JPH0645523A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH0645523A
JPH0645523A JP4195756A JP19575692A JPH0645523A JP H0645523 A JPH0645523 A JP H0645523A JP 4195756 A JP4195756 A JP 4195756A JP 19575692 A JP19575692 A JP 19575692A JP H0645523 A JPH0645523 A JP H0645523A
Authority
JP
Japan
Prior art keywords
well
diffusion layer
conductivity type
terminal
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4195756A
Other languages
Japanese (ja)
Other versions
JP2830630B2 (en
Inventor
Shiro Tsunai
史郎 綱井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4195756A priority Critical patent/JP2830630B2/en
Publication of JPH0645523A publication Critical patent/JPH0645523A/en
Application granted granted Critical
Publication of JP2830630B2 publication Critical patent/JP2830630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent internal circuit damage clue to abnormal voltage like static electricity and improve protective function, for both the part between an I/O signal terminal and an earth electrode and the part between the I/O signal terminal and a power supply electrode (semiconductor substrate), without increasing the occupied area of a protective element. CONSTITUTION:A P-type well part 3 under a collector region 6 of one bipolar transistor type protective element constituted of a base region 4, an emitter region 5, and a collector region 6 is shallowly formed, and the other bipolar transistor type protective element wherein the shallow part is made the base region is constituted. The collector region 6 is connected with an I/O signal terminal 10, and an N-type semiconductor substrate 1 is connected with a power supply terminal 9. Thereby the internal circuit 8 is protected from an abnormal voltage due to static electricity or the like generated between the I/O terminal 10 and the power supply terminal 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置およびその製
造方法に係わり、特に半導体装置における保護素子およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to a protective element in a semiconductor device and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図8は従来技術のバイポーラトランジス
タを用いた内部回路保護素子の断面構造図および一部概
略回路図であり、図9はその等価回路図である。
2. Description of the Related Art FIG. 8 is a sectional structural view and a partial schematic circuit diagram of an internal circuit protection element using a conventional bipolar transistor, and FIG. 9 is an equivalent circuit diagram thereof.

【0003】N型半導体基板1上に信号入出力端子1
0,内部回路8,バイポーラトランジスタ(パンチスル
ートランジスタ)を用いた内部回路保護素子12が形成
されている。
A signal input / output terminal 1 is formed on an N-type semiconductor substrate 1.
0, an internal circuit 8, and an internal circuit protection element 12 using a bipolar transistor (punch through transistor).

【0004】保護素子12は、N型半導体基板1に形成
されたP型ウェル2内のN+ コレクタ領域6,N+ 型エ
ミッタ領域5,両領域間のP型ウェルの部分のベース領
域4およびウェルコンタクトとなるP+ 型拡散層7から
横型NPNバイポーラトランジスタを構成し、コレクタ
領域6は信号入出力端子10に接続し、エミッタ領域5
および拡散層7は接地端子21に接続し、またN型半導
体基板1は正電位の電源端子に接続している。
The protective element 12 includes an N + collector region 6, an N + type emitter region 5, and a base region 4 in the P type well between both regions in a P type well 2 formed in an N type semiconductor substrate 1. A lateral NPN bipolar transistor is formed from the P + type diffusion layer 7 serving as a well contact, the collector region 6 is connected to the signal input / output terminal 10, and the emitter region 5 is formed.
The diffusion layer 7 is connected to the ground terminal 21, and the N-type semiconductor substrate 1 is connected to a positive potential power supply terminal.

【0005】次に動作について説明する。この保護用の
トランジスタ12は、内部回路8が破壊する電圧より低
い電圧でかつ内部回路8の動作に支障のない高い電圧で
入出力端子と接地電極間を導通する。これにより、入出
力端子の電圧が上昇し過ぎることを防止し、内部回路8
を正の過電圧から保護する。
Next, the operation will be described. The protective transistor 12 conducts between the input / output terminal and the ground electrode at a voltage lower than the voltage at which the internal circuit 8 is destroyed and at a high voltage that does not hinder the operation of the internal circuit 8. This prevents the voltage of the input / output terminal from rising too high, and the internal circuit 8
Protects against positive overvoltage.

【0006】またこの保護用のトランジスタ12は、入
出力端子の電圧が接地電極に対して低くなった場合に
は、コレクタ領域6とウェル2間のP−N接合が順方向
に動作して、静電気等による負の過電圧が入出力端子に
印加された場合にも内部回路を保護する役目をする。
Further, in this protection transistor 12, when the voltage at the input / output terminal becomes lower than the ground electrode, the P-N junction between the collector region 6 and the well 2 operates in the forward direction, It also serves to protect the internal circuit when a negative overvoltage due to static electricity or the like is applied to the input / output terminals.

【0007】通常の半導体装置では全ての入力端子、出
力端子、電源端子に内部回路保護素子を接続する。
In a normal semiconductor device, internal circuit protection elements are connected to all input terminals, output terminals and power supply terminals.

