。しかもグルコース1に対し、ゲンチオビ
オースが2以上であった。また酵素による分解速度はラ
ミナリンの分解速度の1/20であったことから主鎖のβ
-1,3結合の切断は分岐鎖により立体障害を受けたことが
判明した。このようにして得られた酵素分解物と、前記
酸分解物とをHPLC分析(カラム:μBondaSphere-NH
2 5μ 100Å、溶媒:80%CH3CN 、流速: 0.8ml/ml 、
検出:示差屈折計による) によって分解糖を定量したと
ころ酵素による分解率は酸による分解率の1%以下であ
って、酵素により非常に分解されにくいことを示した。
(1) Constituent Monosaccharide To 50 mg of the above highly branched β-glucan, 2 ml of 1N sulfuric acid was added and heated for 8 hours for hydrolysis, followed by reduction with sodium borohydride according to a conventional method, and then pyridine and anhydrous. Acetylated with acetic acid and gas chromatography (column: 3 wt% ECNSS-M / chromosolve W temperature: 190
℃ Carrier gas: Nitrogen gas, Carrier gas flow rate: 3ml
/ Min), the specific rotation [α] D 25 was +
50 °, D-glucose [reference value [α] D 25 +52.8
(Hirokawa Shoten, “Organic Qualitative Analysis”, p. 276)], it was confirmed that 99% or more of glucose was glucose. Furthermore, the highly branched β-glucan of the present invention was enzymatically decomposed by exo β-glucanase obtained by purifying commercially available chelatase, and the decomposed sugar was examined by thin layer chromatography (TLC). This purified enzyme is allowed to act on laminarin consisting only of β-1,3 bond of glucose, and only glucose is detected when the decomposed sugar is examined by TLC. However, the decomposed sugar obtained from the highly branched β-glucan of the present invention Had the same Rf values as glucose and gentiobiose. Moreover, gentiobiose was 2 or more with respect to 1 glucose. In addition, the rate of degradation by the enzyme was 1/20 of the rate of degradation of laminarin.
It was revealed that the cleavage of -1,3 bond was sterically hindered by the branched chain. The thus obtained enzymatic decomposition product and the acid decomposition product are analyzed by HPLC (column: μBondaSphere-NH
2 5 [mu] 100 Å, solvent: 80% CH 3 CN, flow rate: 0.8 ml / ml,
When the amount of decomposing sugar was quantified by (detection: by a differential refractometer), the decomposition rate by the enzyme was 1% or less of the decomposition rate by the acid, and it was shown that the decomposition was very difficult by the enzyme.

【0012】(2)グルコースの結合様式及び分岐度 本発明の高分岐度β−グルカンを100 ℃でジメチルスル
ホキシド(DMSO)-d6 に溶解し、100 ℃に保持したまま測
定した13C NMRスペクトルの1例を図1に示す。図
1に示すように (i)δ値 68ppm域に、化3に示されるグ
ルコース残基A中のC−6の炭素に帰属するピーク
1 、(ii)δ値 86ppm域に化3に示される前記グルコー
ス残基A及びグルコース残基C中のC−3の炭素に帰属
するピークS2 、及び(iii) δ値 103ppm 域に化3に示
されるグルコース残基A、B及びC中のC−1の炭素に
帰属するピークS3 の3個のシグナルが認められる。こ
のことから、本発明の高分岐度β−グルカンは、β1→
3結合を介して結合した前記AあるいはCからなる主鎖
にβ1→6結合を介して結合した前記Bが分岐している
ものと判断される(Carbohydrate Polymers 2, 135-144
(1982) 参照) 。
(2) Glucose binding mode and degree of branching The highly branched β-glucan of the present invention was dissolved in dimethyl sulfoxide (DMSO) -d 6 at 100 ° C, and the 13 C NMR spectrum was measured while the temperature was kept at 100 ° C. An example of the above is shown in FIG. As shown in FIG. 1, (i) δ value is in the 68 ppm range, peak S 1 attributed to carbon of C-6 in glucose residue A shown in Chemical formula 3 is shown, and (ii) δ value is in the 86 ppm range. The peak S 2 attributed to the carbon of C-3 in the glucose residue A and the glucose residue C, and (iii) the C in the glucose residues A, B and C shown in Chemical formula 3 in the δ value 103 ppm region -1 three signal peaks S 3 attributable to carbon is observed. From this, the highly branched β-glucan of the present invention is β1 →
It is judged that the main chain consisting of A or C bound via 3 bonds is branched to the B bound via β1 → 6 bonds (Carbohydrate Polymers 2 , 135-144).
(1982)).

【0013】[0013]

【化2】 [Chemical 2]

【0014】また、図1を拡大すると、図2にみられる
ようにδ値60.5〜60.8ppm 域にグルコース残基C中のC
−6の炭素に帰属するシグナルSa の強度が1に対し、
δ値61.0ppm域のグルコース残基BのC−6の炭素に帰
属するシグナルSb の強度が約2であるから本発明の高
分岐度β−グルカン中には主鎖のグルコース残基3個に
対して分岐したグルコース残基が2個存在する。
Further, when FIG. 1 is enlarged, as shown in FIG. 2, the C in the glucose residue C is in the δ value range of 60.5 to 60.8 ppm.
The intensity of the signal S a attributable to the carbon of -6 to 1,
Since the intensity of the signal S b attributed to the carbon C-6 of the glucose residue B in the δ value 61.0 ppm region is about 2, the high-branched β-glucan of the present invention has three main chain glucose residues. There are 2 branched glucose residues.

