JPH0644547A - Floating type magnetic head - Google Patents

Floating type magnetic head

Info

Publication number
JPH0644547A
JPH0644547A JP19938092A JP19938092A JPH0644547A JP H0644547 A JPH0644547 A JP H0644547A JP 19938092 A JP19938092 A JP 19938092A JP 19938092 A JP19938092 A JP 19938092A JP H0644547 A JPH0644547 A JP H0644547A
Authority
JP
Japan
Prior art keywords
magnetic head
phase
hardness
kgf
floating magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19938092A
Other languages
Japanese (ja)
Inventor
Kenichiro Kaneko
健一郎 金子
Shigeo Maeda
成夫 前田
Masatake Miyazaki
正剛 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19938092A priority Critical patent/JPH0644547A/en
Publication of JPH0644547A publication Critical patent/JPH0644547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To provide a floating type magnetic head which is superior in productivity and low in cost and suitably mass-production by decreasing the area of contact with a magnetic recording medium, and reducing the dynamic frictional resistance and greatly improving CSS characteristics. CONSTITUTION:The floating type magnetic head consists of the phase of an oxide which has 350-800 (kgf/mm<2>) surface hardness at a 160nm depth from the surface and the phase of an oxide which has 600-1000 (kgf/mm<2>) surface hardness. The former phase is several tens - 1000Angstrom recessed below the latter phase in the surface facing the magnetic recording medium, more than 1.5 pieces of >=50Angstrom depth present on the surface roughness curve of a contact type surface roughness gauge at a 55mum distance, and a barrel shape having a >=200Angstrom height difference in the longitudinal direction of a floating surface and a >=40Angstrom height difference in a sectional direction is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は浮動型磁気ヘッドに関
し、特に、薄膜媒体を使用した小型ハードディスク装置
に好適な浮動型磁気ヘッドに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a floating magnetic head, and more particularly to a floating magnetic head suitable for a small hard disk drive using a thin film medium.

【0002】[0002]

【従来の技術】近年、小型ハードディスク装置における
浮動型磁気ヘッドの浮上方式は、浮動型磁気ヘッドが磁
気記録媒体の停止・回転とともに磁気記録媒体上で停止
し、磁気記録媒体から一定の間隔(以後浮上量と記述)
で浮上するCSS(コンタクト・スタート・ストップ)
方式が採用されている。また、近年磁気ディスク装置の
高密度記録化が特に浮上量を小さくすることで研究され
ており、更にこの浮上量を小さくすべく種々の改良・開
発がなされている 浮動型磁気ヘッド用スライダー材料としては、表面から
160nmにおける表面硬度600〜1400(kgf/mm2
)を有するCaTiO3 ,SrTiO3 を主成分とする
相の混合体か、表面から160nmにおける表面硬度5
00〜900(kgf/mm2 ){主に500〜760(kgf/mm2
)(以下硬度の単位は省略する)}を有するMn−Zn
フェライト相の酸化物セラミックスが開発されている。
2. Description of the Related Art In recent years, a floating magnetic head levitation system in a small hard disk drive has been designed so that the floating magnetic head stops on the magnetic recording medium as the magnetic recording medium stops / rotates, and a fixed interval (hereinafter referred to as "magnetic recording medium") from the magnetic recording medium. Flying height and description)
CSS (contact start / stop)
The method is adopted. Also, in recent years, high density recording of magnetic disk devices has been studied especially by reducing the flying height, and various improvements and developments have been made to further reduce the flying height. Is a surface hardness of 600 to 1400 (kgf / mm 2 at 160 nm from the surface).
) Or a mixture of phases containing CaTiO 3 and SrTiO 3 as main components, or a surface hardness at 160 nm from the surface of 5
00-900 (kgf / mm 2 ) {mainly 500-760 (kgf / mm 2
) (The unit of hardness is omitted below)}
Ferrite phase oxide ceramics have been developed.

【0003】浮動型磁気ヘッドの磁気記録媒体との対向
面の加工は、前記非磁性セラミックススライダーとコア
より構成されるコンポジットヘッドと呼ばれる磁気ヘッ
ドの場合にはダイヤモンド粒子を用いた湿式ラップによ
り行われている。また、前記Mn−Znフェライトから
構成されるモノリシックヘッドにおいては、同様な湿式
ラップや例えば特開平1−251308号公報にみられ
るような逆スパッタ法によって行われている。
The surface of the floating magnetic head facing the magnetic recording medium is processed by a wet lap using diamond particles in the case of a magnetic head called a composite head composed of the non-magnetic ceramic slider and the core. ing. A monolithic head composed of Mn-Zn ferrite is formed by a similar wet lap method or a reverse sputtering method as disclosed in JP-A-1-251308.

【0004】しかしながら、コンポジットヘッドにおい
てはこの電磁変換特性と並んで極めて重要なCSS特性
が悪く大きな問題点となっている。
However, in the composite head, along with this electromagnetic conversion characteristic, the extremely important CSS characteristic is bad and is a serious problem.

