JPH064454U - Rotational phase difference adjusting device between rotating members - Google Patents

Rotational phase difference adjusting device between rotating members

Info

Publication number
JPH064454U
JPH064454U JP4563492U JP4563492U JPH064454U JP H064454 U JPH064454 U JP H064454U JP 4563492 U JP4563492 U JP 4563492U JP 4563492 U JP4563492 U JP 4563492U JP H064454 U JPH064454 U JP H064454U
Authority
JP
Japan
Prior art keywords
phase difference
driven
rotary
rotating
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4563492U
Other languages
Japanese (ja)
Inventor
炳龍 張
Original Assignee
炳龍 張
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 炳龍 張 filed Critical 炳龍 張
Priority to JP4563492U priority Critical patent/JPH064454U/en
Publication of JPH064454U publication Critical patent/JPH064454U/en
Pending legal-status Critical Current

Links

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Transmission Devices (AREA)

Abstract

(57)【要約】 【目的】 回転部材間の回転位相差の正確な調節の可能
な装置であって、たとえばエンジン出力軸とカムシャフ
ト軸の間の進角を回転中において瞬間的に調節可能とす
る装置の提供。 【構成】 駆動回転部材11と従動回転部材12,13
を同心状に配置し、駆動回転部材11と従動回転部材間
12(13)に、軸方向に相対スライドさせることによ
り両回転部材11,12を周方向に相対回動させて、両
回転部材11,12(13)間の回転位相差を調節する
ラセン状ガイド機構14,18(15,17)が設けら
れている。
(57) [Abstract] [Purpose] A device capable of accurately adjusting a rotational phase difference between rotating members, for example, an advance angle between an engine output shaft and a camshaft shaft can be instantaneously adjusted during rotation. Providing a device. [Structure] Drive rotating member 11 and driven rotating members 12, 13
Are concentrically arranged, and the two rotary members 11, 12 are relatively rotated in the circumferential direction by relatively sliding in the axial direction between the drive rotary member 11 and the driven rotary member 12 (13). , 12 (13) are provided with helical guide mechanisms 14, 18 (15, 17) for adjusting the rotational phase difference.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、複数回転部材間の回転位相差の微調節を回転中に行う回転部材間の 回転位相差調節装置に関する。 因にこの考案において回転位相差とは、複数回転部材(複数回転軸)間の進角 、即ち回転角度差であって、たとえば2サイクル内燃機関においてクランク軸の 回転位相に対してバルブ軸等の回転位相が進んでいる角度を云う。 The present invention relates to a rotational phase difference adjusting device for rotating members, which finely adjusts a rotational phase difference between a plurality of rotating members during rotation. Incidentally, in this invention, the rotational phase difference is an advance angle, that is, a rotational angle difference between a plurality of rotating members (a plurality of rotating shafts). The angle at which the rotation phase advances.

【0002】[0002]

【従来の技術】[Prior art]

世界中の自動車メーカーは、低速時にスムーズに走り、高速走行時に力強く走 る車のデザインのために、全ての点で満足の得られる車を求めている。ディーゼ ルエンジンは低速において良い性能を示すとはいえ、高速においては比較的劣る 、一方ガソリンエンジンは高速において良い性能を示すとはいえ、低速において は比較的劣る。 Automakers around the world are looking for a car that is satisfying in every respect because of the design of a car that runs smoothly at low speeds and powerfully at high speeds. Although diesel engines perform well at low speeds, they are relatively poor at high speeds, while gasoline engines perform well at high speeds, but relatively poor at low speeds.

【0003】[0003]

【考案の解決しようとする課題】[Problems to be solved by the device]

今まで低速、中速、高速のすべての領域おいて性能のよいエンジンはなかった が、これは主としてエンジンの回転速度に対し、バルブ開放時期及び点火時期の 正確な調節ができていないことに起因していた。 高速において良好な性能を示すエンジンは、高速化は点火時期の大幅な進みを 必要とするので、点火時期の進みとエアバルブ開放の早期化が必要であることは 、自動車メーカーはみな知っている。高速におけるエアバルブの早期開放は十分 な量の空気と効果的な燃焼ガスの排出に便利であるし、点火時期の進みとともに 出力が高速において増す。低速におけるエンジン性能を引き出すためには、点火 時期はやや遅くされ、エアバルブの開放時期は早められないので、爆発ストロー クは延長されてピストン推力が増し、低速トルクが増す。 Until now, there was no engine with good performance in all regions of low speed, medium speed, and high speed, but this is mainly due to the inadequate adjustment of valve opening timing and ignition timing with respect to engine rotation speed. Was. All automakers know that an engine that exhibits good performance at high speeds requires a significant advance in ignition timing, so advancement of ignition timing and early opening of the air valve are necessary. The early opening of the air valve at high speed is convenient for discharging a sufficient amount of air and effective combustion gas, and the output increases at high speed as the ignition timing advances. In order to bring out the engine performance at low speeds, the ignition timing is slightly delayed and the air valve opening timing cannot be advanced, so the explosion stroke is extended and the piston thrust increases, increasing the low speed torque.