【0015】さらに、β (1→3)結合のC−3炭素に
帰属するシグナルが検出される領域の拡大スペクトルを
図3に示す。図3においてδ値 85.7 ppm のシグナルS
c は、HSQC−TOCSY〔吉岡書房発行「エルンス
ト二次元NMR」第 589頁(1991 年) 及び丸善発行、日
本化学会編「実験化学講座」第5巻第 133-137頁(1991
年) 〕で、グルコース残基AのH−6水素のシグナル
(δ値 3.58 および4.08ppm)との相関が観測されること
から、グルコース残基AのC−3炭素に帰属される(Car
bohydroate Polymers 2, 135-144(1982)参照) 。残りの
δ値 86.2 ppm のシグナルSd はグルコース残基CのC
−3炭素に帰属される。さらに本発明の高分岐度β−グ
ルカンは、スクレログルカンやラミナリンのようなグル
コース残基Cが連続するユニットを部分構造として持つ
グルカンで観測されるはずのδ値 85.9 ppm のC−3炭
素に相当するシグナルが検出されないことから、本発明
の高分岐度グルカン中のグルコース残基CはそのC−3
炭素側に必ずグルコース残基Aが結合するものである。
c とSd のシグナル強度比が2:1であることから、
この例による本発明の高分岐度β−グルカンは化4に示
す構造のユニットGIおよびGIIで構成され、GI とGI
Iの存在比は1:1であることがわかる。例えばDMS
Oを用いて室温で分別処理すると本発明の高分岐度β−
グルカンにはDMSOに溶解する成分と不溶の成分があ
り、図4に示すスペクトル中のシグナルSa とSb の面
積強度比からDMSOに溶解する成分は主鎖のグルコー
ス残基が9個に対して分岐したグルコース残基が5個か
ら成るβ−グルカンであり、DMSOに不溶な成分は主
鎖のグルコース残基が4個に対して分岐したグルコース
残基が3個から成るβ−グルカンである。すなわち、本
発明の高分岐度β−グルカンはGIIユニットを20〜70%
含有する。
Further, FIG. 3 shows an enlarged spectrum of a region in which a signal attributed to C-3 carbon of β (1 → 3) bond is detected. In Fig. 3, the signal S with a δ value of 85.7 ppm
c is HSQC-TOCSY [Ernst Two-dimensional NMR, published by Yoshioka Shobo, page 589 (1991) and Maruzen, edited by The Chemical Society of Japan, Vol. 5, pp. 133-137 (1991).
Year)], a correlation with the H-6 hydrogen signal of the glucose residue A (δ values 3.58 and 4.08 ppm) was observed, so it was assigned to the C-3 carbon of the glucose residue A (Car.
See bohydroate Polymers 2, 135-144 (1982)). The signal S d at the remaining δ value of 86.2 ppm is C of glucose residue C.
-3 carbon. Further, the highly branched β-glucan of the present invention has a δ value of 85.9 ppm at the C-3 carbon which should be observed in a glucan such as scleroglucan or laminarin having a unit of a glucose residue C as a partial structure. Since the corresponding signal is not detected, the glucose residue C in the highly branched glucan of the present invention is C-3.
The glucose residue A is bound to the carbon side.
Since the signal intensity ratio of S c and S d is 2: 1,
The highly branched β-glucan of the present invention according to this example is composed of units GI and GII having the structure shown in Chemical formula 4, and GI and GI
It can be seen that the abundance ratio of I is 1: 1. For example DMS
High-branching degree of the present invention β-
Glucan includes a component soluble in DMSO and a component insoluble in DMSO. From the area intensity ratio of signals S a and S b in the spectrum shown in FIG. 4, the component soluble in DMSO has 9 glucose residues in the main chain. Is a β-glucan composed of 5 branched glucose residues, and the DMSO-insoluble component is a β-glucan composed of 3 branched glucose residues for 4 main-chain glucose residues. . That is, the highly branched β-glucan of the present invention has a GII unit content of 20 to 70%.
contains.

【0016】[0016]

【化3】 [Chemical 3]

【0017】(3)赤外吸収スペクトル(KBr法) 図5に示すように波長 880cm-1にβ−グルコシド結合配
向に特徴的な吸収(P)がある。
(3) Infrared absorption spectrum (KBr method) As shown in FIG. 5, there is an absorption (P) characteristic of β-glucoside bond orientation at a wavelength of 880 cm -1 .

【0018】(4)分子量(ゲル濾過法) 数平均 1万〜500 万、好ましくは50万〜500 万(4) Molecular weight (gel filtration method) Number average 10,000 to 5 million, preferably 500 to 5 million

【0019】(5)呈色反応: モーリッシュ反応、ア
ンスロン硫酸反応、フェノール硫酸反応;陽性 ニンヒドリン反応、ビューレット反応;陰性。
(5) Color reaction: Maurish reaction, anthuron sulfate reaction, phenol sulfate reaction; positive ninhydrin reaction, burette reaction; negative.