【0005】特に浮上量がますます小さくなり、薄膜媒
体表面の平坦化が要求される現在及び将来の環境下で
は、CSS特性の改善はより重要となる。
In particular, in the present and future environments in which the flying height becomes smaller and smaller, and the flattening of the thin film medium surface is required, the improvement of CSS characteristics becomes more important.

【0006】そこで、スライダーセラミックス材料や表
面性状の改良が考えられており、表面性状においては磁
気記録媒体との接触面を減らす観点より対向する面をあ
る程度粗すことが有効とされ粗い粒子で加工するとか、
例えば前記公開特許公報においては逆スパッタ法によっ
てヘッド表面に微小な凹凸をつけて得る方法の適用が示
唆されている。
Therefore, improvements in slider ceramics materials and surface textures have been considered, and in terms of surface textures, it is considered effective to roughen the opposing surfaces to some extent from the viewpoint of reducing the contact surface with the magnetic recording medium. Maybe
For example, in the above-mentioned Japanese Patent Laid-Open Publication, it is suggested to apply a method in which minute unevenness is formed on the head surface by a reverse sputtering method.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、粗い粒子での加工はスクラッチを発生させ
るという問題点が、また、逆スパッタ法を用いる方法
は、それぞれ物性の異なる3種の材料、すなわち非磁性
スライダーセラミックスとMn−Znフェライトコア及
びガラスを用いるためにその応用性・作業性の点より問
題であった。即ち、ガラスとMn−Znフェライトコア
の物理的エッチング速度がスライダー材のエッチング速
度より大きいために、この2つの材料のエッチング量が
大きくこの2つの材料はスライダー表面より大きく凹ん
でしまう。特にガラスの凹みは5000Åにもおよびコ
ア強度の観点から基本的に問題であった。従ってガラス
とMn−Znフェライトコア部を完全にマスクするとい
う作業性の悪い工程が不可欠で生産性に劣るという問題
点を有していた。
However, in the above-mentioned conventional structure, there is a problem that processing with coarse particles causes scratches, and the method using the reverse sputtering method has three types of materials each having different physical properties. That is, since the non-magnetic slider ceramics, the Mn-Zn ferrite core, and the glass are used, there is a problem in terms of applicability and workability. That is, since the physical etching rate of the glass and the Mn-Zn ferrite core is higher than the etching rate of the slider material, the etching amount of these two materials is large and the two materials are recessed more than the slider surface. In particular, the glass dent was as large as 5000 Å, which was basically a problem from the viewpoint of core strength. Therefore, there is a problem in that productivity is inferior because a process with poor workability, that is, masking the glass and the Mn-Zn ferrite core portion completely is indispensable.

【0008】また微小な無機物系の塵や有機物が存在す
ると、同様なエッチング速度の不均一化が生じ凹凸量の
コントロールができなくなったり、場合によってはCS
S時にヘッドクラッシュを引き起こす突起が発生すると
いう欠点を有し、そのため製造時に完全な洗浄や高価な
防塵設備を必要とし量産性に欠けるという問題点を有し
ていた。
In addition, the presence of minute inorganic dust or organic matter causes the same nonuniform etching rate, making it impossible to control the amount of irregularities, or in some cases, CS.
There is a drawback that a protrusion that causes a head crash is generated at the time of S, and therefore, there is a problem that a complete cleaning and an expensive dustproof facility are required at the time of manufacturing, and mass productivity is poor.

【0009】更に、非磁性セラミックスにおいては、M
n−Znフェライトとは異なり逆スパッタ法によっても
凹凸を形成させることが困難でCSS特性を向上させる
ことができないという問題点を有していた。
Further, in non-magnetic ceramics, M
Unlike n-Zn ferrite, there is a problem that it is difficult to form unevenness even by the reverse sputtering method and the CSS characteristics cannot be improved.