【0004】 実際吸入弁と排気弁の開放時期及び点火時期は、低速、中速、高速のすべての 領域おいてそれぞれ好性能が発揮されるように正確に調節される。点火に係る遠 心進め、真空進めがあると云えども、今日迄実際には用いられなかった。 ある種の多バルブエンジンでは、エアバルブの数の増加は、単に吸気量と排気 量の増加が目的で、エアバルブ開放時期のためのものではなく、部分的な要求に 対して満足を与えているにすぎない。Actually, the opening timing and the ignition timing of the intake valve and the exhaust valve are accurately adjusted so that good performance is exhibited in all regions of low speed, medium speed and high speed. Although there are eccentric and vacuum advances related to ignition, they have not been used until today. In some multi-valve engines, the increase in the number of air valves is simply for the purpose of increasing intake and exhaust volumes, not for the timing of opening the air valves, but for the partial requirements. Only.

【0005】 本考案は前記した問題点に鑑みなされたもので、この考案の目的は、2本の回 転部材間の進角を調節する装置を提供するものであり、駆動回転部材と少なくと も1本の従動回転部材間の進角をそれぞれ調節することである。さらなるこの考 案の目的は、低速、中速、高速のすべての領域おいてそれぞれ好性能が発揮され るように、エアバルブのカムシャフトと点火ディストリビューターの駆動軸の間 に装着可能な回転部材間の回転位相差調節装置を提供することである。The present invention has been made in view of the above problems, and an object of the present invention is to provide a device for adjusting the advance angle between two rotating members, and at least the drive rotating member. Is also to adjust the advance angle between each one of the driven rotary members. Further, the purpose of this consideration is to provide a rotary member that can be mounted between the camshaft of the air valve and the drive shaft of the ignition distributor so that good performance is achieved in all of the low speed, medium speed, and high speed regions. To provide a rotational phase difference adjusting device.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

請求項1の回転部材間の回転位相差調節装置においては、駆動回転部材と、こ の駆動回転部材に対し同心状に又は並列に配置され、同期して回転する少なくと も一個の従動回転部材とからなり、駆動回転部材と従動回転部材間に、 両回転部材を軸方向に相対スライドさせることにより両回転部材を周方向に相 対回動させて、両回転部材間の回転位相差を調節するラセン状ガイド機構を設け るようにした。 The rotation phase difference adjusting device between rotating members according to claim 1, wherein the driving rotating member and at least one driven rotating member that is arranged concentrically or in parallel with the driving rotating member and that rotates in synchronization. The rotational phase difference between the two rotating members is adjusted by relatively sliding both rotating members in the axial direction between the drive rotating member and the driven rotating member to rotate the two rotating members relative to each other in the circumferential direction. A spiral guide mechanism is installed.

【0007】 また請求項2においては、請求項1記載の回転部材間の回転位相差調節装置に おいて、ラセン状ガイド機構を、駆動回転部材と従動回転部材のいずれか一方に 形成されたラセン状ガイドと、他方に形成されたこのラセン状ガイドに相対倣い 動作する倣い部とから構成した。 また請求項3の回転部材間の回転位相差調節装置においては、 請求項1記載の回転部材間の回転位相差調節装置と、 駆動回転部材または従動回転部材の回転速度を測定する回転速度測定器と、 過去の回転速度に対応する回転位相差及び回転速度測定器により得られた現在 の回転速度に対応する回転位相差を記憶する記憶ユニットと、 駆動回転部材の特定点の瞬間的角度位置と従動回転部材の特定点の瞬間的角度 位置との瞬間的位相差を測定する位相差測定器と、 過去の回転速度に対応する回転位相差と現在の回転速度に対応する瞬間的な回 転位相差とを比較する比較器と、 駆動部材と従動部材の間に設けられ、比較器により求めた目的位相差に基づい て、駆動回転部材と従動回転部材の間の相対的な軸方向の位置を変える電磁マグ ネットとを備えた構成とした。According to a second aspect of the present invention, in the rotation phase difference adjusting device between the rotating members according to the first aspect, the spiral guide mechanism is formed on either the drive rotating member or the driven rotating member. It is composed of a profile guide and a profiled portion formed on the other side and performing a relative profile movement to the spiral profile guide. Further, in the rotational phase difference adjusting device between rotating members according to claim 3, a rotational phase difference adjusting device between the rotating members according to claim 1 and a rotational speed measuring device for measuring a rotational speed of a driving rotating member or a driven rotating member. And a storage unit that stores the rotation phase difference corresponding to the past rotation speed and the rotation phase difference corresponding to the current rotation speed obtained by the rotation speed measuring device, and the instantaneous angular position of the specific point of the drive rotating member. Phase difference measuring device that measures the instantaneous phase difference between the instantaneous angle position of the specific point of the driven rotary member and the rotational phase difference corresponding to the past rotational speed and the instantaneous rotational phase difference corresponding to the present rotational speed. Is provided between the driving member and the driven member and changes the relative axial position between the driving rotary member and the driven rotary member based on the target phase difference obtained by the comparator. Electromagnetic magnet And a configuration in which a door.

