JPH0645501B2 - Method for manufacturing thermal shock resistant ceramic structure - Google Patents

Method for manufacturing thermal shock resistant ceramic structure

Info

Publication number
JPH0645501B2
JPH0645501B2 JP63328268A JP32826888A JPH0645501B2 JP H0645501 B2 JPH0645501 B2 JP H0645501B2 JP 63328268 A JP63328268 A JP 63328268A JP 32826888 A JP32826888 A JP 32826888A JP H0645501 B2 JPH0645501 B2 JP H0645501B2
Authority
JP
Japan
Prior art keywords
thermal shock
honeycomb structure
fused silica
resistant ceramic
shock resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63328268A
Other languages
Japanese (ja)
Other versions
JPH02172861A (en
Inventor
浩直 沼本
西野  敦
一郎 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63328268A priority Critical patent/JPH0645501B2/en
Publication of JPH02172861A publication Critical patent/JPH02172861A/en
Publication of JPH0645501B2 publication Critical patent/JPH0645501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、触媒担体用基体あるいはその他構造材として
使用される耐熱衝撃性に優れたセラミックス構造体の製
造法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a ceramic structure having excellent thermal shock resistance, which is used as a catalyst carrier substrate or other structural material.

従来の技術 従来の熱膨張係数の小さな耐熱衝撃性に優れたセラミッ
クスとしてはコーデイエライト、リチウムアルミノシリ
ケート(スポジュウメン等)、チタン酸アルミニウム等
が知られている。しかし、これらは原料を焼結温度より
もさらに高い温度(融解温度付近)で熱処理し、反応合
成によって上記組成の物をつくるものである。
2. Description of the Related Art Cordierite, lithium aluminosilicate (spodumene, etc.), aluminum titanate, etc. are known as conventional ceramics having a small thermal expansion coefficient and excellent thermal shock resistance. However, in these, the raw material is heat-treated at a temperature higher than the sintering temperature (around the melting temperature), and a product having the above composition is produced by reactive synthesis.

たとえば、コーディエライトは原料としてカオリン、タ
ルク、アルミナを用いてハニカム構造体とし、1350
〜1400℃で1〜2日間熱処理し、徐々に反応させコ
ーディエライト相にしていき、コーディエライト相が少
なくても95wt%になるまで行う。これはこのセラミッ
クスにおいては反応合成されたコーディエライト相は低
熱膨張セラミックスであるが、それ以外の未反応原料は
熱膨張係数が大きいためである。この過程で、原料の焼
結は1200℃付近から始まり、1350〜1400℃
でコーディエライト相への反応がおこり、さらに142
0℃以上では溶解する。そのため製造工程での焼成温度
管理には充分注意する必要があった。また、その後徐々
に冷却し、製品とされている。そのため容積の大きな製
品の場合冷却にもかなりな時間がかかっていた。
For example, cordierite is made into a honeycomb structure using kaolin, talc, and alumina as raw materials, and 1350
It is heat-treated at ˜1400 ° C. for 1 to 2 days and gradually reacted to form a cordierite phase until the cordierite phase is at least 95 wt%. This is because the reaction-synthesized cordierite phase in this ceramic is a low thermal expansion ceramic, but the other unreacted raw materials have a large thermal expansion coefficient. In this process, the sintering of the raw material starts at around 1200 ° C and reaches 1350 to 1400 ° C.
The reaction to the cordierite phase occurs at 142
It dissolves at 0 ° C or higher. Therefore, it was necessary to pay sufficient attention to the control of the firing temperature in the manufacturing process. Also, after that, it is gradually cooled and made into a product. Therefore, in the case of a product with a large volume, it took a considerable time to cool.

また、溶融シリカを含有する低膨張セラミックスは今ま
でにも数多く知られているが、これらは耐熱衝撃性と機
械的強度を満足するものではなかった。
Many low-expansion ceramics containing fused silica have been known so far, but these have not satisfied thermal shock resistance and mechanical strength.