【0010】本発明は上記従来の問題点を解決するもの
で、磁気記録媒体との接触面積を小さくし、かつ柔軟な
接触状態を保つ形状を有することによりCSS特性を著
しく向上させるとともに作業性、生産性に優れ低原価で
量産性に適した浮動型磁気ヘッドを提供することを目的
とする。
The present invention solves the above-mentioned problems of the prior art. The contact area with the magnetic recording medium is reduced and the shape is maintained to maintain a flexible contact state, thereby significantly improving the CSS characteristics and workability. It is an object of the present invention to provide a floating magnetic head which is excellent in productivity and low in cost and suitable for mass production.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
に本発明の浮動型磁気ヘッドは、表面から160nmの
深さにおける硬度において表面硬度350〜800(kg
f/mm2 )を有する酸化物の相と表面硬度600〜100
0(kgf/mm2 )を有する酸化物の相から構成されるセラ
ミックス材料をスライダーとして用いた浮動型磁気ヘッ
ドであって、磁気記録媒体との対向面で前記表面硬度3
50〜800(kgf/mm2 )を有する相が前記硬度600
〜1000(kgf/mm2 )を有する相に比べ数十〜100
0Å凹み、距離55μmにおける接触式表面粗さ計での
表面粗さ曲線において50Å以上の深さの凹みが平均
1.5個以上存在しかつ、アッセンブリした状態におい
て浮上面の形状が長手方向で150Å以上、好ましくは
200Å以上、断面方向で30Å以上、好ましくは40
Å以上の高低差を有する蒲鉾状に形成されている構成を
有している。
To achieve this object, the floating magnetic head of the present invention has a surface hardness of 350 to 800 (kg) at a hardness of 160 nm from the surface.
f / mm 2 ) oxide phase and surface hardness 600-100
A floating magnetic head using a ceramic material composed of an oxide phase having 0 (kgf / mm 2 ) as a slider, the surface hardness of which is 3 at a surface facing a magnetic recording medium.
The phase having 50 to 800 (kgf / mm 2 ) has the hardness of 600.
Tens to 100 compared to phases having ˜1000 (kgf / mm 2 ).
On the surface roughness curve of a contact type surface roughness meter at 0 Å dents and a distance of 55 μm, there are an average of 1.5 dents with a depth of 50 Å or more, and when assembled, the shape of the air bearing surface is 150 Å in the longitudinal direction. Or more, preferably 200 Å or more, 30 Å or more, preferably 40
It has a structure that is shaped like a kamaboko with a height difference of Å or more.

【0012】[0012]

【作用】この構成によって、磁気記録媒体と接触する部
分の面積を減少させる性状の表面を得ることができる。
また磁気記録媒体との接触部が蒲鉾状なので柔軟な接触
を行うことができ、その結果、浮動型磁気ヘッドの低浮
上化やCSS特性の改善をすることができる。
With this structure, it is possible to obtain a surface having a property of reducing the area of the portion in contact with the magnetic recording medium.
Further, since the contact portion with the magnetic recording medium is a semi-cylindrical shape, it is possible to make a flexible contact, and as a result, it is possible to reduce the flying height of the floating magnetic head and improve the CSS characteristics.

【0013】[0013]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】図1は湿式ラップ前の本実施例の浮動型磁
気ヘッドの斜視図であり、図2は本実施例の浮動型磁気
ヘッドのスライダー鏡面の模式図である。
FIG. 1 is a perspective view of a floating magnetic head of this embodiment before wet lapping, and FIG. 2 is a schematic view of a slider mirror surface of the floating magnetic head of this embodiment.

【0015】1はMn−Znフェライトコア、2はガラ
ス、3はスライダーの浮上面、4はスライダー、5はギ
ャップである。
Reference numeral 1 is a Mn-Zn ferrite core, 2 is glass, 3 is an air bearing surface of a slider, 4 is a slider, and 5 is a gap.

【0016】このスライダーセラミックス材料は、C
a,Sr,Ti,P,Si,Zr,Alの酸化物からな
り、その組成はCaTiO3 ,SrTiO3 ,TiO
2 ,P25 ,SiO2 ,ZrO2 ,Al23 換算組
成において、42,37,14,2,1.5,3,0.
5モル%である。次に、図2のスライダーの模式図にお
ける各部の表面から160nmの深さにおける表面硬度
及び面積占有率を測定した。その結果を(表1)に示
す。
This slider ceramic material is C
It is composed of oxides of a, Sr, Ti, P, Si, Zr, and Al, and its composition is CaTiO 3 , SrTiO 3 , TiO 2.
2 , P 2 O 5 , SiO 2 , ZrO 2 , and Al 2 O 3 conversion composition, 42, 37, 14, 2 , 1.5, 3 , 0.
It is 5 mol%. Next, the surface hardness and the area occupancy at a depth of 160 nm from the surface of each part in the schematic view of the slider in FIG. 2 were measured. The results are shown in (Table 1).

【0017】[0017]

【表1】 [Table 1]

【0018】表面硬度は島津製作所製ダイナミック硬度
計を用い、最大荷重1gfにおける負荷と圧子の挿入深
さから求めた。深さを160nmとしたのは、データの
精度を考慮したためである。表面積占有率は、鏡面のS
EM写真より求めた。
The surface hardness was determined from the load at a maximum load of 1 gf and the insertion depth of the indenter using a dynamic hardness tester manufactured by Shimadzu Corporation. The depth is set to 160 nm because the accuracy of the data is taken into consideration. Surface area occupancy is S of mirror surface
It was determined from the EM photograph.

【0019】この(表1)から明らかなように、スライ
ダーセラミックス材料が、表面積において4.5%を占
める表面から160nmにおける表面硬度は硬度350
〜800を有する酸化物の相と、主に800〜1000
である表面硬度600〜1000を有する酸化物の相か
ら構成されていることがわかった。またフェライトの表
面硬度は500〜900(主に500〜760)であっ
た。
As is clear from this (Table 1), the surface hardness of the slider ceramics material occupies 4.5% of the surface area and the surface hardness at 160 nm from the surface is 350.
The phase of the oxide having ~ 800, mainly 800-1000
It was found to be composed of an oxide phase having a surface hardness of 600-1000. The surface hardness of ferrite was 500 to 900 (mainly 500 to 760).

