JPH0645600A - Semiconductor integrted circuit device - Google Patents

Semiconductor integrted circuit device

Info

Publication number
JPH0645600A
JPH0645600A JP4215791A JP21579192A JPH0645600A JP H0645600 A JPH0645600 A JP H0645600A JP 4215791 A JP4215791 A JP 4215791A JP 21579192 A JP21579192 A JP 21579192A JP H0645600 A JPH0645600 A JP H0645600A
Authority
JP
Japan
Prior art keywords
mos transistor
impurity layer
gate electrode
substrate
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4215791A
Other languages
Japanese (ja)
Inventor
Takao Kamata
隆夫 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4215791A priority Critical patent/JPH0645600A/en
Publication of JPH0645600A publication Critical patent/JPH0645600A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the junction capacitances between the sources and drains of a MOS transistor and a substrate and to make possible the high-speed operation of the transistor. CONSTITUTION:A one conductivity type (P-type) high-concentration impurity layer 7 arranged in a self-alignment with a gate electrode 5 is formed in a semiconductor substrate directly under the gate electrode 5 of a MOS transistor formed in the one conductivity type (P-type) semiconductor substrate 1. Punch throughs between sources 3 and drains 4 are prevented from being generated by this P<+> impurity layer 7, while as the layer 7 does not exist directly under the sources 3 and the drains 4, the junction capacitances between the sources and drains 3 and 4 and the substrate 1 are reduced and the high-speed operation of a MOS transistor is made possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路装置に関
し、特にMOSトランジスタを有するMOS型半導体装
置集積回路装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device, and more particularly to a MOS type semiconductor device integrated circuit device having a MOS transistor.

【0002】[0002]

【従来の技術】近年の半導体集積回路装置は、高密度
化,高性能化を図るためにハーフミクロンデバイスの領
域となってきている。更に、クォータミクロンデバイス
を目指した技術開発が求められている。このようなMO
S型半導体集積回路装置においては、MOSトランジス
タのソース・ドレイン間のパンチスルーを制御して、如
何にゲート長を短くすることができるかが重要なポイン
トとなっている。一般にパンチスルーを制御するには、
MOSトランジスタを形成する基板や基板に形成したウ
ェルの濃度を高くすればよい、しかしながら、この対策
ではトランジスタのチャネルが形成される基板、或いは
ウェルの表面における不純物濃度が高くなるので、充分
なオン電流が確保できないこと、及びホットキャリアの
増大による信頼性の低下をきたすことになる。
2. Description of the Related Art In recent years, semiconductor integrated circuit devices have been in the area of half-micron devices for higher density and higher performance. Furthermore, technological development aimed at quarter micron devices is required. MO like this
In the S-type semiconductor integrated circuit device, how to shorten the gate length by controlling punch-through between the source and drain of a MOS transistor is an important point. In general, to control punchthrough,
It suffices to increase the concentration of the substrate on which the MOS transistor is formed and the well formed on the substrate. However, this measure increases the impurity concentration on the substrate where the channel of the transistor is formed or on the surface of the well, so that a sufficient on-current is obtained. Cannot be ensured, and reliability is deteriorated due to an increase in hot carriers.

【0003】これを解決するために、従来では日経マイ
クロデバイス67頁(1991年6月号)に記載されている
技術がある。これは、図3に示すように、P型半導体基
板1にフィールド酸化膜2及びゲート酸化膜6を形成し
た後、高エネルギのイオン注入を用いて基板表面から深
い位置に、素子全体埋込型のP+ 不純物層7を形成す
る。しかる後、ゲート電極5,LDDのN- 不純物層4
及びN+ 不純物層3を形成してMOSトランジスタを構
成する。
In order to solve this, there is a technique described in Nikkei Microdevice, page 67 (June 1991). As shown in FIG. 3, after forming the field oxide film 2 and the gate oxide film 6 on the P-type semiconductor substrate 1, high energy ion implantation is used to deeply implant the entire element at a deep position from the substrate surface. P + impurity layer 7 is formed. Then, the gate electrode 5 and the N impurity layer 4 of the LDD are formed.
And N + impurity layer 3 are formed to form a MOS transistor.