発明が解決しようとする課題 本発明はかかる点に鑑みて溶融シリカを主成分とし、溶
融シリカより融点の低い固溶相を形成する原料粉末が焼
結温度という広い温度範囲において設定され、その後そ
の焼結温度から急冷することにより、焼結セラミックス
の耐熱衝撃性と機械的強度に優れたセラミックス構造体
を得るものである。また、耐熱衝撃性セラミツクス構造
体を急冷により生産するので、従来生コストの低減を図
ろうとするものである。
SUMMARY OF THE INVENTION In view of such a point, the present invention is based on fused silica as a main component, a raw material powder that forms a solid solution phase having a lower melting point than fused silica is set in a wide temperature range of a sintering temperature, and then the By rapidly cooling from the sintering temperature, a ceramic structure excellent in thermal shock resistance and mechanical strength of the sintered ceramic is obtained. Further, since the thermal shock resistant ceramic structure is produced by quenching, it is intended to reduce the conventional raw cost.

課題を解決するための手段 本発明は、溶融シリカを主成分とし、溶融シリカより融
点の低い固溶相を含むハニカム構造体などの三次元構造
体を焼結温度で熱処理する工程と、その後、前記焼結体
をその焼結温度から水中で冷却する工程とを有する耐熱
衝撃性セラミックス構造体の製造方法である。
Means for Solving the Problem The present invention is a step of heat-treating a three-dimensional structure such as a honeycomb structure having a solid solution phase having a melting point lower than that of fused silica as a main component at a sintering temperature, and thereafter, And a step of cooling the sintered body from the sintering temperature in water, to provide a thermal shock resistant ceramic structure.

作用 本発明は上記手段により、溶融シリカを主成分としたセ
ラミックスが熱処理過程で生成した固溶体により、溶融
シリカ粒子と溶融シリカ粒子との界面でぬれ現象をおこ
す焼結温度という広い温度範囲において設定し、その温
度から急冷することにより、焼結体セラミックスは粒界
においてぬれながら、ミクロなクラックを持つようにな
り、徐冷されたセラミックスに比べて、耐熱衝撃性に優
れたものとなる。また、機械的強度もほとんど差がな
い。
Action The present invention is set by the above means in a wide temperature range of a sintering temperature that causes a wetting phenomenon at the interface between fused silica particles and fused silica particles due to the solid solution produced by the ceramics mainly containing fused silica during the heat treatment process. By rapidly cooling from that temperature, the sintered ceramics have micro cracks while wetting at the grain boundaries, and have excellent thermal shock resistance as compared with the gradually cooled ceramics. Also, there is almost no difference in mechanical strength.

製造工程においても従来より非常に短時間でハニカム構
造体を得ることができる。したがって、生産コストの低
減が達成される。
Also in the manufacturing process, the honeycomb structure can be obtained in a much shorter time than in the past. Therefore, reduction of production cost is achieved.

実施例 以下本発明の実施例について説明する。Examples Examples of the present invention will be described below.

本発明による構造体は焼結体温度から急冷されるので、
熱容量の小さなものが好ましい。したがって、ハニカム
構造体は開孔率が60%以上でセル壁厚が0.50mm以下で
あることが好ましい。また、ハニカム構造体でなくても
三次元構造を有するもので同様な熱容量の小さな構造体
であれば本発明の効果が期待できる。
Since the structure according to the present invention is rapidly cooled from the sintered body temperature,
Those having a small heat capacity are preferable. Therefore, the honeycomb structure preferably has an opening ratio of 60% or more and a cell wall thickness of 0.50 mm or less. Further, the effect of the present invention can be expected as long as it is not a honeycomb structure but has a three-dimensional structure and has a similar small heat capacity.

急冷方法としては熱容量の大きな媒体として水を選択す
るが、その他熱容量の大きな媒体であれば本発明の効果
が期待できる。
As the quenching method, water is selected as a medium having a large heat capacity, but the effect of the present invention can be expected if any other medium having a large heat capacity is used.

本発明で使用される原料としては熱膨張係数の小さな溶
融シリカを主成分とする。溶融シリカは熱膨張係数が0.
5×10−6/℃と非常に小さい。しかし、溶融、粉砕
工程において不純物が混入すると熱膨張係数が増大し、
ハニカム構造体の耐熱衝撃性が悪くなる。また、溶融状
態から冷却するスピードによっても溶融シリカの物性が
異なる。たとえば冷却スピードの遅いものはハニカム構
造体として高温雰囲気下で使用中結晶化し易く、耐熱衝
撃性を悪くする。したがって、不純物の少ない、熱膨張
係数の小さなものを選択する必要がある。
The raw material used in the present invention is mainly composed of fused silica having a small coefficient of thermal expansion. Fused silica has a coefficient of thermal expansion of 0.
Very small, 5 × 10 −6 / ° C. However, when impurities are mixed in the melting and crushing process, the coefficient of thermal expansion increases,
The thermal shock resistance of the honeycomb structure deteriorates. Further, the physical properties of fused silica differ depending on the speed of cooling from the molten state. For example, a honeycomb structure having a slow cooling speed is likely to be crystallized during use in a high temperature atmosphere as a honeycomb structure, resulting in poor thermal shock resistance. Therefore, it is necessary to select one having a small amount of impurities and a small coefficient of thermal expansion.