【0020】次に、前記スライダーセラミックス材料と
Mn−Znフェライトコア及びガラスを用い、図1に示
す浮動型磁気ヘッドを作製し、(表2)に示す平均粒径
0.12μmのダイヤモンド粒子を用いて2種類の湿式
ラップにより磁気記録媒体との接触面となるヘッド表面
の鏡面加工を行った。
Next, using the slider ceramics material, the Mn-Zn ferrite core and the glass, a floating magnetic head shown in FIG. 1 was prepared, and diamond particles having an average particle diameter of 0.12 μm shown in (Table 2) were used. The two types of wet laps were used to mirror-finish the head surface, which is the contact surface with the magnetic recording medium.

【0021】[0021]

【表2】 [Table 2]

【0022】次いで、この接触面の表面性状を、各々の
ヘッドについて、触針式表面粗さ計にて55μmの距離
にわたり計10箇所測定した。その後アッセンブリし、
微小表面形状測定器WYKOにより浮上面の形状を調
べ、3.5インチハードディスクを用いてCSS特性の
測定を行い、磁気ヘッドのCSS特性を評価した。また
比較例として、前記公開特許公報に示されている逆スパ
ッタの方法と前記湿式ラップ及びフェライトを用いてフ
ェライトをスライダーとする同様なコンポジットヘッド
型のヘッドを作製し、同様な性状・形状解析とCSS特
性の評価を行った。表面性状の測定結果を図3に示す。
図3(a)は本実施例の浮動型磁気ヘッドの表面性状の
測定図であり、図3(b),図4(a),図4(b)は
比較例の浮動型磁気ヘッドの表面性状の測定図である。
表面性状の結果は(表3)に示した。
Next, the surface texture of this contact surface was measured at a total of 10 points on each head with a stylus type surface roughness meter over a distance of 55 μm. Then assemble,
The shape of the air bearing surface was examined with a fine surface shape measuring instrument WYKO, and the CSS characteristics of the magnetic head were evaluated by measuring the CSS characteristics using a 3.5-inch hard disk. Further, as a comparative example, a similar composite head type head using ferrite as a slider using the method of reverse sputtering and the wet lap and ferrite shown in the above-mentioned Japanese Patent Laid-Open was prepared, and the same properties and shape analysis were performed. The CSS characteristics were evaluated. The measurement results of surface texture are shown in FIG.
FIG. 3A is a measurement diagram of the surface texture of the floating magnetic head of this embodiment, and FIGS. 3B, 4A, and 4B are the surfaces of the floating magnetic head of the comparative example. It is a measurement diagram of properties.
The results of the surface texture are shown in (Table 3).

【0023】[0023]

【表3】 [Table 3]

【0024】表面性状の測定は、測定値をパソコンに取
り込み解析して求めた。触針式表面粗さ計はダイヤモン
ド製の先端が0.1μm×2.5μmの触針を用い倍率
100万の条件にて測定した。表面形状の測定は、精度
を考慮し、浮上面の断面方向の稜線から各々約45μm
(一つの浮上面において合計約90μm)除いた部分に
ついて、倍率2.5の条件で測定した。なお、用いた
3.5インチハードディスクの構成を次に示す。
The surface texture was measured by taking the measured values in a personal computer and analyzing them. For the stylus type surface roughness meter, a diamond stylus having a tip of 0.1 μm × 2.5 μm was used under the condition of a magnification of 1,000,000. The surface shape is measured approximately 45 μm from the ridgeline in the cross-sectional direction of the air bearing surface in consideration of accuracy.
(A total of about 90 μm on one air bearing surface) The removed portion was measured under the condition of a magnification of 2.5. The configuration of the used 3.5-inch hard disk is shown below.

【0025】基板;アルミニュウム 下地;Cr 磁性層;Co−Niスパッタ膜 表面層;カーボンスパッタ層及びカーボン層表面に塗布
されたフッソ系液体潤滑剤層 Diskの表面粗さ;Ra≒100Å CSSテスト時のディスク駆動条件は以下の通りであ
る。
Substrate: Aluminum Underlayer: Cr Magnetic layer: Co-Ni sputtered film Surface layer: Carbon sputtered layer and a fluorine-based liquid lubricant layer applied to the surface of the carbon layer Surface roughness of the disk; Ra≈100Å CSS test The disk drive conditions are as follows.