【0020】以上より理化学的性質から本発明の高分岐
度β−グルカンの化学構造は次の通りと決定された。
From the above physicochemical properties, the chemical structure of the highly branched β-glucan of the present invention was determined as follows.

【0021】[0021]

【化4】 (mは80〜30%、nは20〜70%を示す)[Chemical 4] (M is 80 to 30%, n is 20 to 70%)

【0022】本発明の高分岐度β−グルカンは、β-1,3
結合のグルコース残基を主鎖とし、このグルコース残基
にβ-1,6結合グルコース残基を分岐して多数有し、分岐
のないグルコース同志の結合は実質的に主鎖に存在しな
い点に特徴がある。
The highly branched β-glucan of the present invention is β-1,3
With a glucose residue of the bond as the main chain, this glucose residue has a large number of β-1,6-bonded glucose residues branched, and there is virtually no unbranched glucose bond in the main chain. There are features.

【0023】本発明の高分岐度β−グルカンの抗腫瘍活
性について、このグルカンを生理食塩水に溶解して経口
又は非経口で担癌マウスに投与して試験したところ、実
施例で示すように腫瘍の増悪を抑制し、延命率を向上さ
せることができた。また免疫賦活活性を有する。
The antitumor activity of the hyper-branched β-glucan of the present invention was tested by dissolving this glucan in physiological saline and orally or parenterally administering it to mice bearing cancer. It was possible to suppress the progression of the tumor and improve the survival rate. It also has immunostimulatory activity.

【0024】従って、本発明の高分岐度β−グルカンは
経口あるいは非経口投与によって抗腫瘍活性あるいは免
疫賦活活性を示し、医薬としてあるいは食品添加剤、飼
料添加剤として用いることができる。医薬として用いる
場合は抗腫瘍剤あるいは免疫賦活活性剤として、症状、
年令、性別等によって異なるが成人1日 100〜0.1 mg、
好ましくは30〜60mgを1日に数回に分けて投与するとよ
い。この高分岐度β−グルカンはこのままの状態で医薬
になり得るが、製薬上の習慣に従って製薬的に許容し得
る希釈剤及び/または他の薬理作用をもつ他の物質と混
合物として組成された状態で用いることもできる。投与
は、経口投与、静脈内投与、腹腔投与、経腸投与等によ
って行うことができる。従って、このような投与のため
に好適な適宜の剤製、例えば散剤、顆粒、錠剤、糖衣
錠、カプセル、ピル、坐剤、懸濁剤、液剤、乳剤、注射
剤、エアゾール剤等として用いることができる。しか
し、特に、腫瘍の転移防止剤として経口投与が有効であ
る。
Therefore, the highly branched β-glucan of the present invention exhibits antitumor activity or immunostimulatory activity by oral or parenteral administration, and can be used as a medicine, a food additive or a feed additive. When used as a medicine, as an antitumor agent or an immunostimulatory agent, symptoms,
100-0.1 mg / day for adults, depending on age and sex,
It is preferable to administer 30 to 60 mg in several divided doses a day. This high-branched β-glucan can be used as it is as a drug, but is formulated as a mixture with a pharmaceutically acceptable diluent and / or another substance having other pharmacological action according to pharmaceutical practice. Can also be used in. The administration can be performed by oral administration, intravenous administration, intraperitoneal administration, enteral administration and the like. Therefore, it can be used as an appropriate agent suitable for such administration, for example, as a powder, granules, tablets, dragees, capsules, pills, suppositories, suspensions, solutions, emulsions, injections, aerosols and the like. it can. However, oral administration is particularly effective as a tumor metastasis-preventing agent.

【0025】また、食品添加剤あるいは飼料添加剤とし
て用いる場合には、本発明の前記した沈澱あるいは高分
岐度β−グルカンをそのまま、あるいはこれらの添加剤
に常用される担体、増量剤等と混合して食品あるいは飼
料に添加し、食品、飼料に抗腫瘍活性を付与したりある
いは免疫賦活活性を付与して感染症を予防または治療し
たりすることができる。たとえば、ウシ、ブタ、ニワト
リ、魚、鳥、イヌ、ネコ等の飼料添加剤として好適であ
る。
When it is used as a food additive or a feed additive, the above-mentioned precipitated or highly branched β-glucan of the present invention is used as it is, or is mixed with a carrier, a bulking agent or the like which is commonly used for these additives. Then, it can be added to food or feed to impart antitumor activity to the food or feed or impart immunostimulatory activity to prevent or treat infectious diseases. For example, it is suitable as a feed additive for cattle, pigs, chickens, fish, birds, dogs, cats and the like.

【0026】次に本発明を実施例を示して具体的に説明
する。
Next, the present invention will be specifically described with reference to examples.