【0004】このような埋込型P+ 不純物層7はショー
トチャネルにおけるパンチスルーを防止し、しかもチャ
ネルが形成される基板表面から埋め込まれているため、
トランジスタは充分なオン電流を有すること、及びホッ
トキャリアによる信頼性の劣化が生じ難く優れた素子特
性を示す。なお、この技術は、ウェルを形成するCMO
SのNチャネルMOSトランジスタ及びPチャネルMO
Sトランジスタにおいても原理的には前述の例と同一で
ある。
Since such a buried P + impurity layer 7 prevents punch-through in a short channel and is buried from the substrate surface where the channel is formed,
The transistor has a sufficient on-current and exhibits excellent element characteristics in which reliability is less likely to deteriorate due to hot carriers. In addition, this technique is applied to a CMO forming a well.
N channel MOS transistor of S and P channel MO
The principle of the S-transistor is also the same as the above example.

【0005】[0005]

【発明が解決しようとする課題】この従来のMOSトラ
ンジスタでは、ソース・ドレインを構成する不純物層
3,4を含む領域にわたってP+ 不純物層7が形成され
ているため、ソース・ドレインと基板間の接合容量が大
きくなり、高速動作が困難になるという問題がある。本
発明の目的は、ソース・ドレインと基板間との接合容量
を低減し、高速動作を可能とした半導体集積回路装置を
提供することにある。
In this conventional MOS transistor, since the P + impurity layer 7 is formed over the region including the impurity layers 3 and 4 constituting the source / drain, the P + impurity layer between the source / drain and the substrate is formed. There is a problem that the junction capacitance becomes large and high-speed operation becomes difficult. An object of the present invention is to provide a semiconductor integrated circuit device capable of reducing the junction capacitance between the source / drain and the substrate and enabling high speed operation.

【0006】[0006]

【課題を解決するための手段】本発明は、一導電型の半
導体層に形成されたMOSトランジスタのゲート電極の
直下の半導体層内に、ゲート電極と自己整合配置された
一導電型の高濃度不純物層を形成する。
According to the present invention, a high conductivity type of one conductivity type self-aligned with a gate electrode is formed in a semiconductor layer immediately below a gate electrode of a MOS transistor formed in a semiconductor layer of one conductivity type. An impurity layer is formed.

【0007】[0007]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の一実施例のMOSトランジスタの断
面図、図2はそのMOSトランジスタを製造工程順に示
す断面図である。先ず、図2(a)のように、P型半導
体基板1にP+ ガードリング不純物層8,フィールド酸
化膜2を形成した後、全面にパッド酸化膜9を 400Å,
マスク材の窒化膜10を1000Å、及びCVD酸化膜11
を3000Å成長する。しかる後、フォトレジスト12を塗
布し、フォトリソグラフィ技術を用いてゲート電極を配
置すべき領域のフォトレジスト12を開口し、このフォ
トレジスト12を用いてCVD酸化膜11、及び窒化膜
10を反応性イオンエッチング技術を用いてエッチング
する。更に、これをマスク材としてイオン注入技術を用
いてパンチスルー防止用埋込みP+ 不純物層7を 150K
eVで形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. 1 is a sectional view of a MOS transistor according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the MOS transistor in the order of manufacturing steps. First, as shown in FIG. 2A, after forming the P + guard ring impurity layer 8 and the field oxide film 2 on the P-type semiconductor substrate 1, a pad oxide film 9 is formed on the entire surface by 400 Å,
Nitride film 10 of mask material is 1000Å, and CVD oxide film 11
To grow up to 3000Å. Then, a photoresist 12 is applied, the photoresist 12 in the region where the gate electrode is to be arranged is opened by using the photolithography technique, and the CVD oxide film 11 and the nitride film 10 are made reactive by using the photoresist 12. Etch using an ion etching technique. Further, by using this as a mask material and using an ion implantation technique, the buried P + impurity layer 7 for punch-through prevention is set to 150K.
It is formed by eV.