【0008】図10にMOS型電界効果トランジスタ1
5を入力保護素子として用いた他の従来技術を示す。先
の従来技術と異なる点は、入出力端子10と接地端子2
1間と同様に、入出力端子10と電源端子9間にも入力
保護素子としてのMOS型電界効果トランジスタ15を
接続したことである。先の従来技術と同様に、内部回路
8が破壊する電圧より低い電圧でかつ内部回路8の動作
に支障のない高い電圧で保護素子としてのトランジスタ
15が導通するようにそのゲート電極の幅(チャンネル
部の長さ)およびチャンネル部の不純物濃度を設定す
る。また逆方向の不所望の印加電圧に対しては、ソース
もしくはドレイン領域のP−N接合の順方向に動作によ
り内部回路を保護する。
FIG. 10 shows a MOS field effect transistor 1
5 shows another conventional technique using 5 as an input protection element. The difference from the prior art is that the input / output terminal 10 and the ground terminal 2 are
As in the case of 1, the MOS type field effect transistor 15 as an input protection element is connected between the input / output terminal 10 and the power supply terminal 9. As in the prior art, the width of the gate electrode (channel) of the gate electrode is set so that the transistor 15 as a protection element conducts at a voltage lower than the voltage at which the internal circuit 8 is destroyed and at a high voltage that does not hinder the operation of the internal circuit 8. Part length) and the impurity concentration of the channel part. Against an undesired applied voltage in the reverse direction, the internal circuit is protected by operating in the forward direction of the P-N junction of the source or drain region.

【0009】[0009]

【発明が解決しようとする課題】一般に静電気等による
異常電圧に対する保護素子の性能評価は入力端子と接地
端子との間および入力端子と半導体基板(電源電極)と
の間のそれぞれに対して電圧を印加する方法で評価され
ている。
Generally, the performance evaluation of a protection element against an abnormal voltage due to static electricity or the like is performed by applying a voltage to each of the input terminal and the ground terminal and between the input terminal and the semiconductor substrate (power electrode). It is evaluated by the method of applying.

【0010】この試験の際、図8,図9に示す従来技術
では、入出力信号端子10と半導体基板(電源電極)1
との間に印加された異常電圧に対しPウェル2が厚く電
流経路が無いために、内部回路8を保護する保護機能を
有さない。
At the time of this test, according to the prior art shown in FIGS. 8 and 9, the input / output signal terminal 10 and the semiconductor substrate (power supply electrode) 1
Since the P well 2 is thick and has no current path with respect to the abnormal voltage applied between and, it does not have a protection function for protecting the internal circuit 8.

【0011】一方、図10に示す従来技術では、入出力
端子10と接地端子21との間および入出力信号端子1
0と電源端子9との間のそれぞれに入力保護素子15を
形成する必要がある。したがって保護機能形成面積は図
8,図9に示す従来技術の2倍程度となってしまい、入
出力信号端子の数が多くなると端子周辺のレイアウトが
煩雑になる不都合な点があった。
On the other hand, in the prior art shown in FIG. 10, between the input / output terminal 10 and the ground terminal 21 and the input / output signal terminal 1
It is necessary to form the input protection element 15 between 0 and the power supply terminal 9. Therefore, the protection function forming area becomes about twice as large as that of the conventional technique shown in FIGS. 8 and 9, and there is a disadvantage that the layout around the terminals becomes complicated when the number of input / output signal terminals increases.

【0012】本発明の目的は、保護素子が占有する面積
を増加すること無く、静電気等による内部回路保護機能
を向上させることにある。
An object of the present invention is to improve the internal circuit protection function due to static electricity and the like without increasing the area occupied by the protection element.

【0013】[0013]

【課題を解決するための手段】本発明の特徴は、第一導
電型の半導体基板と、前記半導体基板内に形成された第
二導電型のウェルと、前記ウェル内に形成された第一導
電型の第1の拡散層とを有し、前記第1の拡散層下の前
記ウェルの第1の部分は該ウエルの該第1の部分を除く
第2の部分より不純物濃度が低いか、ウェルの深さが浅
いか、あるいは不純物濃度が低くかつウェルの深さが浅
くなっており、前記第1の拡散層と、その下の前記ウェ
ルの前記第1の部分と、その下の前記半導体基板の部分
とから縦型バイポーラトランジスタ機構の第1の保護素
子を構成した半導体装置にある。ここで、半導体装置は
信号端子、電源端子、接地端子を有し、第一導電型の前
記第1の拡散層を前記信号端子に接続し、第一導電型の
前記半導体基板を前記電源端子に接続し、第二導電型の
前記ウェルを前記接地端子に接続して、前記電源端子に
おける電源電圧に対して前記信号端子における電圧が過
電圧になった時に前記第1の保護素子が導通状態となる
ことができる。
A feature of the present invention is that a semiconductor substrate of a first conductivity type, a well of a second conductivity type formed in the semiconductor substrate, and a first conductivity formed in the well. The first portion of the well below the first diffusion layer has a lower impurity concentration than the second portion of the well excluding the first portion, or the well Or the impurity concentration is low and the well is shallow, the first diffusion layer, the first portion of the well below the first diffusion layer, and the semiconductor substrate below the first diffusion layer. In the semiconductor device, the first protection element of the vertical bipolar transistor mechanism is configured from the above part. Here, the semiconductor device has a signal terminal, a power supply terminal, and a ground terminal, the first conductivity type first diffusion layer is connected to the signal terminal, and the first conductivity type semiconductor substrate is used as the power supply terminal. And connecting the well of the second conductivity type to the ground terminal so that the first protection element becomes conductive when the voltage at the signal terminal becomes overvoltage with respect to the power supply voltage at the power supply terminal. be able to.