【0026】ヘッド圧力;93mN(9.5gf) 測定位置;25mm 定常回転数迄の所要時間;4秒 定常回転数と時間;2300r/minで1秒 定常回転数から停止する迄の所要時間;4秒 回転と回転間の停止時間;1秒 浮上面の形状については、図3から明らかなように本加
工間で大きな違いがあった。本実施例の浮動型磁気ヘッ
ドに用いた加工法では深さ数十〜1000Åの凹部が存
在し、この凹部のために明確な凹凸形状を有していた。
一方比較例の浮動型磁気ヘッドに用いた加工No. 2の湿
式ラップでは、深さ数十〜150Å程の凹部が存在した
ものの、明確な凹凸形状は有していなかった。次に、
(表3)から明らかなように、深さ50Å以上の前記凹
部の発生頻度では、本実施例の浮動型磁気ヘッドにおい
ては平均で1.5個以上の凹部が粗さ曲線上で存在し
た。比較例の浮動型磁気ヘッドにおけるこの個数は、
0.3〜0.8個であった。
Head pressure: 93 mN (9.5 gf) Measuring position: 25 mm Time required for steady rotation speed; 4 seconds Steady rotation speed and time; 1 second at 2300 r / min Time required for stopping from steady rotation speed; 4 Second rotation and stop time between rotations: 1 second Regarding the shape of the air bearing surface, as is clear from FIG. 3, there was a large difference between the main processings. In the processing method used for the floating magnetic head of the present example, a recess having a depth of several tens to 1000 Å was present, and due to this recess, there was a clear concavo-convex shape.
On the other hand, in the wet lap of processing No. 2 used for the floating magnetic head of the comparative example, although there were recesses having a depth of several tens to 150 Å, there was no clear uneven shape. next,
As is clear from Table 3, in the floating magnetic head of this embodiment, 1.5 or more recesses were present on average in the roughness curve at the frequency of occurrence of the recesses having a depth of 50 Å or more. This number in the floating magnetic head of the comparative example is
The number was 0.3 to 0.8.

【0027】なおこの凹部は、CaTiO3 ,SrTi
3 及びその固溶体またはTiO2または微量のP,S
i,Zr,Alが拡散した母相とは組成が異なり、P,
Si,Zr,Alに富んだTi,Ca,Srの酸化物の
相であった。
This recess is made of CaTiO 3 , SrTi.
O 3 and its solid solution or TiO 2 or a trace amount of P, S
The composition is different from that of the matrix phase in which i, Zr, and Al are diffused, and P,
It was a phase of oxides of Ti, Ca and Sr rich in Si, Zr and Al.

【0028】なお比較例のフェライトヘッド浮上面の表
面性状は、図4(a)から明らかなようにラッピング加
工の加工No. 1でも前記公開特許公報で示されているよ
うな凹凸状となり、更に逆スパッタ法による形状は図4
(b)からも明らかなように平均段差70Åにも及ぶか
なり粗いものとなっていた。
The surface texture of the air bearing surface of the ferrite head of the comparative example is as shown in FIG. The shape obtained by the reverse sputtering method is shown in FIG.
As is clear from (b), the average step was 70 Å, which was quite rough.

【0029】図5は本実施例の浮動型磁気ヘッドの任意
の表面A−B間を接触式表面粗さ計を用いて測定した粗
さ曲線と相構成の関係を示した模式図である。図中にお
いて、上図は測定した部分破線A−Bの結晶相と粒子状
態の平面図を示したものであるが、その断面における凹
部は、下図のように前記の化学的に異なる柔らかい硬度
を有する相1の粒子及び粒子群であると推察される。即
ちこの凹部は、加工時に相1の粒子が母相または相2の
粒子より、より激しく摩耗することで発生するものであ
り、凹部の位置としては図5における粒内に最低部を有
する粒子Cを含む粒子や粒子群の場合も存在するし、図
5における相1間の粒界Dの場合も存在する。従って、
この結果得られる凹凸形状は、前記特開平1−2513
08号公報にあるような各粒子の粒界を境界とする凹凸
ではなく、相1と母相または相2間の相間に発生する凹
凸形状なのである。なお、凹部の深さは図5で示すよう
に深い方の凹部の深さを測定した。
FIG. 5 is a schematic diagram showing the relationship between the roughness curve measured between a given surface A and B of the floating magnetic head of this embodiment using a contact type surface roughness meter and the phase structure. In the figure, the upper figure shows a plan view of the crystalline phase and the particle state of the partial broken line AB measured, and the concave portion in the cross section has the above-mentioned chemically different soft hardness as shown in the lower figure. It is presumed that the particles and the group of particles of the phase 1 have. That is, the concave portions are generated when the particles of phase 1 are worn more severely than the particles of the mother phase or phase 2 during processing, and the concave portion is the particle C having the lowest portion in the grains in FIG. There are cases of particles and groups of particles including, and there are cases of grain boundaries D between phases 1 in FIG. Therefore,
The concavo-convex shape obtained as a result of this is as described in JP-A 1-25513
It is not the unevenness having the grain boundary of each particle as a boundary as in JP-A-08, but the uneven shape generated between the phase 1 and the mother phase or the phase 2. As for the depth of the recess, the depth of the deeper recess was measured as shown in FIG.

