JPH0644468B2 - Slit for charged particle beam - Google Patents

Slit for charged particle beam

Info

Publication number
JPH0644468B2
JPH0644468B2 JP2004841A JP484190A JPH0644468B2 JP H0644468 B2 JPH0644468 B2 JP H0644468B2 JP 2004841 A JP2004841 A JP 2004841A JP 484190 A JP484190 A JP 484190A JP H0644468 B2 JPH0644468 B2 JP H0644468B2
Authority
JP
Japan
Prior art keywords
slit
shaped
charged particle
particle beam
edges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004841A
Other languages
Japanese (ja)
Other versions
JPH03210744A (en
Inventor
憲一 井上
紀生 鈴木
清隆 石橋
豊 川田
明男 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004841A priority Critical patent/JPH0644468B2/en
Priority to EP90109351A priority patent/EP0398335B1/en
Priority to DE69026751T priority patent/DE69026751T2/en
Priority to US07/524,432 priority patent/US5063294A/en
Publication of JPH03210744A publication Critical patent/JPH03210744A/en
Publication of JPH0644468B2 publication Critical patent/JPH0644468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体産業分野をはじめ医療・バイオ等の分
野において、高エネルギー荷電粒子ビームを用いて微小
領域の物性・組成分析、微細加工等をする装置の対物ス
リットの改良構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is used in the fields of semiconductor industry, medical care, biotechnology, etc., to analyze the physical properties and composition of minute regions by using high-energy charged particle beams, fine processing, etc. The present invention relates to an improved structure of an objective slit of a device that performs

(従来の技術) 膨大な量の情報をコンピュータで処理する場合、記憶容
量を増大し処理速度を高速化することが求められる。そ
のため、ICの高集積化がLSIからVLSIへ、また
3次元ICへと開発が進められている。これに伴って、
個々の素子やその配線等は極微小化/多層化し、また表
面から極めて浅い領域が使われつつある。このようなI
Cの開発、プロセス研究においては、ミクロな領域にお
ける原子分布の分析が極めて重要であり、そのために
は、高エネルギー(MeV)の集束イオンビームを使っ
た、1μm以下の分解能を持つラザフォード後方散乱法
(RBS)や粒子励起X線法(PIXE)などの分析手
法が有効である。
(Prior Art) When a huge amount of information is processed by a computer, it is required to increase the storage capacity and the processing speed. Therefore, development of high integration of IC is progressing from LSI to VLSI and to three-dimensional IC. With this,
Individual elements and wirings thereof are extremely miniaturized / multilayered, and extremely shallow regions from the surface are being used. I like this
In the development of C and process research, it is extremely important to analyze the atomic distribution in the microscopic region. For that purpose, the Rutherford backscattering method with a resolution of 1 μm or less using a focused ion beam of high energy (MeV) is used. Analytical methods such as (RBS) and particle excitation X-ray method (PIXE) are effective.

第4図は高エネルギー荷電粒子(イオン)ビーム装置の
一般的な構成配置の1例を示す。そのイオンビームは次
のように集束して照射される。すなわち、静電型加速器
(a)のイオン源(b)から出て加速器(c)で加速されたイオ
ンビーム(d)は偏向分析電磁石(e)によって所定角度(普
通15°以上)を振ってイオン種・エネルギーを選別さ
れ、対物スリット(f)によって数十μmに絞られたの
ち、2〜5mのドリフト空間を経て、2連または3連の
四重極電磁石レンズ(g)に入り集束され、試料チャンバ
ー(h)内のターゲット(測定試料)(i)上にスポットを結
ぶ、後方散乱されたイオンは検出器(j)で検出される。
(k)は偏向分析電磁石のコイルである。
FIG. 4 shows an example of a general configuration of a high energy charged particle (ion) beam device. The ion beam is focused and irradiated as follows. That is, the electrostatic accelerator
The ion beam (d) emitted from the ion source (b) of (a) and accelerated by the accelerator (c) is shaken at a predetermined angle (usually 15 ° or more) by the deflection analysis electromagnet (e) to select the ion species and energy. After being narrowed down to several tens of μm by the objective slit (f), it passes through a drift space of 2 to 5 m, enters into two or three quadrupole electromagnet lenses (g) and is focused, and the sample chamber (h) The backscattered ions that connect the spots on the target (measurement sample) (i) inside are detected by the detector (j).
(k) is a coil of the deflection analysis electromagnet.