【0014】また、第二導電型の前記ウェルの前記第2
の部分に第一導電型の第2の拡散層を設け、前記第1の
拡散層と、前記第2の拡散層と、前記第1と第2の間の
前記ウェルの部分とから横型バイポーラトランジスタ機
構の第2の保護素子を構成し、半導体装置の信号端子に
前記第1の拡散層を接続し、半導体装置の接地端子に前
記第2の型拡散層および前記ウェルを接続し、前記接地
端子における接地電位に対して前記信号端子における電
圧が過電圧になった時に前記第2の保護素子が導通状態
となるようにすることができる。
Also, the second of the well of the second conductivity type
A second diffusion layer of the first conductivity type is provided in the portion of, and a lateral bipolar transistor is formed from the first diffusion layer, the second diffusion layer, and the portion of the well between the first and the second. A second protection element of the mechanism, the signal terminal of the semiconductor device is connected to the first diffusion layer, the ground terminal of the semiconductor device is connected to the second type diffusion layer and the well, and the ground terminal is connected. It is possible to make the second protection element conductive when the voltage at the signal terminal becomes an overvoltage with respect to the ground potential.

【0015】あるいは、第二導電型の前記ウェルの前記
第2の部分に第一導電型の第2の拡散層を設け、前記第
1、第2の拡散層をソース、ドレイン領域とし、前記第
1と第2の拡散層の間の前記ウェルの表面部分をチャン
ネル領域としてその上にゲート絶縁膜を介してゲート電
極を設けたMOS型電界効果トランジスタにより第2の
保護素子を構成し、半導体装置の信号端子に前記第1の
拡散層を接続し、半導体装置の接地端子に前記第2の型
拡散層および前記ウェルを接続し、前記接地端子におけ
る接地電位に対して前記信号端子における電圧が過電圧
になった時に前記第2の保護素子が導通状態となるよう
にすることができる。
Alternatively, a second diffusion layer of the first conductivity type is provided in the second portion of the well of the second conductivity type, and the first and second diffusion layers serve as source and drain regions, and A second protection element is constituted by a MOS type field effect transistor in which a surface portion of the well between the first and second diffusion layers is used as a channel region and a gate electrode is provided on the channel region through a gate insulating film. Is connected to the signal terminal of the first diffusion layer, the ground terminal of the semiconductor device is connected to the second type diffusion layer and the well, and the voltage at the signal terminal is overvoltage with respect to the ground potential at the ground terminal. The second protection element can be brought into a conductive state when it becomes.

【0016】本発明の他の特徴は、第一導電型の半導体
基板内に第二導電型のウェルを設けるに際して、前記第
一導電型の半導体基板上に選択的にマスクを形成して該
半導体基板に第二導電型の不純物を導入し、しかる後の
熱処理の熱拡散による横広がりにより前記マスクが存在
していた前記ウェルの第1の部分を該ウェルの他の第2
の部分より不純物濃度を低くするか、ウェルの深さを浅
くするか、あるいは不純物濃度を低くかつウェルの深さ
を浅くし、前記ウェルの前記第1の部分内に第一導電型
の拡散層を設けて縦型バイポーラトランジスタ機構の第
1の保護素子を形成する半導体装置の製造方法にある。
Another feature of the present invention is that when a well of the second conductivity type is provided in a semiconductor substrate of the first conductivity type, a mask is selectively formed on the semiconductor substrate of the first conductivity type to form the semiconductor. An impurity of the second conductivity type is introduced into the substrate, and the first portion of the well where the mask is present is laterally spread by thermal diffusion in the subsequent heat treatment, and the first portion of the well is replaced with the second portion of the well.
Of the first conductivity type diffusion layer in the first portion of the well, the impurity concentration of which is lower than that of the well, the depth of the well is shallower, or the impurity concentration is lower and the depth of the well is shallower. Is provided to form the first protection element of the vertical bipolar transistor mechanism.

【0017】上記本発明によれば、半導体基板(電源電
極)に対して入出力端子に異常電圧が印加された場合
に、第二導電型ウェルの浅く形成された部分を電荷が流
れることにより内部回路の損傷を防止することが可能と
なる。また、これに伴う保護素子の占有面積の増加は無
い。
According to the present invention described above, when an abnormal voltage is applied to the input / output terminal with respect to the semiconductor substrate (power supply electrode), charges flow through the shallowly formed portion of the second conductivity type well, so that the internal It is possible to prevent damage to the circuit. Further, there is no increase in the occupied area of the protection element.

【0018】[0018]

【実施例】次に図面を参照して本発明の実施例を説明す
る。
Embodiments of the present invention will now be described with reference to the drawings.

【0019】図1は本発明の第1の実施例を示す断面図
および一部概略回路図であり、図2はその等価回路図で
ある。N型半導体基板1内にP型ウェル2を設け、この
P型ウェル2内に第1のN+ 型拡散層6,第2のN+
拡散層5およびP+ 型拡散層7が形成されている。そし
て第1のN+ 型拡散層6下のP型ウェル2の部分3はこ
のウェル2の他の部分より不純物濃度を低くするかウェ
ルの深さを浅くしあるいは不純物濃度を低くしかつウェ
ルの深さを浅くしてある。
FIG. 1 is a sectional view and a partial schematic circuit diagram showing a first embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram thereof. A P-type well 2 is provided in the N-type semiconductor substrate 1, and a first N + type diffusion layer 6, a second N + type diffusion layer 5 and a P + type diffusion layer 7 are formed in the P type well 2. ing. Then, the portion 3 of the P-type well 2 below the first N + -type diffusion layer 6 has a lower impurity concentration than the other portions of the well 2 or has a shallower depth or a lower impurity concentration. The depth is shallow.