【実施例1】 高分岐度β−グルカンの製造 1.菌体培養 オウレオバシディウム プルラン(Aureobasidium pull
ulans)財団法人発酵研究所寄託番号IFO 4466株のポテト
デキストロース寒天斜面培地に培養し、保存されていた
菌株を、次の組成を有する液体培地(pH5.0-6.0、好適に
はpH5.5)300 mlを坂口フラスコに入れたものに接種して
温度20〜30℃で2〜3日間通気攪拌培養を行った。 本発明に用いた培地の組成の例 キシロース 30g ビタミンC 6.0g NaNO3 2.5g K2HPO4 0.4g KH2PO4 2.0g KCl 0.5g MgSO4 ・7H2O 0.5g FeSO4 ・7H2O 0.01g ビタミンB1 1mg 蒸留水 1 L オウレオバシディウム プルラン IFO 4466 株は糖とし
てグルコースや庶糖を用いるとプルラン(α-1,4-1,6-
グルカン)も生成するが糖としてキシロースを用いると
プルランの生成はほとんど見られず、本発明の高分岐度
β−グリカンを生成する(表1参照)。
Example 1 Production of highly branched β-glucan 1. Cell culture Ou Leo Basi di Umm pullulan (Aureobasidium pull
ulans) Fermentation Research Institute Deposit No.IFO 4466 strain cultured in potato dextrose agar slant medium, the preserved strain, a liquid medium having the following composition (pH 5.0-6.0, preferably pH 5.5) 300 ml in a Sakaguchi flask was inoculated and aerated with stirring at a temperature of 20 to 30 ° C. for 2 to 3 days. Examples of compositions of the media used in the present invention xylose 30g vitamin C 6.0g NaNO 3 2.5g K 2 HPO 4 0.4g KH 2 PO 4 2.0g KCl 0.5g MgSO 4 · 7H 2 O 0.5g FeSO 4 · 7H 2 O 0.01 g Vitamin B 1 1 mg Distilled water 1 L Aureobasidium pullulan IFO 4466 strain uses pullulan (α-1,4-1,6-) when glucose or sucrose is used as sugar.
Glucan) is also produced, but when xylose is used as sugar, almost no pullulan is produced, and the highly branched β-glycan of the present invention is produced (see Table 1).

【0027】 2.本発明の高分岐度β−グルカンの製造 上述の培養液 300mlを遠心分離機を用いて菌体を取り除
き、得られた培養上清に同量のエタノールを加えて室温
で数時間撹拌した。次に遠心分離を行い、得られた沈澱
物に 300mlの0.5N NaOH を加えて室温で撹拌して水に不
溶性のグルカンを沈澱させ、この沈澱を遠心分離により
取り除いた。この不溶物を取り除いた液を、セルロース
チューブなどによる透析を行った。なお、微量のタンパ
クを除去する必要がある場合には透析前にトリクロロ酢
酸を粗沈澱物水溶液に加えてタンパクを沈澱除去する。
高分岐度β−グルカンの生成量を表1に示した。
2. Production of highly branched β-glucan of the present invention The cells of 300 ml of the above culture solution were removed using a centrifuge, the same amount of ethanol was added to the obtained culture supernatant, and the mixture was stirred at room temperature for several hours. Next, centrifugation was performed, 300 ml of 0.5N NaOH was added to the obtained precipitate, and the mixture was stirred at room temperature to precipitate water-insoluble glucan, and this precipitate was removed by centrifugation. The liquid from which this insoluble matter was removed was dialyzed with a cellulose tube or the like. If it is necessary to remove a trace amount of protein, trichloroacetic acid is added to the crude precipitate aqueous solution before dialysis to precipitate and remove the protein.
Table 1 shows the amount of highly branched β-glucan produced.

【0028】[0028]

【表1】 [Table 1]

【0029】このようにして得られた高分岐度β−グル
カンの理化学的性質を検討したところ、前に示した高分
岐度β−グルカンのそれと一致した。
The physicochemical properties of the thus-obtained highly branched β-glucan were examined, and it was in agreement with that of the previously described highly branched β-glucan.

【0030】[0030]