【0008】[0008]

【作用】[Action]

請求項1においては、駆動回転部材と従動回転部材とを軸方向に相対スライド させると、ラセン状ガイド機構により従動回転部材と駆動回転部材とが周方向に 相対回動する。 請求項2においては、駆動回転部材と従動回転部材とを軸方向に相対スライド させると、倣い部がラセン状ガイドに沿って倣い動作し(ラセン状ガイドが倣い 部に沿って倣い動作し)、駆動回転部材と従動回転部材が周方向に相対回動する 。 請求項3においては、電磁マグネットにより駆動回転部材と従動回転部材とを 軸方向に相対移動させて、予め入力されている所定回転数に対する所定位相差と なるように、両回転部材間の位相差を調節する。 In the first aspect, when the drive rotating member and the driven rotating member are slid relative to each other in the axial direction, the driven rotating member and the drive rotating member relatively rotate in the circumferential direction by the spiral guide mechanism. According to the present invention, when the driving rotary member and the driven rotary member are slid relative to each other in the axial direction, the copying portion follows the spiral guide (the spiral guide follows the copying portion). The drive rotation member and the driven rotation member relatively rotate in the circumferential direction. According to a third aspect of the present invention, an electromagnetic magnet relatively moves the driving rotary member and the driven rotary member in the axial direction so as to obtain a predetermined phase difference with respect to a predetermined rotational speed that is input in advance. Adjust.

【0009】[0009]

【実施例】【Example】

次に本考案の実施例を図面に基づいて説明する。 図1は本考案の第1実施例を示す断面図、図2は図1の2−2断面図、図3は 本考案の第2実施例を示す断面図、図4は本考案の第3実施例を示す断面図、図 5は本考案の図7に示す制御回路により結果として生じたパルスを示す図、図6 は本考案の図7に示す制御回路により結果として生じたパルスを示す図、図7は 本考案の制御回路を示すブロックダイアグラム、図8は本考案の第4実施例を示 す断面図、図9は図8の9−9断面図である。 Next, an embodiment of the present invention will be described with reference to the drawings. 1 is a sectional view showing a first embodiment of the present invention, FIG. 2 is a sectional view taken along line 2-2 of FIG. 1, FIG. 3 is a sectional view showing a second embodiment of the present invention, and FIG. 4 is a third embodiment of the present invention. FIG. 5 is a sectional view showing an embodiment, FIG. 5 is a diagram showing a pulse generated as a result of the control circuit shown in FIG. 7 of the present invention, and FIG. 6 is a diagram showing a pulse generated as a result of the control circuit shown in FIG. 7 of the present invention. 7 is a block diagram showing a control circuit of the present invention, FIG. 8 is a sectional view showing a fourth embodiment of the present invention, and FIG. 9 is a sectional view taken along line 9-9 of FIG.

【0010】 図1及び図2において、調節装置10は駆動回転軸(駆動回転部材)11と従 動回転部材(従動回転部材12及び13)間との瞬間的進角を調節するものであ る。調節装置には少なくとも2つのガイド部14,15が駆動回転軸11外側面 に突出延在して一体に設けられている。実施例に示されている2つのガイド部1 4,15は異なった(または同じ)ピッチの突出したラセン軌条により構成され ている。組み立ての便利のために、異なった直径のステップになった円柱の外側 に上記のラセン軌条が形成されている。前記従動回転部材12,13には内孔1 6,17が形成されており、そしてガイド部18,19が内孔16,17の内側 にそれぞれ形成されている。実施例に示されている2つのガイド部18,19は 内側に窪んだラセン軌条(または突出したラセン軌条)であり、そしてピッチは 前記突出したラセン軌条(または他の湾曲軌条)のピッチと同じである。In FIGS. 1 and 2, an adjusting device 10 adjusts an instantaneous advance angle between a drive rotation shaft (drive rotation member) 11 and a driven rotation member (driven rotation members 12 and 13). . At least two guide portions 14 and 15 are integrally provided on the adjusting device so as to project and extend on the outer surface of the drive rotary shaft 11. The two guides 14, 15 shown in the exemplary embodiment are constructed with protruding helical rails of different (or the same) pitch. For convenience of assembly, the above spiral rail is formed on the outside of the cylinder with different diameter steps. Inner holes 16 and 17 are formed in the driven rotary members 12 and 13, and guide portions 18 and 19 are formed inside the inner holes 16 and 17, respectively. The two guides 18, 19 shown in the embodiment are inwardly recessed helical rails (or protruding helical rails), and the pitch is the same as the pitch of said protruding helical rails (or other curved rails). Is.

【0011】 駆動回転軸11が回転すると、2つの従動回転部材12,13の軸方向の相対 位置はベース20に対して常に変わらず、駆動回転軸11と2つの従動回転部材 12,13は常に同期して一体に回転する。最初、駆動回転軸11と2つの従動 回転部材12,13の進角がそれぞれθ0に設定され、そして、駆動回転軸11 が軸方向に動くと、2つの従動回転部材12,13は、それぞれラセン軌条のガ イド部14,15によって、強制的にθ1及びθ2に導かれる(図2参照)。When the drive rotary shaft 11 rotates, the relative positions of the two driven rotary members 12 and 13 in the axial direction do not always change with respect to the base 20, and the drive rotary shaft 11 and the two driven rotary members 12 and 13 always operate. Synchronize and rotate integrally. Initially, the advance angles of the drive rotary shaft 11 and the two driven rotary members 12 and 13 are set to θ 0 , respectively, and when the drive rotary shaft 11 moves in the axial direction, the two driven rotary members 12 and 13 are respectively moved. The guide portions 14 and 15 of the spiral rail are forcibly guided to θ 1 and θ 2 (see FIG. 2).