【0008】次いで、図2(b)のように、前記フォト
レジスト12を除去し、露出されたパット酸化膜9を除
去し、新たにゲート酸化膜6を70Å形成した後、ゲート
電極材の多結晶シリコン5を少なくとも開口部分が全部
埋まるように開口幅の1/2以上の膜厚を成長させる。
更に、図2(c)のように、エッチングバック技術を用
いて開口部のみにゲート電極材を残し、埋込み不純物層
7と自己整合配置されたゲート電極5を形成する。しか
る後、図1のように、マスク材のCVD酸化膜11及び
窒化膜10を順次除去し、LDDのN- 不純物層4、及
びCVD酸化膜11のエッチングバックサイドウォール
を利用してソース及びドレインのN+ 不純物層3を形成
してMOSトランジスタを完成する。
Next, as shown in FIG. 2B, the photoresist 12 is removed, the exposed pad oxide film 9 is removed, and a new gate oxide film 6 of 70 Å is formed. A film thickness of ½ or more of the opening width is grown so that the crystalline silicon 5 is completely filled at least in the opening portion.
Further, as shown in FIG. 2C, the gate electrode material is left only in the opening using the etching back technique to form the gate electrode 5 self-aligned with the buried impurity layer 7. Then, as shown in FIG. 1, the CVD oxide film 11 and the nitride film 10 of the mask material are sequentially removed, and the N - impurity layer 4 of the LDD and the etching back side wall of the CVD oxide film 11 are used to form the source and drain. The N + impurity layer 3 is formed to complete the MOS transistor.

【0009】このように構成されるMOSトランジスタ
では、P+ 不純物層7がゲート電極5と自己整合配置さ
れるため、LDDのN- 不純物層4及びN+ 不純物層3
の直下には存在しない。したがって、P+ 不純物層7に
よりソース・ドレイン間のパンチスルーを防止する一方
で、ソース・ドレインと基板との接合容量の増加を防止
し、MOSトランジスタの高速動作を可能とする。尚、
前記実施例はP型半導体基板に形成したN型MOSトラ
ンジスタの例を示しているが、P型MOSトランジスタ
や、ウェルに形成したCMOS構造についても同様に適
用することができる。
In the MOS transistor configured as described above, the P + impurity layer 7 is self-aligned with the gate electrode 5, so that the N impurity layer 4 and the N + impurity layer 3 of the LDD are formed.
It doesn't exist directly under. Therefore, the P + impurity layer 7 prevents punch-through between the source and drain, while preventing an increase in the junction capacitance between the source and drain and the substrate, and enables the MOS transistor to operate at high speed. still,
Although the above-mentioned embodiment shows the example of the N-type MOS transistor formed on the P-type semiconductor substrate, the same can be applied to the P-type MOS transistor and the CMOS structure formed on the well.

【0010】[0010]

【発明の効果】以上説明したように本発明は、ゲート電
極の直下に高濃度不純物層を形成しているので、ソース
・ドレイン間のパンチスルーを防止する一方で、ソース
・ドレインと基板の接合容量の増大が伴わない高速対応
のショートチャネルのMOSトランジスタが実現できる
効果がある。
As described above, according to the present invention, since the high-concentration impurity layer is formed immediately below the gate electrode, punch-through between the source and drain is prevented, while the source and drain are bonded to the substrate. There is an effect that it is possible to realize a high-speed compatible short-channel MOS transistor without an increase in capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるMOSトランジスタの一実施例
の断面図である。
FIG. 1 is a sectional view of an embodiment of a MOS transistor according to the present invention.

【図2】本発明の一実施例を製造工程順に示す断面図で
ある。
FIG. 2 is a cross-sectional view showing an embodiment of the present invention in the order of manufacturing steps.

【図3】従来のMOSトランジスタの一例を示す断面図
である。
FIG. 3 is a cross-sectional view showing an example of a conventional MOS transistor.