【実施例2】実施例1で得られた高分岐度β−グルカン
の抗腫瘍活性を測定した。ICRマウス(雌、約30g)
14匹または7匹に同種移植瘍 Sarcoma 180をそけい部皮
下に細胞数5×106 移植した。飼料及び水は自由に摂取
させた。移植7日目に本発明の高分岐度β−グルカン2.
5mg を生理食塩水1mlに溶解し、これを体重kg当り40mg
になるように1日1回腹腔内に投与した。移植5週目に
腫瘍を摘出し、その重量を測定し、生理食塩水のみを投
与した対照群との比較を行った。その結果を表2に示し
た。表2にみられるように、本発明の高分岐度β−グル
カンを腹腔内に投与することによって高い抗腫瘍活性が
認められた。
Example 2 The antitumor activity of the highly branched β-glucan obtained in Example 1 was measured. ICR mouse (female, about 30g)
Sarcoma 180 allograft was transplanted subcutaneously in the groin area at 5 × 10 6 cells in 14 or 7 animals. Food and water were available ad libitum. Highly branched β-glucan of the present invention 7 days after transplantation 2.
Dissolve 5 mg in 1 ml of physiological saline and add 40 mg per kg of body weight.
Was intraperitoneally administered once a day. The tumor was excised 5 weeks after the transplantation, the weight was measured, and comparison was made with a control group to which only physiological saline was administered. The results are shown in Table 2. As shown in Table 2, high antitumor activity was observed by intraperitoneal administration of the highly branched β-glucan of the present invention.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【実施例3】実施例1で得られた高分岐度β−グルカン
の免疫賦活活性を測定した。ICRマウス (雌、約30g)
に本発明の高分岐度β−グルカン3mg を生理食塩水1ml
に溶解し、これを体重kg当り20mgになるように腹腔内投
与した。飼料および水は自由に摂取させた。投与開始後
2日後または3日後に脾臓を摘出してその重量及び細胞
数を測定した。さらに腹浸出細胞及び血液を取り出して
腹浸出細胞数および血中の細胞数を測定した。また腹浸
出細胞を用いて蛍光標識したビーズの取り込み能および
リソソーム酸性ホスファターゼ活性を測定するとによ
り、腹浸出細胞の食作用活性を測定した。そして実施例
2と同様に対照群との比較を行った。その結果を表3〜
6に示した。表3〜6にみられるように、本発明の高分
岐度β−グルカンを体重kg当り40mg腹腔内投与すると無
投与(対照)に比べて脾臓の重量は投与後2日目に2倍
に増加し、細胞数も 1.8倍に増加した。また腹浸出細胞
および血中リンパ球数はそれぞれ投与後3日目に 3.4倍
及び 1.4倍に増加した。腹浸出細胞のマクロファージの
ビースの取り込み能は 1.2倍に増加し、ホスファターゼ
活性も 2.2倍増加したことより食作用活性が増大したこ
とが分かった。これらより免疫賦活活性が著しく増強さ
れたものと判断される。
Example 3 The immunostimulatory activity of the highly branched β-glucan obtained in Example 1 was measured. ICR mouse (female, about 30g)
3 mg of highly branched β-glucan of the present invention was added to 1 ml of physiological saline.
It was dissolved in and was intraperitoneally administered so as to be 20 mg per kg body weight. Food and water were available ad libitum. Two days or three days after the start of administration, the spleen was extracted and its weight and cell number were measured. Further, the abdominal exudate cells and blood were taken out and the number of abdominal exudate cells and the number of cells in blood were measured. The phagocytic activity of the peritoneal exudate cells was also measured by measuring the uptake ability of the fluorescently labeled beads and the lysosomal acid phosphatase activity using the peritoneal exudate cells. Then, similarly to Example 2, the comparison with the control group was performed. The results are shown in Table 3 ~
6 shows. As shown in Tables 3 to 6, when the hyper-branched β-glucan of the present invention was intraperitoneally administered at 40 mg / kg of body weight, the weight of the spleen was doubled on the second day after the administration as compared with the case of no administration (control). However, the number of cells also increased 1.8 times. The numbers of peritoneal exudate cells and blood lymphocytes increased 3.4 times and 1.4 times on the third day after administration, respectively. It was found that the phagocytic activity was increased by the 1.2-fold increase in the macrophage bead uptake ability of the abdominal exudate cells and the 2.2-fold increase in the phosphatase activity. From these, it is judged that the immunostimulatory activity was remarkably enhanced.

【0033】[0033]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

【0034】[0034]

【実施例4】ICRマウス(雌、約30g)7〜8匹に同
種移植腫瘍 Sarcoma 180を腹部皮下に細胞5×106 移植
し、その直後から実施例2で用いた高分岐度β−グルカ
ンの生理食塩水を所定量強制的に経口投与するかあるい
は腹腔内に投与して飼育した。飼料及び水は自由に摂取
させ、グルカン投与後5週目に体重を測定し、さらに腫
瘍を摘出してその重量を測定した。そして実施例2と同
様に対照群と比較を行った。その結果を表7〜表9に示
した。
[Example 4] 7-8 ICR mice (female, about 30 g) were allografted with the tumor Sarcoma 180 subcutaneously transplanted into the abdomen 5 × 10 6 cells, and immediately after that, the highly branched β-glucan used in Example 2 was used. The above physiological saline was forcibly orally administered or intraperitoneally administered for breeding. The feed and water were freely ingested, the body weight was measured 5 weeks after the administration of glucan, the tumor was excised, and the weight was measured. And it compared with the control group like Example 2. The results are shown in Tables 7-9.

【0035】[0035]

【表7】 [Table 7]

【表8】 [Table 8]

【表9】 [Table 9]

【0036】表7〜表9にみられるように、本発明の高
分岐度β−グルカンを体重kg当り90mg経口投与すると無
投与(対照)にくらべて固形腫瘍の増殖を61%に抑制
し、また延命率を対照が13%であったのに対し、71%に
高めることができた。また対照が腹水腫瘍化率が88%で
あったのに対し、その腫瘍化率を29%に低下させること
ができ、体重を無投与の場合にくらべて 1.6倍高めるこ
とができた。そして、この体重の増加は免疫を担当する
脾臓の重量の増加によることからみて免疫賦活活性がい
ちじるしく増強されたものと判断される。
As can be seen from Tables 7 to 9, oral administration of the highly branched β-glucan of the present invention at 90 mg / kg body weight suppressed the growth of solid tumors to 61% as compared with no administration (control), Moreover, the life extension rate was increased to 71%, compared with 13% in the control. The tumorigenicity of the ascitic fluid was 88% in the control, while the tumorigenicity could be reduced to 29%, and the body weight could be increased by 1.6 times compared with the case of no administration. The increase in body weight is due to the increase in weight of the spleen responsible for immunization, and thus it is considered that the immunostimulatory activity is significantly enhanced.