【0012】 駆動回転軸11の軸方向の移動を制御する方法は、たとえば油圧駆動、電磁駆 動、ステップモーター駆動(リニアーステップモーター及びロータリーステップ モーターを含む)等沢山ある。実施例における電磁駆動構造21は永久磁石22 及び電磁石23を含み、永久磁石22は駆動回転軸11に固定され、そして電磁 石23はベース20の上に固定されている(たとえばエンジンボデイはベース2 0として用いられる)。電磁石23はアイロンコア24とコイル25を含む。若 し、電磁石23の磁界と永久磁石22の磁界が同じであれば、互いに反発し駆動 回転軸11を前方(図面右方)に推す。これに反し磁界が反対であれば、回転軸 11は後方(図面左方)に引かれる。There are many methods for controlling the movement of the drive rotary shaft 11 in the axial direction, such as hydraulic drive, electromagnetic drive, step motor drive (including a linear step motor and a rotary step motor). The electromagnetic drive structure 21 in the embodiment includes a permanent magnet 22 and an electromagnet 23, the permanent magnet 22 is fixed to the drive rotating shaft 11, and the electromagnetic stone 23 is fixed on the base 20 (for example, an engine body is a base 2). Used as 0). The electromagnet 23 includes an iron core 24 and a coil 25. If the magnetic field of the electromagnet 23 and the magnetic field of the permanent magnet 22 are the same, they repel each other and push the driving rotary shaft 11 forward (right in the drawing). On the contrary, if the magnetic field is opposite, the rotating shaft 11 is pulled backward (to the left in the drawing).

【0013】 駆動回転軸11と2つの従動回転部材12,13の進角(または回転位相差) の測定手段については、以下に詳細に述べる。 符号30は回転ディスクまたはギヤで、駆動回転軸11と同軸にセムシ嵌合し て回転する。符号31は回転ディスクまたは回転フォロワーで、従動回転部材1 2,13に同軸に固定されて回転する。符号32,33は前記二つの回転ディス ク30,31の縁部に予め開けられた貫通孔(1〜2個が適当)である。そして 前記二つの回転ディスクの両側に2組の光検知器LD1,LD2が設けられている 。符号34,35は光検知器LD1,LD2の光源、符号36,37は光検知器L D1,LD2の半導体である。The means for measuring the advance angle (or rotational phase difference) between the drive rotary shaft 11 and the two driven rotary members 12, 13 will be described in detail below. Reference numeral 30 is a rotating disk or gear, which rotates coaxially with the drive rotating shaft 11 by being fitted with a worm. Reference numeral 31 is a rotary disk or a rotary follower, which is coaxially fixed to the driven rotary members 12 and 13 and rotates. Reference numerals 32 and 33 denote through-holes (one or two are suitable) which are preliminarily formed at the edges of the two rotary disks 30 and 31. Two sets of photodetectors LD 1 and LD 2 are provided on both sides of the two rotating disks. Reference numerals 34 and 35 are light sources of the photodetectors LD 1 and LD 2 , and reference numerals 36 and 37 are semiconductors of the photodetectors L D 1 and LD 2 .

【0014】 図5及び図6は、回転ディスク30,31が回転中に、光源34,35から受 光半導体36,37に向けて放たれる光を、間欠的に遮ることにより発生したパ ルスの線図である。 若し、回転ディスク30,31の間の進角が最初0に設定されたならば、光検 知器LD1,LD2により検知される回転位相差は0となる。図5にはA及びBは 検知器LD1及び、検知器LD2で捕らえられたパルスであり、回転位相差は0で ある。FIGS. 5 and 6 show pulse pulses generated by intermittently interrupting the light emitted from the light sources 34 and 35 toward the light receiving semiconductors 36 and 37 while the rotating disks 30 and 31 are rotating. FIG. If the advance angle between the rotating disks 30 and 31 is initially set to 0, the rotational phase difference detected by the photodetectors LD 1 and LD 2 becomes 0. In FIG. 5, A and B are the pulses captured by the detector LD 1 and the detector LD 2 , and the rotational phase difference is 0.

【0015】 回転ディスク30,31間の回転角度差(回転位相差)は、駆動回転軸11と 従動回転部材12間の回転角度差であるから、最近の電子技術を用いて、パルス の回転位相差を計算し、このパルスの位相差から回転ディスク30,31間の回 転角度差への変換により、駆動回転軸11と従動回転部材12間の回転角度差( 進角)が得られる。加うるに、パルスA及びパルスBの計算から、駆動回転軸1 1の回転速度が得られる。Since the rotational angle difference (rotational phase difference) between the rotating disks 30 and 31 is the rotational angle difference between the drive rotating shaft 11 and the driven rotating member 12, the rotational position of the pulse is changed by using the latest electronic technology. By calculating the phase difference and converting the phase difference of this pulse into the rotation angle difference between the rotary disks 30 and 31, the rotation angle difference (advance angle) between the drive rotary shaft 11 and the driven rotary member 12 is obtained. In addition, from the calculation of pulse A and pulse B, the rotational speed of the drive rotary shaft 1 1 is obtained.