【0030】図6は本実施例の浮動型磁気ヘッドの斜視
図であるが、浮上面の形状を示す長手方向においてはい
ずれも蒲鉾状であった。しかしながら断面方向の形状に
おいては加工No. 1を用いた浮動型磁気ヘッドにおいて
のみ明確な蒲鉾状形状が得られ、本実施例の浮動型磁気
ヘッドNo. 1〜4では40Å以上の高低差を有してい
た。
FIG. 6 is a perspective view of the floating magnetic head of the present embodiment, but in the longitudinal direction showing the shape of the air bearing surface, it was a semi-cylindrical shape. However, with respect to the shape in the cross-sectional direction, only the floating magnetic head using Machining No. 1 has a clear kamaboko shape, and the floating magnetic heads No. 1 to 4 of this embodiment have a height difference of 40 Å or more. Was.

【0031】次にCSS特性について検討した。CSS
特性の評価は20000CSS後における回転数1rp
mのディスクと浮動型磁気ヘッド間の動摩擦係数μkの
平均値μ及び20000CSSと1CSSにおけるその
動摩擦係数の増加値Δμで測定した。その結果を(表
4)に示した。
Next, CSS characteristics were examined. CSS
The evaluation of the characteristic is the number of revolutions 1 rp after 20,000 CSS.
It was measured by the average value μ of the dynamic friction coefficient μk between the disk of m and the floating magnetic head and the increase value Δμ of the dynamic friction coefficient in 20000 CSS and 1 CSS. The results are shown in (Table 4).

【0032】[0032]

【表4】 [Table 4]

【0033】この(表4)からも明らかなように、本実
施例の浮動型磁気ヘッドNo. 1〜4と比較例の浮動型磁
気ヘッドNo. 5〜9及び比較例の浮動型磁気ヘッドNo.
10,11のフェライトヘッド間において、μ及びΔμ
特性に優劣が存在した。なお比較例のフェライトヘッド
No. 11では、微分干渉顕微鏡によって、CSS後にお
いて前記凹凸が摩耗し、凹凸性状が消滅していたことが
確認できた。
As is clear from this (Table 4), the floating magnetic heads No. 1 to 4 of the present embodiment, the floating magnetic heads No. 5 to 9 of the comparative example, and the floating magnetic head No. of the comparative example. .
Μ and Δμ between 10 and 11 ferrite heads
There were advantages and disadvantages in the characteristics. The ferrite head of the comparative example
In No. 11, it was confirmed by a differential interference microscope that the unevenness was worn and the unevenness disappeared after CSS.

【0034】即ちフェライトヘッドにおいては、前記公
開特許公報ではΔμは2.5もあり、加工No. 1のもの
でもΔμで0.4の値を示し、μ20000においても
0.62と大きい値を示した。一方比較例の浮動型磁気
ヘッドでは、Δμで0.27〜0.68、μ20000
で0.45〜0.9とバラツキが大きく品質の安定性に
欠けるが、本実施例の浮動型磁気ヘッドでは、Δμは
0.16以下と極めて小さく、μ20000の値も0.
36以下と極めて小さくかつ品質が安定していることが
わかった。
That is, in the ferrite head, Δμ is as high as 2.5 in the above-mentioned Japanese Patent Laid-Open, and even in the processing No. 1, Δμ shows a value of 0.4, and μ20000 shows a large value of 0.62. It was On the other hand, in the floating magnetic head of the comparative example, Δμ is 0.27 to 0.68, μ20000
However, in the floating magnetic head of this embodiment, Δμ was extremely small at 0.16 or less, and the value of μ20000 was 0.
It was found to be extremely small as 36 or less and the quality was stable.

【0035】これらのことから、CSS特性は磁気記録
媒体との接触面の表面硬度と表面性状、表面形状に依存
するといえる。すなわち、凹凸状表面性状を有する浮上
面においても、その表面硬度が重要となりフェライトの
ような硬度500〜760では小さく、更に前記公開特
許公報で示されているような粗さが付加されてくると浮
上面自体が過度な摩耗を受けることがわかった。従っ
て、硬度的にフェライトより大きな硬度が必要といえ
る。更に、CSSが浮動型磁気ヘッドの任意の方向への
微妙な振動を伴う接触運動であることを考慮すると、こ
の過程における摩擦は、小さな接触面積でかつ浮動型磁
気ヘッドの振動を妨げず穏やかなものでなければなら
ず、従って、適度な硬度と小さな接触面積でかつ浮動型
磁気ヘッドの振動を妨げないというこの3つの観点か
ら、加工No. 1を用いた小さな硬度を有する相から構成
される部分が凹部となりかつ深さが50Å以上であるそ
の凹部が粗さ曲線において平均1.5個以上存在する凹
凸上の形状を有し、更に表面形状において断面方向で4
0Å以上の高低差を有する蒲鉾状をした形状と長手方向
で200Å以上の高低差を有する蒲鉾状をした形状を有
するようにすれば、優れたCSS特性が得られることが
明らかになった。
From these facts, it can be said that the CSS characteristics depend on the surface hardness, surface quality and surface shape of the contact surface with the magnetic recording medium. That is, even in the air bearing surface having the uneven surface texture, the surface hardness becomes important, and the hardness of 500 to 760, such as ferrite, is small, and the roughness as shown in the above-mentioned Japanese Patent Laid-Open is added. It was found that the air bearing surface itself was subjected to excessive wear. Therefore, it can be said that a hardness higher than that of ferrite is required. Further, considering that the CSS is a contact motion involving a subtle vibration of the floating magnetic head in any direction, the friction in this process has a small contact area and is gentle without disturbing the vibration of the floating magnetic head. Therefore, it is composed of a phase having a small hardness using Machining No. 1 from the three viewpoints that it has a proper hardness and a small contact area and does not hinder the vibration of the floating magnetic head. The portion becomes a concave portion and the depth is 50 Å or more, and the concave portion has an uneven shape having an average of 1.5 or more in the roughness curve.
It has been clarified that excellent CSS characteristics can be obtained by using a semi-cylindrical shape having a height difference of 0Å or more and a semi-cylindrical shape having a height difference of 200Å or more in the longitudinal direction.