【0037】[0037]

【実施例5】 (1) 実施例1で得られた高分岐度β−グルカン5mg を生
理食塩水10mlに溶解し、経口投与できる抗腫瘍剤あるい
は免疫増強剤とした。 (2) 実施例1で得られた高分岐度β−グルカン5mg を乳
糖50mg、マンニトール、ブドウ糖と混合し、打錠を行っ
て錠剤とした。 (3) 実施例1で得られた高分岐度β−グルカンの沈澱20
gをウシ配合飼料1kgに添加してウシの免疫を増強し、
感染症を防止した。
Example 5 (1) 5 mg of highly branched β-glucan obtained in Example 1 was dissolved in 10 ml of physiological saline to prepare an orally administrable antitumor agent or immunopotentiator. (2) 5 mg of highly branched β-glucan obtained in Example 1 was mixed with 50 mg of lactose, mannitol and glucose, and the mixture was tableted to give tablets. (3) Precipitation of the highly branched β-glucan obtained in Example 1 20
g to 1 kg of bovine mixed feed to enhance bovine immunity,
Prevented infectious diseases.

【0038】[0038]

【発明の効果】本発明によれば、新規な高分岐度を有す
るβ−グルカンを簡単な培養で収率よく量産することが
できる。そして得られる高分岐度β−グルカンは経口投
与により高い抗腫瘍活性及び免疫賦活活性を有するので
ヒトの癌予防あるいは治療薬または家畜、ペット動物、
養殖魚等の感染症予防あるいは治療薬等として有用であ
る。
According to the present invention, a novel β-glucan having a high degree of branching can be mass-produced with a high yield in a simple culture. And since the obtained highly branched β-glucan has high antitumor activity and immunostimulatory activity by oral administration, it is used as a preventive or therapeutic drug for human cancer or livestock, pet animals,
It is useful as a preventive or therapeutic drug for infectious diseases of cultured fish.

【図面の簡単な説明】[Brief description of drawings]

【図1】高分岐度β−グルカンの2次元NMRスペクト
ルを示す。
FIG. 1 shows a two-dimensional NMR spectrum of highly branched β-glucan.

【図2】図1の2次元NMRを拡大したスペクトルを示
す。
FIG. 2 shows an expanded spectrum of the two-dimensional NMR of FIG.

【図3】図1の2次元NMRを拡大したスペクトルを示
す。
FIG. 3 shows an expanded spectrum of the two-dimensional NMR of FIG.

【図4】高分岐度β−グルカンのDMSO可溶分及び不溶分
のNMRスペクトルを示す。
FIG. 4 shows NMR spectra of DMSO-soluble and insoluble components of highly branched β-glucan.

【図5】高分岐度β−グルカンの赤外吸収スペクトル
(KBr 法)を示す。
FIG. 5: Infrared absorption spectrum of highly branched β-glucan
(KB r method) is shown.

【図6】実施例4の高分岐度β−グルカンの投与と延命
率との関係を示す。
FIG. 6 shows the relationship between administration of the highly branched β-glucan and the survival rate in Example 4.

【符号の説明】[Explanation of symbols]