対物スリット(f)から四重極電磁石レンズ(g)までの距離
を物面距離、同レンズ(g)からターゲット(i)までの距離
を像面距離と呼び、このビーム光学系は、この2つの距
離の比に大約等しい縮小率で対物スリット(f)の口径を
ターゲット(i)上に縮小投影する機能を持つ。ところで
縮小率は大約1/5〜1/30なので、最小ビームスポットと
して1μm径を得るためには、ビームは対物スリット
(f)において5〜30μm径に絞る必要があり、スリッ
トのエッジの移動精度としては1μmが要求される。
The distance from the objective slit (f) to the quadrupole electromagnet lens (g) is called the object plane distance, and the distance from the lens (g) to the target (i) is called the image plane distance. It has the function of reducing and projecting the aperture of the objective slit (f) onto the target (i) at a reduction ratio approximately equal to the ratio of two distances. By the way, since the reduction ratio is about 1/5 to 1/30, in order to obtain the diameter of 1 μm as the minimum beam spot, the beam should be the objective slit.
In (f), it is necessary to reduce the diameter to 5 to 30 μm, and 1 μm is required as the movement accuracy of the edge of the slit.

従来技術のスリットとしては、ビームの通過する微小な
孔をあけた板を用いるのが簡便であるが、ビーム径を変
更できない。微小領域の局所分析や微細加工の用途で
は、一般的にビームスポットの大きさを任意に変える必
要が生じるから、4方向からくさび型のナイフエッジや
金属円筒型エッジを対向させてスリット幅の変化で通過
ビームの形状を制御する機構がとられる。従来のスリッ
トでは、マイクロメータヘッドなどの精密駆動機構部の
先端にくさび型エッジを取付け、各エッジのマイクロメ
ータヘッドの目盛りから開き幅を推定していた。第5図
(イ)は、マイクロメータヘッドの代りに圧電素子を用
いた電気的駆動調節機構部を持つスリットの1例を正面
図で示す。1対のナイフ型のエッジ(l)または、第5
図(ロ)の縦断側面図に示す1対のくさび型エッジをそ
れぞれフレキシブルジョイント(m)で支えられたアーム
(n)の先端に取り付けて対向させ、それぞれの背後の圧
電素子(p)の印加電圧を調節して矢印で示すイオンビー
ム(q)の通過するくさび型のエッジ(l)間のスリット幅を
設定するようになっている。
As the conventional slit, it is convenient to use a plate having a minute hole through which the beam passes, but the beam diameter cannot be changed. In the application of local analysis of minute areas and micromachining, it is generally necessary to arbitrarily change the size of the beam spot. Therefore, the wedge width and the metal cylindrical edge are opposed to each other from four directions to change the slit width. A mechanism for controlling the shape of the passing beam is adopted. In the conventional slit, a wedge-shaped edge is attached to the tip of a precision drive mechanism such as a micrometer head, and the opening width is estimated from the scale of the micrometer head at each edge. FIG. 5 (a) is a front view showing an example of a slit having an electric drive adjusting mechanism section using a piezoelectric element instead of the micrometer head. A pair of knife-shaped edges (l) or a fifth
An arm in which a pair of wedge-shaped edges shown in the vertical side view in Fig. (B) are supported by flexible joints (m).
Attached to the tip of (n) and facing each other, adjust the applied voltage of the piezoelectric element (p) behind each to adjust the slit width between the wedge-shaped edges (l) through which the ion beam (q) passes indicated by the arrow. It is supposed to be set.

(発明が解決しようとする問題点) (A)前記の従来技術のスリットにおいては、スリット
を完全閉鎖して開き幅ゼロの位置を見付ける時、くさび
型または円筒型エッジの表面平坦度の不完全性(工作精
度上μm程度の凹凸および傾きが存在することは不可
避)から、エッジ同志が接触した状態でも部分的な隙間
があるのでイオンビームが洩れ、ゼロ点がはっきり決ま
らない。ゼロ点が決定できなければ、μmオーダの開き
幅を精度よく設定することは不可能である。また強いて
完全閉鎖状態となるようエッジ同志を接触させる動作を
行なわせると、今度はエッジ先端または高精度駆動機構
部に過剰な負荷がかかり、エッジ先端の変形、駆動機構
部のガタが生ずる原因になる。結局、従来技術では、実
用上、満足にゼロ点を確定できず。従って必要精度の開
き幅の設定、制御が不可能である。
(Problems to be Solved by the Invention) (A) In the above-described conventional slit, when the slit is completely closed to find a position where the opening width is zero, the surface flatness of the wedge-shaped or cylindrical edge is incomplete. Due to its nature (it is inevitable that unevenness and inclination of about μm exist in terms of working accuracy), even if the edges are in contact with each other, there is a partial gap, so the ion beam leaks and the zero point cannot be clearly determined. If the zero point cannot be determined, it is impossible to accurately set the opening width on the order of μm. In addition, if the edges are brought into contact with each other so as to forcefully close them, this may cause excessive load on the edge tip or the high-precision drive mechanism, causing deformation of the edge tip and rattling of the drive mechanism. Become. After all, in the conventional technique, the zero point cannot be satisfactorily determined practically. Therefore, it is impossible to set and control the required opening width.