【0036】なお本発明ヘッドは非磁性酸化物をスライ
ダーとするコンポジット型の磁気ヘッドであるが、前記
硬度分布を有し前記凹凸性状でかつ前記表面形状を有し
ていれば、フェライト等の磁性酸化物を用いたモノリシ
ックヘッドやその他の磁気ヘッドにおいても有効である
ことは明白である。
The head of the present invention is a composite type magnetic head using a non-magnetic oxide as a slider, but if it has the hardness distribution, the unevenness and the surface shape, it can be made of a magnetic material such as ferrite. Obviously, it is also effective for a monolithic head using an oxide and other magnetic heads.

【0037】[0037]

【発明の効果】以上のように本発明は、ダイヤモンド粒
子を用いた生産性に優れたラップ法を用いて、表面から
160nmの深さにおける表面硬度350〜800を有
する柔らかい酸化物の相を同表面硬度600〜1000
(主には800〜1000)を有する硬い酸化物の相間
に均一に分散させた非磁性セラミックス材料を柔らかい
相が凹部となる凹凸状の性状に、更に表面形状において
断面方向で40Å以上の高低差を有しかつ長手方向で2
00Å以上の高低差を有する蒲鉾状の形状に形成されて
いるので、最適の硬度と小さな接触面積でかつ小さい動
摩擦抵抗を有したCSS特性の著しく優れた、かつ作業
性、生産性の高い低原価で量産性に優れた浮動型磁気ヘ
ッドを実現できるものである。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a soft oxide phase having a surface hardness of 350 to 800 at a depth of 160 nm from the surface is formed by using the lapping method having excellent productivity using diamond particles. Surface hardness 600-1000
(Mainly 800 to 1000) A non-magnetic ceramic material uniformly dispersed between the phases of a hard oxide has a concave-convex shape in which the soft phase is a recess, and the surface shape has a height difference of 40 Å or more in the cross-sectional direction. With 2 in the longitudinal direction
As it is shaped like a kamaboko with a height difference of more than 00Å, it has an optimal hardness, a small contact area, and a small dynamic friction resistance. It has outstanding CSS characteristics, high workability, and high productivity. It is possible to realize a floating magnetic head with excellent mass productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】ラップ加工前の本実施例の浮動型磁気ヘッドの
斜視図
FIG. 1 is a perspective view of a floating magnetic head of this embodiment before lapping.

【図2】本実施例の浮動型磁気ヘッドのスライダー鏡面
の模式図
FIG. 2 is a schematic diagram of a mirror surface of a slider of the floating magnetic head of this embodiment.

【図3】(a)は接触式表面粗さ計を用いて測定した本
実施例の浮動型磁気ヘッドの表面性状の測定図 (b)は接触式表面粗さ計を用いて測定した比較例の浮
動型磁気ヘッドの表面性状の測定図
FIG. 3A is a measurement diagram of the surface properties of the floating magnetic head of this embodiment measured using a contact surface roughness meter. FIG. 3B is a comparative example measured using a contact surface roughness meter. Measurement diagram of surface texture of floating magnetic head

【図4】(a)は接触式表面粗さ計を用いて測定したフ
ェライトを用いた比較例の浮動型磁気ヘッドの表面性状
の測定図 (b)は接触式表面粗さ計を用いて測定したフェライト
を用い逆スパッタ法で加工した比較例の浮動型磁気ヘッ
ドの表面性状の測定図
FIG. 4A is a surface texture measurement diagram of a floating magnetic head of a comparative example using ferrite measured by using a contact surface roughness meter. FIG. 4B is a measurement by a contact surface roughness meter. Drawing of surface texture of the floating magnetic head of the comparative example processed by the reverse sputtering method using the formed ferrite

【図5】本実施例の浮動型磁気ヘッドの任意の表面A−
B間を接触式表面粗さ計を用いて測定した粗さ曲線と相
構成の関係を示した模式図
FIG. 5 is an arbitrary surface A- of the floating magnetic head of this embodiment.
Schematic diagram showing the relationship between the phase curve and the roughness curve measured between B using a contact type surface roughness meter

【図6】本実施例の浮動型磁気ヘッドの斜視図FIG. 6 is a perspective view of the floating magnetic head of this embodiment.