【0020】また、同じ半導体基板1上に正の電位を供
給する電源端子9,入出力信号端子10,接地端子21
が形成され、第1のN+ 型拡散層6は信号端子10に接
続され、第2のN+ 型拡散層5およびP+ 型拡散層7は
接地端子21に接続され、N型半導体基板1は電源端子
9に接続されている。
Further, the power supply terminal 9, the input / output signal terminal 10 and the ground terminal 21 for supplying a positive potential on the same semiconductor substrate 1.
The first N + type diffusion layer 6 is connected to the signal terminal 10, the second N + type diffusion layer 5 and the P + type diffusion layer 7 are connected to the ground terminal 21, and the N type semiconductor substrate 1 is formed. Is connected to the power supply terminal 9.

【0021】そして第1のN+ 型拡散層6をエミッタ領
域(もしくはコレクタ領域)とし、このエミッタ領域6
下のP型ウェル2の不純物濃度を低くするかウェルの深
さを浅くしあるいは不純物濃度を低くしかつウェルの深
さを浅くしてある部分3をベース領域3とし、その下の
N型半導体基板1の部分をコレクタ領域(もしくはエミ
ッタ領域)とした縦型バイポーラトランジスタ(Pウェ
ルパンチスルートランジスタ)(Pウェルスリットバイ
ポーラ型トランジスタ)11を第1の保護素子として成
し、電源電圧に対して信号端子に過電圧が発生した時
に、このトランジスタ11が導通状態となり異常電圧か
ら同じ半導体基板1に形成されてある内部回路8を保護
する。
The first N + type diffusion layer 6 is used as an emitter region (or collector region), and this emitter region 6
A portion 3 in which the impurity concentration of the lower P-type well 2 is made low or the depth of the well is made shallow or the impurity concentration is made low and the depth of the well is made shallow is used as a base region 3, and the N-type semiconductor thereunder A vertical bipolar transistor (P-well punch-through transistor) (P-well slit bipolar transistor) 11 having a portion of the substrate 1 as a collector region (or emitter region) is formed as a first protection element, and a signal is supplied to a power supply voltage. When an overvoltage occurs at the terminal, the transistor 11 becomes conductive and protects the internal circuit 8 formed on the same semiconductor substrate 1 from an abnormal voltage.

【0022】一方、第1のN+ 型拡散層6をコレクタ領
域とし、第2のN+ 型拡散層5をエミッタ領域とし、そ
の間のP型ウェルの部分4をベース領域4とした横型バ
イポーラトランジスタ(パンチスルートランジスタ)1
2を第2の保護素子として構成し、接地電圧に対して信
号端子に過電圧が発生した時に、このトランジスタ12
が導通状態となり異常電圧から内部回路8を保護する。
On the other hand, a lateral bipolar transistor in which the first N + type diffusion layer 6 is used as a collector region, the second N + type diffusion layer 5 is used as an emitter region, and the P type well portion 4 between them is used as a base region 4. (Punch through transistor) 1
2 is configured as a second protection element, and when an overvoltage occurs at the signal terminal with respect to the ground voltage, the transistor 12
Becomes conductive and protects the internal circuit 8 from abnormal voltage.

【0023】図3は本発明のP型ウェル2を形成する実
施例を示す断面図である。N型半導体基板1内にP型ウ
ェル2を設けるに際して、半導体基板上に選択的にイオ
ン注入遮蔽膜13をマスクとして形成して半導体基板に
ボロンをイオン注入法で導入し(図3(A))、しかる
後の熱処理による押込み拡散による横広がりによりマス
ク13が存在していた部分3を他の部分より不純物濃度
を低く、深さを浅くしたP型ウェル2を形成する(図3
(B))。
FIG. 3 is a sectional view showing an embodiment for forming the P-type well 2 of the present invention. When providing the P-type well 2 in the N-type semiconductor substrate 1, boron is introduced into the semiconductor substrate by the ion implantation method by selectively forming the ion implantation shielding film 13 on the semiconductor substrate as a mask (FIG. 3A). ), The portion 3 where the mask 13 was present is laterally spread by indentation diffusion due to the subsequent heat treatment, and the P-type well 2 is formed in which the impurity concentration is lower and the depth is shallower than other portions (FIG. 3).
(B)).

【0024】この用な本発明のウェルは他の方法で形成
してよい。
The wells of the invention for this purpose may be formed in other ways.

【0025】このP型ウェルによる第1の保護素子とし
ての縦型バイポーラトランジスタ11は、入出力信号端
子10と電源端子9(半導体基板1)との間に高電圧が
印加された場合、Pウェル2の浅い部分3を通って電荷
が中和され内部回路を保護する機能を有している。
The vertical bipolar transistor 11 serving as the first protection element having the P-type well has the P-well when a high voltage is applied between the input / output signal terminal 10 and the power supply terminal 9 (semiconductor substrate 1). The electric charge is neutralized through the shallow portion 3 of 2 to protect the internal circuit.