(B)イオンビームのうちスリットのエッジ先端に突当
って発熱する熱量は数W以上と見積られる。エッジは真
空中に置かれるため、この熱はすべてエッジを支えるア
ーム部あるいは柱部に伝達される。従来技術においては
くさび型または円筒型エッジはアーム部および/または
柱部でささえられているので、この部分の熱膨張によっ
て生ずるスリットの開き幅変化は、無視できない量にな
る。事実、従来技術のスリットでは、使用中に数〜十数
μmオーダの変化に起因するイオンビームの電流変化が
観測されている。
(B) It is estimated that the amount of heat that hits the tip of the edge of the slit in the ion beam to generate heat is several W or more. Since the edge is placed in a vacuum, all this heat is transferred to the arm or column that supports the edge. In the prior art, since the wedge-shaped or cylindrical edge is supported by the arm portion and / or the column portion, the change in the slit opening width caused by the thermal expansion of this portion becomes a nonnegligible amount. In fact, in the conventional slit, a change in the current of the ion beam due to a change in the order of several to ten and several μm is observed during use.

(C)従来技術のスリットでは、対向する2つのエッジ
を独立に操作して開き幅を設定する機構であるので、開
き中心を固定したまま任意の開き幅に設定するには、両
側2回の操作を必要とする。またビームと光学系の軸調
整のため開き幅を固定したまま開き中心位置のみを設定
したい場合にも両側2回の操作が必要となり、同様に操
作性が悪い。
(C) In the conventional slit, since the opening width is set by independently operating two facing edges, it is necessary to set the opening width with two times on both sides to set the opening width with the opening center fixed. Need operation. Further, when it is desired to set only the opening center position with the opening width fixed while adjusting the axes of the beam and the optical system, the operation is required twice on both sides, and the operability is also poor.

(問題点を解決するための手段) 高エネルギー荷電粒子ビーム装置の機能に不利な影響を
もたらす従来技術の対物スリットの問題点は次の(I)
(II)(III)の手段を採り入れた本発明によって合理的に
解決乃至は軽減される。
(Means for Solving the Problems) Problems of the conventional objective slit which adversely affects the function of the high energy charged particle beam device are as follows (I).
(II) Reasonably solved or reduced by the present invention which adopts the means of (III).

すなわち、本発明の荷電粒子ビーム用スリットは、全体
的構成としては、高エネルギー荷電粒子ビームを用いて
微小領域の物性・組成分析、微細加工等をする装置に使
用する対物スリットとして、(I)対向してスリット間
隙を形成する1対のくさび型、ナイフ型または円筒型エ
ッジの位置を荷電粒子ビームの上下流方向に、わずかに
ずらせて配置し、(II)前記のスリット間隙を形成するく
さび型、ナイフ型または円筒型のエッジをそれぞれささ
えて精密駆動機構部に結合するアーム部および/または
柱部内に冷却水をエッジ直下まで導いて通過させる冷却
水通路機構を設け、(III)対向する1対のエッジの進退
をそれぞれ精密駆動機構部のステップモータで駆動し、
その制御を開き幅制御部と開き中心位置制御部の2系統
のパルス発生器によって行なうようにしたことを特徴と
する。
That is, the slit for a charged particle beam of the present invention has, as an overall configuration, an objective slit used in an apparatus for performing physical property / composition analysis of a minute region, fine processing, etc. by using a high energy charged particle beam, (I) A pair of wedge-shaped, knife-shaped, or cylindrical edges that face each other to form a slit gap are arranged in the upstream and downstream directions of the charged particle beam with a slight offset, and (II) the wedge that forms the slit gap. (3) Opposing a cooling water passage mechanism for guiding cooling water to just below the edge and passing it in the arm portion and / or the column portion for supporting the precision drive mechanism portion by supporting the edges of the mold, knife type or cylindrical type respectively, and (III) The step motors of the precision drive mechanism drive the forward and backward movements of the pair of edges,
The control is performed by two systems of pulse generators, an opening width control unit and an opening center position control unit.

(作用) 本発明の前記(I)(II)(III)の各手段はそれぞれの次の作
用により効果をもたらし、それらが相俟って荷電粒子ビ
ームを高精度にまた安定して絞り込むことができ、操作
性に優れたスリットを供給することができる。
(Operation) Each of the means (I), (II), and (III) of the present invention brings about an effect by the following operations, and in combination, they can focus the charged particle beam highly accurately and stably. It is possible to supply a slit having excellent operability.