【符号の説明】[Explanation of symbols]

1 Mn−Znフェライトコア 2 ガラス 3 スライダーの浮上面 4 スライダー 5 ギャップ 1 Mn-Zn ferrite core 2 Glass 3 Air bearing surface of slider 4 Slider 5 Gap

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】化学組成及び構造が異なることに起因する
表面から160nmの深さにおける硬度において表面硬
度350〜800(kgf/mm2 )を有する酸化物の相と表
面硬度600〜1000(kgf/mm2 )を有する酸化物の
相から構成されるセラミックス材料をスライダーとして
用いた浮動型磁気ヘッドであって、磁気記録媒体との対
向面で前記表面硬度350〜800(kgf/mm2 )を有す
る相が前記硬度600〜1000(kgf/mm2 )を有する
相に比べ数十〜1000Å凹み、距離55μmにおける
接触式表面粗さ計での表面粗さ曲線において50Å以上
の深さの凹みが平均1.5個以上存在しかつ、アッセン
ブリした状態において浮上面の形状が長手方向で150
Å以上、好ましくは200Å以上、断面方向で30Å以
上、好ましくは40Å以上の高低差を有する蒲鉾状に形
成されていることを特徴とする浮動型磁気ヘッド。
1. A phase of an oxide having a surface hardness of 350 to 800 (kgf / mm 2 ) and a surface hardness of 600 to 1000 (kgf /) at a depth of 160 nm from the surface due to the difference in chemical composition and structure. mm 2 ), which is a floating magnetic head using a ceramic material composed of an oxide phase having a surface hardness of 350 to 800 (kgf / mm 2 ) on the surface facing the magnetic recording medium. Compared to the phase having the hardness of 600 to 1000 (kgf / mm 2 ), the phase has a dent of several tens to 1,000 Å, and the average of the dents with a depth of 50 Å or more in the surface roughness curve of the contact surface roughness meter at a distance of 55 μm . The number of air bearing surfaces is more than 150 in the longitudinal direction when there are 5 or more and they are assembled.
A floating magnetic head, characterized in that it is formed in a semi-cylindrical shape having a height difference of Å or more, preferably 200 Å or more, and 30 Å or more, preferably 40 Å or more in the cross-sectional direction.
JP19938092A 1992-07-27 1992-07-27 Floating type magnetic head Pending JPH0644547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19938092A JPH0644547A (en) 1992-07-27 1992-07-27 Floating type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19938092A JPH0644547A (en) 1992-07-27 1992-07-27 Floating type magnetic head

Publications (1)

Publication Number Publication Date
JPH0644547A true JPH0644547A (en) 1994-02-18

Family

ID=16406806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19938092A Pending JPH0644547A (en) 1992-07-27 1992-07-27 Floating type magnetic head

Country Status (1)

Country Link
JP (1) JPH0644547A (en)

Similar Documents

Publication Publication Date Title
US5617273A (en) Thin film slider with protruding R/W element formed by chemical-mechanical polishing
JPH01251308A (en) Floating magnetic head and its manufacture
JP2006092722A (en) Magnetic disk substrate and production method of magnetic disk
WO2014129633A1 (en) Glass substrate for magnetic disk, and magnetic disk
WO2015152316A1 (en) Magnetic disk-use glass substrate
KR940004530A (en) Manufacturing method of magnetic recording head slider and surface treatment method of slider
EP0583989A2 (en) Slider for a magnetic head
JP2007042263A (en) Substrate for magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus
JPH0644547A (en) Floating type magnetic head
JPH08124153A (en) Glass substrate for magnetic recording medium, its production and magnetic recording medium
JP6360512B2 (en) Magnetic disk substrate, magnetic disk, method for manufacturing magnetic disk substrate, and method for manufacturing disk-shaped substrate
JPS61199224A (en) Magnetic recording medium
JP3012668B2 (en) Floating magnetic head
JP3287063B2 (en) Ceramic material for floating magnetic head and floating magnetic head using the same
JP3237154B2 (en) Floating magnetic head
JPH05166320A (en) Material for slider of floating type magnetic head and floating type magnetic head formed by using this material
JPH05166321A (en) Production of floating type magnetic head
US20030215672A1 (en) Magnetic recording media and magnetic disk apparatus
JP2982357B2 (en) Ceramic composition for floating magnetic head slider and floating magnetic head using the same
JP3404772B2 (en) Manufacturing method of floating magnetic head
JP2534014B2 (en) Floating magnetic head
JPH07272263A (en) Magnetic disk
JPH06325342A (en) Magnetic recording medium
JPH05135334A (en) Magnetic head cleaning tape
JPS61115230A (en) Magnetic recording medium