また、この溶融シリカを結合させるバインダー成分(溶
融シリカより融点の低い固溶相)としてはKO−Al2O
3−TiO2系が好ましい。これらは1100℃以上におい
て粒界で固溶相となり、1300℃ではKO−Al2O3
−TiO2系が完全な液相となる。したがって、機械的強度
を考えれば1300℃以上でもよいが、耐熱衝撃性を考
えれば1300℃以下のほうがよい。それは本発明のセ
ラミックスの場合耐熱衝撃性で充分な効果を発揮するた
めには累積細孔容積として0.1〜0.4cc/gを有するのが好
ましいためである。
Further, as a binder component (solid solution phase having a melting point lower than that of fused silica) for binding the fused silica, K 2 O—Al 2 O
The 3- TiO 2 system is preferred. These become a solid solution phase at the grain boundary at 1100 ° C or higher and K 2 O-Al 2 O 3 at 1300 ° C.
-The TiO 2 system becomes a complete liquid phase. Therefore, it may be 1300 ° C. or higher in consideration of mechanical strength, but 1300 ° C. or lower is preferable in consideration of thermal shock resistance. This is because the ceramic of the present invention preferably has a cumulative pore volume of 0.1 to 0.4 cc / g in order to exert a sufficient effect on thermal shock resistance.

本発明で使用する再水和性アルミナとは、アルミナ水和
物を熱分解したα−アルミナ以外の遷移アルミナ、たと
えばρ−アルミナおよび無定形アルミナ等を意味する。
工業的にはたとえばバイヤー工程から得られるアルミナ
3水和物等のアルミナ水和物を約400〜1200℃の
熱ガスに通常数分間接触させたり、あるいはアルミナ水
和物を減圧下で約250〜900℃に通常1分〜4時間
加熱保持することにより得ることができる約0.5〜15
重量%の灼熱減量を有するもの等があげられる。
The rehydratable alumina used in the present invention means transitional alumina other than α-alumina obtained by thermally decomposing alumina hydrate, such as ρ-alumina and amorphous alumina.
Industrially, for example, alumina hydrate such as alumina trihydrate obtained from the Bayer process is usually contacted with hot gas at about 400 to 1200 ° C. for several minutes, or alumina hydrate is reduced at about 250 to about 250 ° C. About 0.5 to 15 that can be obtained by heating and holding at 900 ° C. for 1 minute to 4 hours
Examples thereof include those having a weight loss of ignition.

本発明で使用するチタン酸カリウムは、4チタン酸カリ
ウム、6チタン酸カリウムであり、さらに繊維状のもの
がよい。これは繊維状のもの(アスペクト比10以上)
のほうが細孔容積を大きくでき、セラミックス構造体の
目的とする耐熱衝撃性と機械的強度に優れたものが得ら
れるためである。
The potassium titanate used in the present invention is potassium tetratitanate or potassium hexatitanate, and fibrous ones are preferable. This is fibrous (aspect ratio 10 or more)
This is because it is possible to increase the pore volume, and it is possible to obtain a ceramic structure excellent in the desired thermal shock resistance and mechanical strength.

(実施例1) 鎖水和性アルミナ10重量部、溶融シリカ85重量部、
チタン酸カリウム5重量部と適量の成形バインダーと水
とを混練し、その後押し出し成形し、以下に示すハニカ
ム成形体を得た。
(Example 1) 10 parts by weight of chain hydratable alumina, 85 parts by weight of fused silica,
5 parts by weight of potassium titanate, an appropriate amount of a molding binder and water were kneaded and then extrusion-molded to obtain a honeycomb molded body shown below.

ハニカム面直径 100mm 長さ 120mm セルピッチ 1.5mm セル壁厚 0.25mm 成形体を徐々に1200℃まで焼成し、1時間ホールド
後、水に浸漬し、ハニカム構造体を得た。
Honeycomb surface diameter 100 mm Length 120 mm Cell pitch 1.5 mm Cell wall thickness 0.25 mm The molded body was gradually fired to 1200 ° C., held for 1 hour and then immersed in water to obtain a honeycomb structure.