【0026】このトランジスタ11が保護回路として動
作するための条件は、内部回路8が破壊する電圧より低
い電圧でかつ内部回路8の動作に支障のない電圧でコレ
クタ領域6と半導体基板1間が導通することが必要であ
る。
The condition for the transistor 11 to operate as a protection circuit is that the collector region 6 and the semiconductor substrate 1 are electrically connected to each other at a voltage lower than the voltage at which the internal circuit 8 is destroyed and at a voltage that does not hinder the operation of the internal circuit 8. It is necessary to.

【0027】この為に、実際に製造し実験をした結果、
N型の不純物濃度が2.0×1014cm-3の半導体基板
にドーズ量が1.2×1012cm-2のボロンイオンを注
入してP型ウェルを形成する場合に、図3(A)に示す
イオン注入遮蔽膜13の幅Wは約5μmが最適である。
For this reason, as a result of actual manufacture and experiment,
When a P-type well is formed by implanting boron ions with a dose amount of 1.2 × 10 12 cm −2 into a semiconductor substrate having an N-type impurity concentration of 2.0 × 10 14 cm −3 , as shown in FIG. The optimum width W of the ion implantation shielding film 13 shown in A) is about 5 μm.

【0028】上記第1の実施例において、対電源電圧、
対接地電圧共にJIS規格250Vの静電試験に合格す
ることが確認されている。
In the first embodiment, the power supply voltage is
It has been confirmed that both the ground voltage and the electrostatic test of JIS standard 250V are passed.

【0029】図4は本発明の第2の実施例を示す断面図
および一部概略回路図であり、図5はその等価回路図で
ある。
FIG. 4 is a sectional view and a partial schematic circuit diagram showing a second embodiment of the present invention, and FIG. 5 is an equivalent circuit diagram thereof.

【0030】この実施例では第2の保護素子としてMO
S型電界効果トランジスタ15を形成してある。すなわ
ちN型半導体基板1内にP型ウェル2を設け、このP型
ウェル2内に第1のN+ 型拡散層16,第2のN+ 型拡
散層17およびP+ 型拡散層7が形成されている。そし
て第1のN+ 型拡散層16下のP型ウェル2の部分3は
このウェル2の他の部分より不純物濃度を低くするかウ
ェルの深さを浅くしあるいは不純物濃度を低くしかつウ
ェルの深さを浅くしてある。同じ半導体基板1上に正の
電位を供給する電源端子9,入出力信号端子10,接地
端子21が形成され、第1のN+ 型拡散層16は信号端
子10に接続され、第2のN+ 型拡散層17およびP+
型拡散層7は接地端子21に接続され、N型半導体基板
1は電源端子9に接続されている。そして第1の実施例
と同様に、第1のN+ 型拡散層16をエミッタ領域(も
しくはコレクタ領域)とし、このエミッタ領域16下の
P型ウェル2の不純物濃度を低くするかウェルの深さを
浅くしあるいは不純物濃度を低くしかつウェルの深さを
浅くしてある部分3をベース領域3とし、その下のN型
半導体基板1の部分をコレクタ領域(もしくはエミッタ
領域)とした縦型バイポーラトランジスタ11を第1の
保護素子として構成し、電源電圧に対して信号端子に過
電圧が発生した時に、このトランジスタ11が導通状態
となり異常電圧から同じ半導体基板1に形成されてある
内部回路8を保護する。
In this embodiment, MO is used as the second protection element.
The S-type field effect transistor 15 is formed. That is, the P-type well 2 is provided in the N-type semiconductor substrate 1, and the first N + -type diffusion layer 16, the second N + -type diffusion layer 17, and the P + -type diffusion layer 7 are formed in the P-type well 2. Has been done. Then, the portion 3 of the P-type well 2 below the first N + -type diffusion layer 16 has a lower impurity concentration than the other portions of the well 2 or has a shallower depth or a lower impurity concentration. The depth is shallow. A power supply terminal 9 for supplying a positive potential, an input / output signal terminal 10, and a ground terminal 21 are formed on the same semiconductor substrate 1, the first N + type diffusion layer 16 is connected to the signal terminal 10, and the second N + type diffusion layer 16 is connected. + Type diffusion layer 17 and P +
The mold diffusion layer 7 is connected to the ground terminal 21, and the N-type semiconductor substrate 1 is connected to the power supply terminal 9. Then, as in the first embodiment, the first N + type diffusion layer 16 is used as an emitter region (or collector region), and the impurity concentration of the P type well 2 below the emitter region 16 is lowered or the depth of the well is reduced. Of the N-type semiconductor substrate 1 under the base region 3 and the collector region (or emitter region) under the region 3 where the well is shallow or the impurity concentration is low and the well depth is shallow. The transistor 11 is configured as a first protection element, and when an overvoltage occurs in the signal terminal with respect to the power supply voltage, the transistor 11 becomes conductive and protects the internal circuit 8 formed on the same semiconductor substrate 1 from an abnormal voltage. To do.