○ 対照 ◇ 経口投与(90mg/kg) ◆ 経口投与(180mg/kg) □ 腹腔内投与(25mg/kg) ○ Control ◇ Oral administration (90mg / kg) ◆ Oral administration (180mg / kg) □ Intraperitoneal administration (25mg / kg)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI A61K 31/715 ADZ A61K 31/715 ADZ C12P 19/04 C12P 19/04 //(C12P 19/04 C12R 1:645 C12R 1:645) (72)発明者 八木下 和宏 神奈川県横浜市中区千鳥町8番地 日本 石油株式会社 中央技術研究所内 (56)参考文献 特開 平5−39303(JP,A) 特開 平6−114255(JP,A) 特開 昭62−201901(JP,A) Agric.Biol.Chem., 1983年,Vol.47,No.6,p. 1167−1172 Acta Chemica Scan dinavica,1963年,Vol. 17,p.1351−1356 Chem.Pharm.Bull., 1992年,Vol.40,No.8,p. 2215−2218 Carbohydrate Rese arch,1976年,Vol.47,p.99 −104 Carbohydrate Rese arch,1981年,Vol.89,p. 121−135 Agric.Biol.Chem., 1968年,Vol.32,No.10,p. 1261−1269 (58)調査した分野(Int.Cl.7,DB名) C08B 37/00 C12P 19/04 CA(STN) JSTPlus(JOIS) REGISTRY(STN) WPI(DIALOG)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI A61K 31/715 ADZ A61K 31/715 ADZ C12P 19/04 C12P 19/04 // (C12P 19/04 C12R 1: 645 C12R 1: 645) (72) Inventor Kazuhiro Yagishita 8 Chidori-cho, Naka-ku, Yokohama, Kanagawa Japan Central Research Laboratory (56) Reference JP-A-5-39303 (JP, A) JP-A-6-114255 ( JP, A) JP 62-201901 (JP, A) Agric. Biol. Chem. 1983, Vol. 47, No. 6, p. 1167-1172 Acta Chemica Scandinavica, 1963, Vol. 17, p. 1351-1356 Chem. Pharm. Bull. 1992, Vol. 40, No. 8, p. 2215-2218 Carbohydrate Research, 1976, Vol. 47, p. 99-104 Carbohydrate Research, 1981, Vol. 89, p. 121-135 Agric. Biol. Chem. 1968, Vol. 32, No. 10, p. 1261-1269 (58) Fields investigated (Int. Cl. 7 , DB name) C08B 37/00 C12P 19/04 CA (STN) JSTPlus (JOIS) REGISTRY (STN) WPI (DIALOG)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 次の構造式で示され、数平均分子量1万
〜500 万 (ゲル濾過法で測定) の高分岐度をもつβ−グ
ルカン。 【化1】 (ただし、式中mは80〜30%、nは20〜70%を示す)
1. A β-glucan represented by the following structural formula, having a number average molecular weight of 10,000 to 5,000,000 (measured by a gel filtration method) and having a high degree of branching. [Chemical 1] (However, in the formula, m represents 80 to 30% and n represents 20 to 70%.)
【請求項2】 オウレオバシデゥム プルランス(Aureo
basidium pulluans)IFO 4466 株の培養上清に有機
溶媒を添加して沈澱を生じさせることによって得ること
ができ、次の理化学的特性を有する高分岐度β−グルカ
ン。 1) 数平均分子量1万〜500 万 (ゲル濾過法による測
定) 、 2) 赤外吸収スペクトル (KBr 法) で波長 880cm-1にβ
−グルコシド結合配向に特徴的な吸収がある、 3) 13C NMRスペクトルで i)δ値68ppm, 86ppm, 103ppm付近にシグナルを有する。 ii)δ値61ppm のシグナルの強度が60.5〜60.8ppm のそ
れの1.2 〜3.0 倍である。 iii)δ値85.7ppm のシグナルの強度が86.2ppm のそれの
1.2 〜3.0 倍である。
2. Aureo
basidium pulluans ) A highly branched β-glucan having the following physicochemical properties, which can be obtained by adding an organic solvent to the culture supernatant of the IFO 4466 strain to cause precipitation. 1) Number average molecular weight 10,000 to 5,000,000 (measured by gel filtration method), 2) Infrared absorption spectrum (KBr method), β at wavelength 880 cm -1
-There is a characteristic absorption in the glucoside bond orientation. 3) It has a signal in the 13 C NMR spectrum at i) δ values around 68 ppm, 86 ppm and 103 ppm. ii) The intensity of the signal with a δ value of 61 ppm is 1.2 to 3.0 times that of 60.5 to 60.8 ppm. iii) The intensity of the signal with a δ value of 85.7 ppm is
It is 1.2 to 3.0 times.
【請求項3】 キシロースおよびビタミンCを必須成分
として含む液体培地に、オウレオバシデゥム プルラン
(Aureobasidium pulluans)IFO4466株を接種して
培養し、得られる培養上清から高分岐度β−グルカンを
採取することを特徴とする請求項1記載の高分岐度β−
グルカンの製造法。
3. A liquid medium containing xylose and vitamin C as essential components is inoculated with Aureobasidium pulluans IFO4466 strain and cultured, and the resulting culture supernatant is highly branched. 2. The highly branched β-glucan according to claim 1, wherein β-glucan is collected.
Glucan manufacturing method.
【請求項4】 請求項1または2記載の高分岐度β−グ
ルカンを有効成分とする感染症予防剤。
4. An infectious disease preventive agent comprising the highly branched β-glucan according to claim 1 or 2 as an active ingredient.
【請求項5】 請求項1または2記載の高分岐度β−グ
ルカンを有効成分とする抗腫瘍剤。
5. An antitumor agent comprising the highly branched β-glucan according to claim 1 or 2 as an active ingredient.
JP15413993A 1993-06-01 1993-06-01 Highly branched β-glucan, its production method and use Expired - Lifetime JP3444624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15413993A JP3444624B2 (en) 1993-06-01 1993-06-01 Highly branched β-glucan, its production method and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15413993A JP3444624B2 (en) 1993-06-01 1993-06-01 Highly branched β-glucan, its production method and use

Publications (2)

Publication Number Publication Date
JPH06340701A JPH06340701A (en) 1994-12-13
JP3444624B2 true JP3444624B2 (en) 2003-09-08

Family

ID=15577742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15413993A Expired - Lifetime JP3444624B2 (en) 1993-06-01 1993-06-01 Highly branched β-glucan, its production method and use

Country Status (1)