(比較例1) 実施例1と同様なハニカム構造体を1200℃で1時間
保持後徐冷により得た。
(Comparative Example 1) A honeycomb structure similar to that of Example 1 was obtained by holding at 1200 ° C for 1 hour and then gradually cooled.

(実施例2) 実施例1と同様なハニカム構造体を1050℃で1時間
保持後、水中に浸漬し、ハニカム構造体を得た。
(Example 2) The same honeycomb structure as in Example 1 was held at 1050 ° C for 1 hour and then immersed in water to obtain a honeycomb structure.

(実施例3) 実施例1と同様なハニカム構造体を1100℃で1時間
保持後、水中に浸漬し、ハニカム構造体を得た。
(Example 3) The same honeycomb structure as in Example 1 was held at 1100 ° C for 1 hour and then immersed in water to obtain a honeycomb structure.

(実施例4) 実施例1と同様なハニカム構造体を1300℃で1時間
保持後、水中に浸漬し、ハニカム構造体を得た。
Example 4 A honeycomb structure similar to that of Example 1 was held at 1300 ° C. for 1 hour and then immersed in water to obtain a honeycomb structure.

(実施例5) 実施例1と同様なハニカム構造体を1350℃で1時間
保持後、水中に浸漬し、ハニカム構造体を得た。
(Example 5) The same honeycomb structure as in Example 1 was held at 1350 ° C for 1 hour and then immersed in water to obtain a honeycomb structure.

実施例1〜5と比較例1で得たハニカム構造体に対して
熱膨張測定および機械的強度と耐熱衝撃性をテストし
た。
The honeycomb structures obtained in Examples 1 to 5 and Comparative Example 1 were tested for thermal expansion measurement and mechanical strength and thermal shock resistance.

機械的強度はハニカム構造体をポリエチレンフィルムシ
ートで密封し、水中に浸漬させながら圧力を加えてい
き、ハニカム構造体が加圧に耐えられる圧力を測定した
(アイソスタティク強度テスト)。そしてその強度が5
0kg/cm2以上のものを実用範囲内と考えた。また、耐熱
衝撃性はハニカム構造体を室温から所定の温度にした電
気炉中に30分間入れ、ハニカム構造体が所定の温度に
なった状態から室温に出すという熱衝撃を与えた。この
試験はハニカム構造体に目視によりクラックが観察され
るまで行った。その結果を第1表に示す。
The mechanical strength was measured by sealing the honeycomb structure with a polyethylene film sheet and applying pressure while immersing it in water to measure the pressure at which the honeycomb structure can withstand the pressure (isostatic strength test). And its strength is 5
Those with 0 kg / cm 2 or more were considered to be within the practical range. The thermal shock resistance was determined by placing the honeycomb structure in an electric furnace at room temperature for a predetermined temperature for 30 minutes, and then subjecting the honeycomb structure at a predetermined temperature to room temperature for thermal shock. This test was conducted until cracks were visually observed in the honeycomb structure. The results are shown in Table 1.

上記の結果より水中急冷したものは熱膨張係数が小さく
耐熱衝撃性に優れていた。また、熱処理温度は1100
〜1300℃が好ましい。
From the above results, the one rapidly cooled in water had a small coefficient of thermal expansion and was excellent in thermal shock resistance. The heat treatment temperature is 1100
It is preferably ˜1300 ° C.

(実施例6) 第2表に示す組成のものを実施例1と同様な方法で得
た。その結果を第2表に示す。
Example 6 The composition shown in Table 2 was obtained in the same manner as in Example 1. The results are shown in Table 2.

上記の結果から明らかなようにSiO280〜90wt%、Al2
O35〜18wt%、TiO22〜6wt%、2O0.4〜1.5wt%の組成
を有するハニカム構造体が優れた耐熱衝撃性と機械的強
度を示した。
As is clear from the above results, SiO 2 80-90 wt%, Al 2
A honeycomb structure having a composition of O 3 5 to 18 wt%, TiO 2 2 to 6 wt%, and 2 O 0.4 to 1.5 wt% exhibited excellent thermal shock resistance and mechanical strength.