【0031】一方、本第2の実施例では、第1のN+
拡散層16をドレイン領域とし、第2のN+ 型拡散層1
7をソース領域とし、その間のP型ウェルの部分をチャ
ンネル領域としその上にゲート絶縁膜20を介してゲー
ト電極19を形成したMOS型電界効果トランジスタ1
5を第2の保護素子として構成し、接地電圧に対して信
号端子に過電圧が発生した時に、このトランジスタ15
が導通状態となり異常電圧から内部回路8を保護する。
On the other hand, in the second embodiment, the first N + type diffusion layer 16 is used as the drain region and the second N + type diffusion layer 1 is used.
7 is a source region, a P-type well portion therebetween is a channel region, and a gate electrode 19 is formed on the channel region via a gate insulating film 20.
5 as a second protection element, and when an overvoltage occurs at the signal terminal with respect to the ground voltage, the transistor 15
Becomes conductive and protects the internal circuit 8 from abnormal voltage.

【0032】図6は本発明の第3の実施例を示す断面図
および一部概略回路図であり、図7はその等価回路図で
ある。この図6および図7において図1乃至図5と同一
の機能の箇所は同一の符号で示してあるから詳しい説明
は省略する。
FIG. 6 is a sectional view and a partial schematic circuit diagram showing a third embodiment of the present invention, and FIG. 7 is an equivalent circuit diagram thereof. 6 and 7, parts having the same functions as those in FIGS. 1 to 5 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0033】この第3の実施例では第2の保護素子を形
成せずに、P型ウェル2内のN+ 型拡散層18をエミッ
タ領域(もしくはコレクタ領域)とした第1の保護素子
としての縦型バイポーラトランジスタのみを構成してい
る。
In the third embodiment, the second protective element is not formed and the N + type diffusion layer 18 in the P type well 2 is used as the first protective element as the emitter region (or collector region). Only vertical bipolar transistors are configured.

【0034】本第3の実施例では入出力信号端子と電源
電圧端子(半導体基板)間の過電圧に限って内部回路を
保護する。
In the third embodiment, the internal circuit is protected only by the overvoltage between the input / output signal terminal and the power supply voltage terminal (semiconductor substrate).

【0035】尚、本発明の第1の保護素子としての縦型
バイポーラトランジスタは、第2の保護素子としての横
型バイポーラトランジスタやMOS型電界効果トランジ
スタとの組み合わせて用いた場合に限らず、他の保護素
子と組み合わせて用いることも可能である。
The vertical bipolar transistor as the first protection element of the present invention is not limited to the case where it is used in combination with the lateral bipolar transistor or the MOS field effect transistor as the second protection element, and other vertical bipolar transistors are used. It is also possible to use it in combination with a protective element.

【0036】また上記実施例はN型半導体基板にP型ウ
ェルを形成した場合を例示したが、N型をP型にP型を
N型に読み変えて、実施例とは逆の導電型の本発明の保
護素子を構成することも可能である。
In the above embodiment, the case where the P-type well is formed on the N-type semiconductor substrate is illustrated. However, the conductivity type opposite to that of the embodiment is read by replacing N-type with P-type and P-type with N-type. It is also possible to configure the protective element of the present invention.

【0037】[0037]

【発明の効果】以上のように本発明によれば、従来の保
護回路とその占有面積は同一にもかかわらず、入出力信
号端子と接地電極間および入出力信号端子と電源電極
(半導体基板)間の両方に対して、静電気等異常電圧に
よる内部回路損傷を防止する効果がある。
As described above, according to the present invention, although the area occupied by the conventional protection circuit is the same, the space between the input / output signal terminal and the ground electrode and between the input / output signal terminal and the power supply electrode (semiconductor substrate) is large. Both of them have the effect of preventing internal circuit damage due to abnormal voltage such as static electricity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す断面図および一部
概略回路図。
FIG. 1 is a sectional view and a partial schematic circuit diagram showing a first embodiment of the present invention.

【図2】本発明の第1の実施例を示す等価回路図。FIG. 2 is an equivalent circuit diagram showing the first embodiment of the present invention.

【図3】本発明の実施例の製造方法の一部を示す断面
図。
FIG. 3 is a sectional view showing a part of a manufacturing method according to an embodiment of the present invention.

【図4】本発明の第2の実施例を示す断面図および一部
概略回路図。
FIG. 4 is a sectional view and a partial schematic circuit diagram showing a second embodiment of the present invention.

【図5】本発明の第2の実施例を示す等価回路図。FIG. 5 is an equivalent circuit diagram showing a second embodiment of the present invention.

【図6】本発明の第3の実施例を示す断面図および一部
概略回路図。
6A and 6B are a sectional view and a partial schematic circuit diagram showing a third embodiment of the present invention.

【図7】本発明の第3の実施例を示す等価回路図。FIG. 7 is an equivalent circuit diagram showing a third embodiment of the present invention.

【図8】従来技術を示す断面図および一部概略回路図。FIG. 8 is a cross-sectional view and a partial schematic circuit diagram showing a conventional technique.

【図9】従来技術を示す等価回路図。FIG. 9 is an equivalent circuit diagram showing a conventional technique.

【図10】他の従来技術を示す等価回路図。FIG. 10 is an equivalent circuit diagram showing another conventional technique.