Country Link
JP (1) JP3444624B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786343A (en) * 1997-03-05 1998-07-28 Immudyne, Inc. Phagocytosis activator compositions and their use
JP2001354570A (en) * 2000-06-15 2001-12-25 Ichimaru Pharcos Co Ltd Immunoactivating agent and cosmetic using the same
JP2002204687A (en) * 2000-11-09 2002-07-23 Onaka Yasushi APPLICATION OF beta-1,3-1,6-GLUCAN (AUREOBASIDIUM CULTURE SOLUTION) IN VARIOUS INDUSTRIAL FIELDS INCLUDING MEDICAL, HEALTH WELFARE AND FOOD INDUSTRIES
US6956120B2 (en) * 2000-11-09 2005-10-18 Yasushi Onaka β-1.3-1.6 glucan (Aureobasidium medium)
KR100501730B1 (en) * 2002-06-21 2005-07-18 주식회사 바이오알앤즈 Novel strain aureobasidium sp. brd-109(kctc10182bp) and method for preparing beta-glucan thereof
KR20110038739A (en) * 2002-06-25 2011-04-14 가부시키가이샤 아데카 β-GLUCAN-CONTAINING FAT COMPOSITIONS AND NOVEL MICROORGANISM PRODUCING Β-GLUCAN
JP2004210895A (en) * 2002-12-27 2004-07-29 Immudyne Japan:Kk METHOD FOR MANUFACTURING SOLUBLE beta-GLUCAN HAVING IMMUNE FUNCTION, AND ITS USE
JP4807941B2 (en) * 2004-07-14 2011-11-02 株式会社Adeka β-glucan
JP4967420B2 (en) * 2005-09-07 2012-07-04 ダイソー株式会社 Agent for preventing or improving constipation using β-1,3-1,6-D-glucan
KR100709289B1 (en) * 2005-09-23 2007-04-19 주식회사 글루칸 Pharmaceutical composition for anti-cancer and immuno-modulating activity containing ?-glucan
FI20080665A0 (en) 2008-12-18 2008-12-18 Glykos Finland Oy Natural saccharide compositions
EP2508190B1 (en) * 2009-12-03 2021-06-02 Aureo Co., Ltd. Macrophage phagocytosis-activating composition and/or composition promoting cytokine production in macrophages
JP5717224B1 (en) * 2014-08-28 2015-05-13 株式会社ビオコスモ Powdered functional food and method for producing the same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Acta Chemica Scandinavica,1963年,Vol.17,p.1351−1356
Agric.Biol.Chem.,1968年,Vol.32,No.10,p.1261−1269
Agric.Biol.Chem.,1983年,Vol.47,No.6,p.1167−1172
Carbohydrate Research,1976年,Vol.47,p.99−104
Carbohydrate Research,1981年,Vol.89,p.121−135
Chem.Pharm.Bull.,1992年,Vol.40,No.8,p.2215−2218

Also Published As

Publication number Publication date
JPH06340701A (en) 1994-12-13

Similar Documents

Publication Publication Date Title
Mizuno et al. Reishi, Ganoderma lucidum and Ganoderma tsugae: bioactive substances and medicinal effects
JP3444624B2 (en) Highly branched β-glucan, its production method and use
FI88109B (en) Process for preparing soluble phosphorylated glucan
EP0733647B1 (en) Polysaccharides and preparation thereof
US4454315A (en) Carboxymethylated derivatives of β-1,3-glucan
FR2501232A1 (en) POLYSACCHARIDES COMPRISING ANTI-CARCINOGENIC ACTIVITY AND PROCESS FOR THE PRODUCTION THEREOF
US3759896A (en) Process for manufacture of polysaccharides with antitumor action
US3987166A (en) Treatment of tumors with glucan compositions in mice and rats
US4289688A (en) Protein-bound polysaccharides
EP0654047A1 (en) Glucans with immunostimulant activity
US4398023A (en) β-1,3-Glucanpolyol, process for preparation thereof, and utilization thereof
US5424201A (en) Method for preparing an antitumor dextran using Lactobacillus confusus
HU176828B (en) Process for producing nitrogen-containing polysaccharides of tumor-inhibiting activity
US4614733A (en) Polysaccharides pharmaceutical compositions and the use thereof
JP4448330B2 (en) Matsutake-derived anion exchange resin adsorbed fraction, immune enhancer, and stress load recovery accelerator
JPH08157377A (en) Preventing and therapeutic agent for diarrhea of livestock or the like
OHMORI et al. Component analysis of protein-bound polysaccharide (SN-C) from Cordyceps ophioglossoides and its effects on syngeneic murine tumors
WO1989012106A1 (en) Fungal exopolysaccharides having an immunostimulating activity, production method and therapeutical composition containing them
JPS58129001A (en) Novel immunoligically active polyglucide and its preparation
JPH0248000B2 (en)
JPS6359679B2 (en)
JP2766439B2 (en) Cholesterol suppressant
JPS6377901A (en) Novel polysaccharides
NZ199771A (en) Carcinostatic and immunostimulating substances produced by fusobacterium nucleatum
JPS5840477B2 (en) Novel β-1,3-glucan, its production method and use

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

EXPY Cancellation because of completion of term