【0016】 図7は本考案の制御回路を示すブロックダイアグラムであり、詳細は下記に記 される。 サーキットブロック40は回転速度パルスAの積算を遂行し、測定結果はデー タD1として経て出力される。サーキットブロック41は進角測定器であり、パ ルスAとパルスBとの位相差の計算を遂行し、測定結果はデータD3としてを経 て出力される。サーキットブロック42は回転速度記憶ユニットであり、その中 には、各回転速度に対応する進角に関連するデータが記憶されている。これらの データは最初にテストされた最良進角(エンジン回転速度に対する最適進角)で ある。FIG. 7 is a block diagram showing a control circuit of the present invention, which will be described in detail below. The circuit block 40 performs the integration of the rotation speed pulse A, and the measurement result is output as data D 1 . The circuit block 41 is an advance angle measuring device, which calculates the phase difference between the pulse A and the pulse B, and the measurement result is output as data D 3 . The circuit block 42 is a rotation speed storage unit in which data relating to the advance angle corresponding to each rotation speed is stored. These data are the first tested best advance (optimum advance for engine speed).

【0017】 若し、各回転速度をメモリーのアドレスと考えると、各アドレスに貯えられる のは、各回転速度における最適進角である。一方D1が回転速度を提供するので 、メモリーユニットは回転速度に対応する最適進角を読み取り、データD2とし てして出力する。 D3に乗っているのは現在の駆動回転軸11と従動回転部材12の進角であり 、D2は当初テストされ貯えられた最適進角である。D2とD3を比較する比較器 43の函数は下記の通りである。 (1)若し、D2=D3ならば、c=0,a=0,b=0 (2)若し、D2>D3ならば、c=1,a=1,b=0 (3)若し、D2<D3ならば、c=1,a=0,b=1 発振器44はクロックパルスの発生のためのものである。ANDゲート45及 びカウンター46は上方にも下方にもカウントすることを許す。a=1,b=0 ならば、上方にカウントされる。a=0,b=1ならば、下方にカウントされる 。a=0,b=0ならば、カウントしない。If each rotation speed is considered as a memory address, what is stored in each address is an optimum advance angle at each rotation speed. On the other hand, since D 1 provides the rotation speed, the memory unit reads the optimum advance angle corresponding to the rotation speed and outputs it as data D 2 . What is riding on D 3 is the advance angle of the current drive rotary shaft 11 and driven rotary member 12, and D 2 is the optimum advance angle that was initially tested and stored. The function of the comparator 43 for comparing D 2 and D 3 is as follows. (1) If D 2 = D 3, then c = 0, a = 0, b = 0 (2) If D 2 > D 3, then c = 1, a = 1, b = 0 (3) If D 2 <D 3 , c = 1, a = 0, b = 1 The oscillator 44 is for generating clock pulses. The AND gate 45 and counter 46 allow counting upwards and downwards. If a = 1, b = 0, the count is upward. If a = 0 and b = 1, the count is downward. If a = 0 and b = 0, it is not counted.

【0018】 若し、D2=D3でa=0,b=0,ならば、カウンター46はカウントしない 。そしてc=0,ならば、発振器44により用意されたパルスは、計算器46の クロックエンドに入ることができない。 若し、D2>D3でa=1,b=0ならば、カウンターは上方にカウントする。 そしてc=1ならば、発振器44の生成したパルスは、ANDゲートにより計算 器46に入り上方にカウントし、この上方へカウントされたデータD4を徐々に 増大させる。D4がD/Aコンバーター47からの出力を増大させると、D/A コンバーター47は、半導体49の抵抗を減少させ、一方コイル25により得ら れる電圧は徐々に増大する。符号48は可変抵抗であり、符号49は大電流に対 して抵抗となり得る半導体である。If D 2 = D 3 and a = 0 and b = 0, the counter 46 does not count. And if c = 0, the pulse prepared by oscillator 44 cannot enter the clock end of calculator 46. If D 2 > D 3 and a = 1 and b = 0, the counter counts upward. If c = 1, the pulse generated by the oscillator 44 enters the calculator 46 by the AND gate and counts upward, and the data D 4 counted upward is gradually increased. As D 4 increases the output from D / A converter 47, D / A converter 47 decreases the resistance of semiconductor 49, while the voltage obtained by coil 25 gradually increases. Reference numeral 48 is a variable resistance, and reference numeral 49 is a semiconductor that can serve as a resistance against a large current.