【符号の説明】[Explanation of symbols]

1 N型半導体基板 2 P型ウェル 3 P型ウェルの浅い部分 4 ベース領域 5 第2のN+ 型拡散層(エミッタ領域) 6 第1のN+ 型拡散層(エミッタ・コレクタ領域) 7 P+ 型拡散層(ウェルコンタクト) 8 内部回路 9 電源端子 10 入出力信号端子 11 第1の保護素子(縦型バイポーラトラジスタ) 12 第2の保護素子(横型バイポーラトラジスタ) 13 イオン注入遮蔽膜 14 ボロンイオン注入領域 15 第2の保護素子(MOS型電界効果トランジス
タ) 16 第1のN+ 型拡散層(エミッタ・ドレイン領
域) 17 第2のN+ 型拡散層(ソース領域) 18 N+ 型拡散層(エミッタ・コレクタ領域) 19 ゲート電極 20 ゲート絶縁膜 21 接地端子
1 N-type semiconductor substrate 2 P-type well 3 Shallow part of P-type well 4 Base region 5 Second N + type diffusion layer (emitter region) 6 First N + type diffusion layer (emitter / collector region) 7 P + Type diffusion layer (well contact) 8 Internal circuit 9 Power supply terminal 10 Input / output signal terminal 11 First protection element (vertical bipolar transistor) 12 Second protection element (horizontal bipolar transistor) 13 Ion implantation shielding film 14 Boron Ion-implanted region 15 Second protection element (MOS field effect transistor) 16 First N + type diffusion layer (emitter / drain region) 17 Second N + type diffusion layer (source region) 18 N + type diffusion layer (Emitter / collector region) 19 Gate electrode 20 Gate insulating film 21 Ground terminal

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第一導電型の半導体基板と、前記半導体
基板内に形成された第二導電型のウェルと、前記ウェル
内に形成された第一導電型の第1の拡散層とを有し、前
記第1の拡散層下の前記ウェルの第1の部分は該ウエル
の該第1の部分を除く第2の部分より不純物濃度が低い
か、ウェルの深さが浅いか、あるいは不純物濃度が低く
かつウェルの深さが浅くなっており、前記第1の拡散層
と、その下の前記ウェルの前記第1の部分と、その下の
前記半導体基板の部分とから縦型バイポーラトランジス
タ機構の第1の保護素子を構成したことを特徴とする半
導体装置。
1. A semiconductor substrate of a first conductivity type, a well of a second conductivity type formed in the semiconductor substrate, and a first diffusion layer of a first conductivity type formed in the well. However, the first portion of the well below the first diffusion layer has a lower impurity concentration than the second portion of the well except the first portion, the well has a shallow depth, or the impurity concentration is low. Is low and the depth of the well is shallow, the vertical diffusion transistor mechanism is composed of the first diffusion layer, the first portion of the well below the first diffusion layer, and the portion of the semiconductor substrate below the first diffusion layer. A semiconductor device comprising a first protection element.
【請求項2】 半導体装置は信号端子、電源端子、接地
端子を有し、第一導電型の前記第1の拡散層を前記信号
端子に接続し、第一導電型の前記半導体基板を前記電源
端子に接続し、第二導電型の前記ウェルを前記接地端子
に接続して、前記電源端子における電源電圧に対して前
記信号端子における電圧が過電圧になった時に前記第1
の保護素子が導通状態となることを特徴とする請求項1
に記載の半導体装置。
2. A semiconductor device has a signal terminal, a power supply terminal, and a ground terminal, the first diffusion layer of the first conductivity type is connected to the signal terminal, and the semiconductor substrate of the first conductivity type is the power supply. A second conductivity type well is connected to the ground terminal, and the first terminal is connected when the voltage at the signal terminal exceeds the power voltage at the power terminal.
2. The protective element of 1 is brought into a conducting state.
The semiconductor device according to.
【請求項3】 第二導電型の前記ウェルの前記第2の部
分に第一導電型の第2の拡散層を設け、前記第1の拡散
層と、前記第2の拡散層と、前記第1と第2の間の前記
ウェルの部分とから横型バイポーラトランジスタ機構の
第2の保護素子を構成し、半導体装置の信号端子に前記
第1の拡散層を接続し、半導体装置の接地端子に前記第
2の型拡散層および前記ウェルを接続し、前記接地端子
における接地電位に対して前記信号端子における電圧が
過電圧になった時に前記第2の保護素子が導通状態とな
ることを特徴とする請求項1もしくは請求項2に記載の
半導体装置。
3. A second diffusion layer of the first conductivity type is provided on the second portion of the well of the second conductivity type, and the first diffusion layer, the second diffusion layer, and the second diffusion layer. A second protection element of a lateral bipolar transistor mechanism is formed from the well portion between the first and second wells, the first diffusion layer is connected to the signal terminal of the semiconductor device, and the ground terminal of the semiconductor device is connected to the first diffusion layer. A second type diffusion layer is connected to the well, and when the voltage at the signal terminal becomes an overvoltage with respect to the ground potential at the ground terminal, the second protection element becomes conductive. The semiconductor device according to claim 1 or 2.
【請求項4】 第二導電型の前記ウェルの前記第2の部
分に第一導電型の第2の拡散層を設け、前記第1、第2
の拡散層をソース、ドレイン領域とし、前記第1と第2
の拡散層の間の前記ウェルの表面部分をチャンネル領域
としてその上にゲート絶縁膜を介してゲート電極を設け
たMOS型電界効果トランジスタにより第2の保護素子
を構成し、半導体装置の信号端子に前記第1の拡散層を
接続し、半導体装置の接地端子に前記第2の型拡散層お
よび前記ウェルを接続し、前記接地端子における接地電
位に対して前記信号端子における電圧が過電圧になった
時に前記第2の保護素子が導通状態となることを特徴と
する請求項1もしくは請求項2に記載の半導体装置。
4. A second diffusion layer of the first conductivity type is provided on the second portion of the well of the second conductivity type, and the first and second diffusion layers are provided.
Of the first and second diffusion layers as source and drain regions.
Forming a second protection element by a MOS field effect transistor having a surface region of the well between the diffusion layers of the above as a channel region and a gate electrode provided on the channel region via a gate insulating film. When the first diffusion layer is connected, the second type diffusion layer and the well are connected to the ground terminal of the semiconductor device, and the voltage at the signal terminal becomes an overvoltage with respect to the ground potential at the ground terminal. The semiconductor device according to claim 1, wherein the second protection element is in a conductive state.
【請求項5】 第一導電型の半導体基板内に第二導電型
のウェルを設けるに際して、前記第一導電型の半導体基
板上に選択的にマスクを形成して該半導体基板に第二導
電型の不純物を導入し、しかる後の熱処理の熱拡散によ
る横広がりにより前記マスクが存在していた前記ウェル
の第1の部分を該ウェルの他の第2の部分より不純物濃
度を低くするか、ウェルの深さを浅くするか、あるいは
不純物濃度を低くかつウェルの深さを浅くし、前記ウェ
ルの前記第1の部分内に第一導電型の拡散層を設けて縦
型バイポーラトランジスタ機構の第1の保護素子を形成
したことを特徴とする半導体装置の製造方法。
5. When providing a well of the second conductivity type in a semiconductor substrate of the first conductivity type, a mask is selectively formed on the semiconductor substrate of the first conductivity type to provide the second conductivity type on the semiconductor substrate. Of the well, where the first portion of the well where the mask was present is made lower in impurity concentration than the other second portion of the well by lateral spreading due to thermal diffusion of subsequent heat treatment, or Or the impurity concentration is low and the well is shallow, and a diffusion layer of the first conductivity type is provided in the first portion of the well to provide a first structure of the vertical bipolar transistor mechanism. 1. A method for manufacturing a semiconductor device, comprising the step of forming a protective element of 1.
JP4195756A 1992-07-23 1992-07-23 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2830630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4195756A JP2830630B2 (en) 1992-07-23 1992-07-23 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4195756A JP2830630B2 (en) 1992-07-23 1992-07-23 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0645523A true JPH0645523A (en) 1994-02-18
JP2830630B2 JP2830630B2 (en) 1998-12-02