発明の効果 本発明によれば、従来よりも耐熱衝撃性に優れたセラミ
ックス構造体を生産性よく提供することができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to provide, with good productivity, a ceramic structure having higher thermal shock resistance than ever before.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】溶融シリカを主成分とし、溶融シリカより
融点の低い固溶相を含む三次元構造体を焼結温度で熱処
理する工程と、その後、前記焼結体をその焼結温度から
水中で冷却する工程とを有する耐熱衝撃性セラミックス
構造体の製造法。
1. A step of heat-treating a three-dimensional structure containing fused silica as a main component and a solid solution phase having a melting point lower than that of fused silica at a sintering temperature, and thereafter, the sintered body is heated from the sintering temperature in water. A method for manufacturing a thermal shock resistant ceramic structure, the method comprising:
【請求項2】ハニカム構造体がSiO280〜90wt%,Al2
O35〜18wt%,TiO22〜6wt%,K2O0.4〜1.5wt%の組成
を有する特許請求の範囲第1項記載の耐熱衝撃性セラミ
ックス構造体の製造法。
2. A honeycomb structure comprising SiO 2 80 to 90 wt% and Al 2
The method for producing a thermal shock resistant ceramic structure according to claim 1, which has a composition of O 3 5 to 18 wt%, TiO 2 2 to 6 wt%, and K 2 O 0.4 to 1.5 wt%.
【請求項3】再水和性アルミナ5〜18wt%とチタン酸
カリウム2〜7wt%と溶融シリカ80〜90wt%からなる
ハニカム構造体を1100〜1300℃で熱処理後、そ
の温度から水中で冷却する耐熱衝撃性セラミックス構造
体の製造法。
3. A honeycomb structure composed of 5 to 18 wt% of rehydratable alumina, 2 to 7 wt% of potassium titanate and 80 to 90 wt% of fused silica is heat treated at 1100 to 1300 ° C. and then cooled in water from that temperature. Method for manufacturing thermal shock resistant ceramic structure.
JP63328268A 1988-12-26 1988-12-26 Method for manufacturing thermal shock resistant ceramic structure Expired - Lifetime JPH0645501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63328268A JPH0645501B2 (en) 1988-12-26 1988-12-26 Method for manufacturing thermal shock resistant ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63328268A JPH0645501B2 (en) 1988-12-26 1988-12-26 Method for manufacturing thermal shock resistant ceramic structure

Publications (2)

Publication Number Publication Date
JPH02172861A JPH02172861A (en) 1990-07-04
JPH0645501B2 true JPH0645501B2 (en) 1994-06-15

Family

ID=18208330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63328268A Expired - Lifetime JPH0645501B2 (en) 1988-12-26 1988-12-26 Method for manufacturing thermal shock resistant ceramic structure

Country Status (1)

Country Link
JP (1) JPH0645501B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081951B2 (en) 2014-03-26 2017-02-15 日本碍子株式会社 Manufacturing method of honeycomb structure

Also Published As

Publication number Publication date
JPH02172861A (en) 1990-07-04

Similar Documents

Publication Publication Date Title
EP0037868B1 (en) Method of producing low-expansion ceramic materials
EP0210813B1 (en) Aluminum titanate.-mullite base ceramics
US4403017A (en) Low thermal expansion modified cordierites
US4528244A (en) Fused silica shapes
JPH0572341B2 (en)
US4033779A (en) Non-equilibrium cordierite-alumina
JPH0645501B2 (en) Method for manufacturing thermal shock resistant ceramic structure
JPH0463023B2 (en)
JPH06305828A (en) Aluminum titanate composite material and its production
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP3368960B2 (en) SiC refractory
JP2549976B2 (en) Heat-resistant mullite sintered body
EP0458286A1 (en) Method for preparing a sintered body of light-transmitting cordierite
JP2823140B2 (en) Method for producing cordierite porous body
JPS5879869A (en) Cordierite ceramics and manufacture
JPH0611666B2 (en) Ultra-heat shock resistant ceramic material
JPH0645502B2 (en) Method for manufacturing thin plate ceramics
JPH0753617B2 (en) Ceramics complex
JPH02221168A (en) Fibrous molded body
JPS623069A (en) Heat treating vessel and manufacture
JPH0569065B2 (en)
JPH064508B2 (en) Method for producing low thermal expansion cordierite
JPS6236985B2 (en)
JPH0674178B2 (en) Porous refractory
JPH01320270A (en) Method for calcining fused silicon oxide molded body