【0019】 D4の漸増はコイル25の電圧の漸増をもたらすことを、上記の記述は示す。 若し電磁石25の磁界の方向が永久磁石の磁界の方向と逆になるように設計さ れているならば、電磁石25の両端の電圧が高ければ、永久磁石に対する推力は 大きい。そして駆動回転軸11と従動回転部材12間の進角は大きくなる。駆動 回転軸11と従動回転部材12間の進角はD3より43に入り、比較の結果が零 になるまでD2と比較され、そしてaとbは等しく零となる。D4が安定すると2 5の電圧も安定し、カウンター46は計算しなくなる。このような状況の下では 駆動回転軸11と従動回転部材12の進角は最初に設定された値に調節される。The above description shows that increasing D 4 results in increasing the voltage of coil 25. If the magnetic field direction of the electromagnet 25 is designed to be opposite to the magnetic field direction of the permanent magnet, the thrust on the permanent magnet is large if the voltage across the electromagnet 25 is high. Then, the advance angle between the drive rotation shaft 11 and the driven rotation member 12 becomes large. The advance angle between the drive rotary shaft 11 and the driven rotary member 12 enters 43 from D 3 and is compared with D 2 until the result of the comparison is zero, and a and b are equal to zero. When D 4 stabilizes, the voltage of 25 also stabilizes and the counter 46 stops calculating. Under such a circumstance, the advance angle of the drive rotary shaft 11 and the driven rotary member 12 is adjusted to the value initially set.

【0020】 同じ理由により、若し、D2<D3ならば、25の両端の電圧を漸減させてD2 =D3になるまで、カウンター46は下方にカウントする。ここではこの部分の 原理については詳述しない。 他の従動回転部材13と従動回転部材12との間の回転位相差については、既 に、ラセン溝型ガイド部14と15の2部材の関係において機械的に定まってい る。すなわち、相対的関係は製造段階で機械的に定まっている。駆動回転軸11 と従動回転部材13との回転位相差(回転角度差)は、新たに回転ディスクを回 転部材13に付加せずとも回転ディスク31の発するパルスBから計算上判るこ とである。 従動回転部材12と従動回転部材13は、多分、エアバルブ(吸排気バルブ) カム軸用に設計される(図2,3に示すように)、そしてガイド部18,19は 内孔に設けられる。本発明の駆動回転軸11はエアバルブの元のカム軸に代って 用いられる。For the same reason, if D 2 <D 3 , counter 46 counts down until the voltage across 25 is gradually reduced to D 2 = D 3 . The principle of this part is not detailed here. The rotational phase difference between the other driven rotary member 13 and the driven rotary member 12 has already been mechanically determined by the relationship between the two members of the spiral groove type guide portions 14 and 15. That is, the relative relationship is mechanically determined at the manufacturing stage. The rotational phase difference (rotational angle difference) between the driving rotary shaft 11 and the driven rotary member 13 can be calculated from the pulse B generated by the rotary disc 31 without adding a new rotary disc to the rotary member 13. . The driven rotary member 12 and the driven rotary member 13 are probably designed for an air valve (intake / exhaust valve) camshaft (as shown in FIGS. 2 and 3), and the guide portions 18 and 19 are provided in the inner holes. The drive rotary shaft 11 of the present invention is used in place of the original cam shaft of the air valve.

【0021】 図3は第2実施例を示し、従動回転部材12,13はそれぞれギヤ12a,1 3aとされ、ギヤ12aはディストリビュータ軸の駆動に用いられ、他のギヤは エアバルブカム軸の駆動に用いられる。ガイド部14,15及び被駆動(従動) ガイド部18,19はボール駆動スクリューまたは実際の要望に答えた特別の曲 線ガイドに置き換えられ得る。加うるに駆動回転軸11は、従動回転部材12, 13が軸方向の移動とともに、駆動回転軸11との間の回転位相差(進角)に関 与するので、軸方向回転のみに関与する。FIG. 3 shows a second embodiment, in which the driven rotary members 12 and 13 are gears 12a and 13a, respectively, the gear 12a is used to drive the distributor shaft, and the other gears are used to drive the air valve cam shaft. Used. The guide parts 14, 15 and the driven (driven) guide parts 18, 19 may be replaced by ball drive screws or special curved guides according to actual needs. In addition, since the driven rotary members 12 and 13 contribute to the rotational phase difference (advance angle) with the drive rotary shaft 11 as the driven rotary members 12 and 13 move in the axial direction, the drive rotary shaft 11 is only involved in the axial rotation. .

【0022】 図4は第3実施例を示し、駆動軸11のガイド部は、対応する従動回転部材の 被駆動(従動)ガイド部が外側螺子軌条19aに置き換えられたのに対応し、内 部ラセン軌条15aに置き換えられている。 本考案はまたスリップしない差動ギヤまたは変速機に応用可能である。 図8は第4実施例を示し、駆動回転軸11により駆動される1本の従動回転軸 12と、鋼球よりなる駆動回転軸のガイド部14’と、ラセン溝からなる従動軸 のガイド部12’とを含み、若し、駆動回転軸11と従動回転部材12’間の回 転角度差を変える場合には、ガイド部14’と被駆動ガイド部16’間で変更す る。FIG. 4 shows a third embodiment. The guide portion of the drive shaft 11 corresponds to the driven (driven) guide portion of the corresponding driven rotating member being replaced by the outer screw rail 19a, and the inner portion thereof. It is replaced by the spiral rail 15a. The invention is also applicable to non-slip differential gears or transmissions. FIG. 8 shows a fourth embodiment. One driven rotary shaft 12 driven by the drive rotary shaft 11, a guide part 14 'for the drive rotary shaft made of steel balls, and a guide part for the driven shaft made of a spiral groove. 12 ', if the rotation angle difference between the drive rotation shaft 11 and the driven rotation member 12' is changed, it is changed between the guide portion 14 'and the driven guide portion 16'.