【符号の説明】[Explanation of symbols]

1 P型半導体基板 3 N- 不純物層 4 N+ 不純物層 5 ゲート電極 7 P+ 不純物層1 P-type semiconductor substrate 3 N - impurity layer 4 N + impurity layer 5 gate electrode 7 P + impurity layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7377−4M H01L 29/78 301 L ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 7377-4M H01L 29/78 301 L

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体層に設けた逆導電型の
ソース・ドレイン領域と、前記半導体層の表面上に設け
たゲート電極を有するMOSトランジスタを備える半導
体集積回路装置において、前記ゲート電極の直下の前記
半導体層内に、前記ゲート電極と自己整合配置された一
導電型の高濃度不純物層を形成したことを特徴とする半
導体集積回路装置。
1. A semiconductor integrated circuit device comprising a MOS transistor having a source / drain region of opposite conductivity type provided in a semiconductor layer of one conductivity type and a gate electrode provided on the surface of the semiconductor layer. A semiconductor integrated circuit device, wherein a high-concentration impurity layer of one conductivity type self-aligned with the gate electrode is formed in the semiconductor layer directly below the semiconductor layer.
JP4215791A 1992-07-22 1992-07-22 Semiconductor integrted circuit device Pending JPH0645600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4215791A JPH0645600A (en) 1992-07-22 1992-07-22 Semiconductor integrted circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4215791A JPH0645600A (en) 1992-07-22 1992-07-22 Semiconductor integrted circuit device

Publications (1)

Publication Number Publication Date
JPH0645600A true JPH0645600A (en) 1994-02-18

Family

ID=16678304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4215791A Pending JPH0645600A (en) 1992-07-22 1992-07-22 Semiconductor integrted circuit device

Country Status (1)

Country Link
JP (1) JPH0645600A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000069811A (en) * 1996-12-30 2000-11-25 피터 엔. 데트킨 Well boosting threshold voltage rollup
KR20030070329A (en) * 2002-02-25 2003-08-30 삼성전자주식회사 method for fabricating MOS transistor having self-aligned punch through stopper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000069811A (en) * 1996-12-30 2000-11-25 피터 엔. 데트킨 Well boosting threshold voltage rollup
KR20030070329A (en) * 2002-02-25 2003-08-30 삼성전자주식회사 method for fabricating MOS transistor having self-aligned punch through stopper

Similar Documents

Publication Publication Date Title
US5291052A (en) CMOS semiconductor device with (LDD) NMOS and single drain PMOS
US5576574A (en) Mosfet with fully overlapped lightly doped drain structure and method for manufacturing same
US6551870B1 (en) Method of fabricating ultra shallow junction CMOS transistors with nitride disposable spacer
US5510279A (en) Method of fabricating an asymmetric lightly doped drain transistor device
US5407837A (en) Method of making a thin film transistor
US5401994A (en) Semiconductor device with a non-uniformly doped channel
JPH0519811B2 (en)
JPH10510951A (en) Method for manufacturing an asymmetric LDD MOS device
US5244823A (en) Process for fabricating a semiconductor device
US5087582A (en) Mosfet and fabrication method
US5903029A (en) Insulated-gate field-effect transistor and method for producing the same
JPH08288508A (en) Epitaxial channel mos transistor and manufacturing method thereof
US6509218B2 (en) Front stage process of a fully depleted silicon-on-insulator device
US6534822B1 (en) Silicon on insulator field effect transistor with a double Schottky gate structure
JPH0645600A (en) Semiconductor integrted circuit device
JP3308082B2 (en) Semiconductor device and manufacturing method thereof
US6882013B2 (en) Transistor with reduced short channel effects and method
JP3494758B2 (en) Method of manufacturing buried transistor
US7105421B1 (en) Silicon on insulator field effect transistor with heterojunction gate
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
JPH04115538A (en) Semiconductor device
JPH10242460A (en) Semiconductor integrated circuit device and its manufacture
US6767842B2 (en) Implementation of Si-Ge HBT with CMOS process
US20020163038A1 (en) Semiconductor device and method for fabricating the same
JPH04313238A (en) Semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990323