Family

ID=16346442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4195756A Expired - Lifetime JP2830630B2 (en) 1992-07-23 1992-07-23 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2830630B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905679A (en) * 1997-09-30 1999-05-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device clamping the overshoot and undershoot of input signal by circuit with PN junction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352469A (en) * 1986-08-21 1988-03-05 Mitsubishi Electric Corp Electrostatic breakdown preventing device for semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352469A (en) * 1986-08-21 1988-03-05 Mitsubishi Electric Corp Electrostatic breakdown preventing device for semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905679A (en) * 1997-09-30 1999-05-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device clamping the overshoot and undershoot of input signal by circuit with PN junction

Also Published As

Publication number Publication date
JP2830630B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US6864536B2 (en) Electrostatic discharge protection circuit
US6696730B2 (en) Electrostatic discharge protection device for semiconductor integrated circuit, method for producing the same, and electrostatic discharge protection circuit using the same
US7205612B2 (en) Fully silicided NMOS device for electrostatic discharge protection
US6639284B1 (en) Compensated-well electrostatic discharge protection structure
JP3144330B2 (en) Semiconductor device
KR20070082506A (en) Semiconductor device
KR100698096B1 (en) ESD protecting cirsiut and method for fabricating the same
US5538907A (en) Method for forming a CMOS integrated circuit with electrostatic discharge protection
US6455895B1 (en) Overvoltage protector having same gate thickness as the protected integrated circuit
JPH05505060A (en) Low trigger voltage SCR protection device and structure
JP4123318B2 (en) Semiconductor device having electrostatic discharge protection circuit
US6429490B2 (en) Protection device and protection method for semiconductor device
JP2830630B2 (en) Semiconductor device and manufacturing method thereof
JP4795613B2 (en) Semiconductor device
US20020145165A1 (en) Semiconductor device having electrostatic discharge protector and fabricating method thereof
US5886386A (en) Method for making a bipolar transistor for the protection of an integrated circuit against electrostatic discharges
JP2001102461A (en) Input protection circuit
KR100494143B1 (en) Field transistor structure of semiconductor device
JP3390336B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP3625623B2 (en) Semiconductor device
JP2004071677A (en) Semiconductor device and its manufacturing method
JPH09129856A (en) Semiconductor device and its manufacture
JP2949769B2 (en) Semiconductor input protection device
KR100275946B1 (en) Method of fabricating ESD protection ciruit
KR20010019288A (en) Structure for bipolra transistor in electro static discharge

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980825