【0023】 なお前記実施例では回転部材が同軸状に配置されている場合を例に取って説明 しているが、ラセン状ガイド機構を構成するヘリカル軌条によって噛み合う複数 の回転部材が並列に配置された構造であってもよい。In the above embodiment, the case where the rotary members are coaxially arranged has been described as an example. However, a plurality of rotary members that are meshed by the helical rails that constitute the helical guide mechanism are arranged in parallel. May have a different structure.

【0024】[0024]

【考案の効果】[Effect of device]

請求項1又は2によれば、駆動回転部材と従動回転部材とが軸方向に相対スラ イドさせることにより、ラセン状ガイド機構により従動回転部材と駆動回転部材 とが周方向に相対回動して、両部材の回転中に簡単に両部材間の位相を正確に調 節することができる。 請求項3においては、電磁マグネットにより駆動回転部材と従動回転部材とを 軸方向に相対移動させて、予め入力されている所定回転数に対する所定位相差と なるように、両回転部材間の位相差を調節するので、自動車のバルブの開放時期 の調整に利用することにより、低速〜高速の全範囲において優れた性能が得られ る。また、本考案は、またスリップしない差動ギヤあるいは、変速機のような機 構に応用可能である。 According to the first or second aspect of the present invention, the driven rotary member and the driven rotary member are slid relative to each other in the axial direction, whereby the driven rotary member and the drive rotary member are relatively rotated in the circumferential direction by the spiral guide mechanism. , It is possible to easily adjust the phase between both members accurately while rotating both members. According to a third aspect of the present invention, an electromagnetic magnet relatively moves the driving rotary member and the driven rotary member in the axial direction so as to obtain a predetermined phase difference with respect to a predetermined rotational speed that is input in advance. Since it is used to adjust the opening time of the automobile valve, excellent performance can be obtained in the entire range from low speed to high speed. Further, the present invention can be applied to a mechanism such as a differential gear that does not slip or a transmission.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の第1実施例を示す断面図FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】図1の2−2断面図2 is a sectional view taken along line 2-2 of FIG.

【図3】本考案の第2実施例を示す断面図FIG. 3 is a sectional view showing a second embodiment of the present invention.

【図4】本考案の第3実施例を示す断面図FIG. 4 is a sectional view showing a third embodiment of the present invention.

【図5】本考案の図7に示す制御回路に生じた位相差の
ないパルスを示す線図
FIG. 5 is a diagram showing a pulse having no phase difference generated in the control circuit shown in FIG. 7 of the present invention.

【図6】本考案の図7に示す制御回路に生じた位相差の
あるパルスを示す線図
6 is a diagram showing a pulse having a phase difference generated in the control circuit shown in FIG. 7 of the present invention.

【図7】本考案の制御回路を示すブロックダイアグラムFIG. 7 is a block diagram showing a control circuit of the present invention.

【図8】本考案の第4実施例を示す断面図FIG. 8 is a sectional view showing a fourth embodiment of the present invention.

【図9】図8の9−9断面図9 is a sectional view taken along line 9-9 of FIG.

【符号の説明】[Explanation of symbols]

11 駆動回転部材 12,13 従動回転部材 14,15 ラセン状ガイド 18,19 ラセン状ガイド 23 電磁マグネット 30,31 進角測定器 41 回転速度測定器 42 記憶ユニット 43 比較器 11 Drive Rotating Member 12, 13 Driven Rotating Member 14, 15 Helical Guide 18, 19 Helical Guide 23 Electromagnetic Magnet 30, 31 Lead Angle Measuring Device 41 Rotational Speed Measuring Device 42 Storage Unit 43 Comparator

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 駆動回転部材と、この駆動回転部材に対
し同心状に又は並列に配置され、同期して回転する少な
くとも一個の従動回転部材とからなり、駆動回転部材と
従動回転部材間には、 両回転部材を軸方向に相対スライドさせることにより両
回転部材を周方向に相対回動させて、両回転部材間の回
転位相差を調節するラセン状ガイド機構が設けられたこ
とを特徴とする回転部材間の回転位相差調節装置。
1. A drive rotating member and at least one driven rotating member that is arranged concentrically or in parallel with the drive rotating member and rotates in synchronization, and a space between the drive rotating member and the driven rotating member. A helical guide mechanism for adjusting the rotational phase difference between the rotating members by relatively rotating the rotating members in the circumferential direction by relatively sliding the rotating members in the axial direction. Rotational phase difference adjusting device between rotating members.
【請求項2】 前記ラセン状ガイド機構は、駆動回転部
材と従動回転部材のいずれか一方に形成されたラセン状
ガイドと、他方に形成されたこのラセン状ガイドに相対
倣い動作する倣い部とからなることを特徴とする請求項
1における回転部材間の回転位相差調節装置。
2. The spiral guide mechanism includes a spiral guide formed on either one of a driving rotary member and a driven rotary member, and a copying portion formed on the other and performing a relative copying operation to the spiral guide. The rotational phase difference adjusting device between rotating members according to claim 1, wherein
【請求項3】 請求項1記載の回転部材間の回転位相差
調節装置と、 駆動回転部材または従動回転部材の回転速度を測定する
回転速度測定器と、 過去の回転速度に対応する回転位相差及び回転速度測定
器により得られた現在の回転速度に対応する回転位相差
を記憶する記憶ユニットと、 駆動回転部材の特定点の瞬間的角度位置と従動回転部材
の特定点の瞬間的角度位置との瞬間的位相差を測定する
位相差測定器と、 過去の回転速度に対応する回転位相差と現在の回転速度
に対応する瞬間的な回転位相差とを比較する比較器と、 駆動部材と従動部材の間に設けられ、比較器により求め
た回転位相差に基づいて、駆動回転部材と従動回転部材
の間の相対的な軸方向の位置を変える電磁マグネット
と、を備えたことを特徴とする回転部材間の回転位相差
調節装置。
3. A rotary phase difference adjusting device between rotary members according to claim 1, a rotary speed measuring device for measuring a rotary speed of a driving rotary member or a driven rotary member, and a rotary phase difference corresponding to a past rotary speed. And a storage unit for storing the rotational phase difference corresponding to the current rotational speed obtained by the rotational speed measuring device, the instantaneous angular position of the specific point of the driving rotary member and the instantaneous angular position of the specific point of the driven rotary member. Phase difference measuring device for measuring the instantaneous phase difference of the, and a comparator for comparing the rotational phase difference corresponding to the past rotational speed and the instantaneous rotational phase difference corresponding to the present rotational speed, the drive member and the driven And an electromagnetic magnet that is provided between the members and that changes a relative axial position between the drive rotation member and the driven rotation member based on the rotation phase difference obtained by the comparator. Rotation between rotating members Phase difference adjustment device.
JP4563492U 1992-06-30 1992-06-30 Rotational phase difference adjusting device between rotating members Pending JPH064454U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4563492U JPH064454U (en) 1992-06-30 1992-06-30 Rotational phase difference adjusting device between rotating members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4563492U JPH064454U (en) 1992-06-30 1992-06-30 Rotational phase difference adjusting device between rotating members

Publications (1)

Publication Number Publication Date
JPH064454U true JPH064454U (en) 1994-01-21

Family

ID=12724798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4563492U Pending JPH064454U (en) 1992-06-30 1992-06-30 Rotational phase difference adjusting device between rotating members

Country Status (1)

Country Link
JP (1) JPH064454U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020035905A (en) * 2000-11-07 2002-05-16 이계안 Camshaft

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312562A (en) * 1987-06-12 1988-12-21 Matsushita Electric Ind Co Ltd Speed change gear

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312562A (en) * 1987-06-12 1988-12-21 Matsushita Electric Ind Co Ltd Speed change gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020035905A (en) * 2000-11-07 2002-05-16 이계안 Camshaft

Similar Documents

Publication Publication Date Title
KR101958373B1 (en) Control device and method for controlling variable valve timing mechanism in internal combustion engine
Nagaya et al. Valve timing and valve lift control mechanism for engines
US7077087B2 (en) Valve timing controller
US20070137614A1 (en) Rotary-to-linear actuator, linear motion shaft mechanism, variable valve actuation mechanism and variable valve engine
US10352419B2 (en) Carrier stop for split ring planetary drive
US5326321A (en) Adjusting device for adjusting the instantaneous relative angular difference between two rotating members
CN102465727B (en) The valve timing apparatus of continuous variable
JPH064454U (en) Rotational phase difference adjusting device between rotating members
JP4429286B2 (en) Control device for variable valve mechanism
JP4207961B2 (en) Control device for internal combustion engine
KR101684559B1 (en) Engine provided with continuous varible vavle timing apparatus and continuous varible vavle duration apparatus
JP4736842B2 (en) Variable valve timing device
JP4049092B2 (en) Valve gear
US20040050353A1 (en) Variable duration camshaft
CN207583453U (en) Variable valve timing system device
US20030034000A1 (en) Valve timing control system for internal combustion engine
Freudenstein et al. The Synthesis and Analysis of Variable-Valve-Timing Mechanisms for Infernal-Combustion Engines
JP3714056B2 (en) Valve characteristic control method and control apparatus for internal combustion engine
JP4579323B2 (en) Control device for variable valve mechanism
JP4166644B2 (en) Valve timing control device for internal combustion engine
JP4661600B2 (en) Control device for variable valve mechanism
JPH10205310A (en) Intake/exhaust valve during controller of internal combustion engine
US20180216503A1 (en) Travel stop for planetary gears of an electric phaser
Ghazal et al. Gear drive mechanism for continuous variable valve timing of IC engines
JPH0821214A (en) Cam shaft phase variable device