(I)対向するエッジがビームの上下流方向の少しずらさ
れて配置されているため開き幅を狭めてゆくと、完全閉
鎖を通り越して、ビーム上流からみてエッジがいくらか
重なるところまで、エッジを接触させることなくスリッ
トを閉じることができる。この余裕によりエッジ表面の
不完全さが幾分あったとしても、通過イオンビームをモ
ニターすることによってゼロ点位置を正確に決定できる
ことになり、従ってその後数μmの開き幅が精度良く設
定できることになる。またこの余裕の存在により、ゼロ
点較正するときにエッジおよび精密駆動機構部に過剰負
荷がかかる危険性は回避される。
(I) Opposing edges are arranged slightly offset in the upstream and downstream directions of the beam, so when the aperture width is narrowed, the edges are touched until they pass through the complete closure and overlap from the beam upstream. The slit can be closed without being forced. Even if there is some imperfections on the edge surface due to this margin, the zero point position can be accurately determined by monitoring the passing ion beam, so that the opening width of several μm can be set accurately thereafter. . The presence of this margin also avoids the risk of overloading the edge and precision drive mechanism during zero point calibration.

(II)エッジへの入熱はその直下に抜熱され、またエッジ
をささえるアーム部および/または柱部分内を冷却水が
循環するので、これら部分では温度勾配はなくなり、熱
膨張の影響によるスリット開き幅の変化は抑制される。
従って開き幅はイオンビーム電流に依存せず、常に安定
状態に保たれることになる。
(II) The heat input to the edge is removed immediately below it, and the cooling water circulates inside the arm and / or column that supports the edge, so there is no temperature gradient in these parts, and there is a slit due to the effect of thermal expansion. The change in the opening width is suppressed.
Therefore, the opening width does not depend on the ion beam current and is always kept in a stable state.

(III)スリット開き幅および開き中心位置がそれぞれ別
の制御系によってコントロールされ、また1回の操作で
制御目的が達成されるので、非常に操作性がよくなる。
(III) Since the slit opening width and the opening center position are controlled by different control systems and the control purpose is achieved by one operation, the operability becomes very good.

(実施例) 以下、本発明の荷電粒子ビーム用スリットを、第1〜3
図の好適実施側により具体的に説明し、その特質を明ら
かにする。第1図はこの実施例の1対のエッジの構造
を、上部と下部と均等のため下部を代表させて示す縦断
側面図であり、第2図はその1対のエッジの完全閉鎖し
た状態での相対位置関係を示す部分拡大、縦断側面図で
あり、第3図は本発明の荷電粒子ビーム用スリットの制
御系の構成を示す配置結線図である。
(Example) Hereinafter, the slits for a charged particle beam of the present invention are
The preferred embodiment of the figure will be described in detail to clarify its characteristics. FIG. 1 is a vertical sectional side view showing the structure of a pair of edges of this embodiment as a representative of the lower part because the upper part and the lower part are equal, and FIG. 2 shows the pair of edges in a completely closed state. FIG. 3 is a partially enlarged vertical sectional side view showing the relative positional relationship of FIG. 3 and FIG. 3 is an arrangement wiring diagram showing the configuration of the control system of the charged particle beam slit of the present invention.

第1図に示すように、この実施例では円筒型の上下1対
のエッジ(1)(1)が荷電粒子ビームライン(BL)を挟ん
で開き幅(W)のスリット細隙をその間に形成するように
上下対向させて、ビームライン(BL)と直角の中心軸
線(X)(X)の方向に並進するよう設置されているが、本発
明では、このエッジ(1)(1)の中心軸線(X)(X)はビームラ
イン(BL)の上下流方向に僅かのずれ距離(ε)、例
えば1mmだけ前後にずらせた配置とする。
As shown in FIG. 1, in this embodiment, a pair of cylindrical upper and lower edges (1) and (1) form a slit slit having an opening width (W) between which the charged particle beam line (BL) is sandwiched. It is installed so as to be vertically opposed so as to be translated in the direction of the central axis (X) (X) perpendicular to the beam line (BL), but in the present invention, the center of the edge (1) (1) The axes (X) and (X) are arranged so as to be displaced back and forth by a slight displacement distance (ε), for example, 1 mm in the upstream and downstream directions of the beam line (BL).

各円筒型エッジ(1)は、イオン照射による損傷を受けに
くく前方散乱の少ないよう重金属、例えばMでつくら
れ、熱伝導の良い金属、例えばCu製のエッジ保持金具
(2)に保持され、中心軸線(X)方向の柱状のアーム部(3)
または柱部の先端に取付けられている。アーム部(3)は
2重パイプ構造のステンレス鋼製で、真空ダクト壁(4)
を貫通し、貫通部でOリング(5)によりシールされ、か
つ進退をガイドされる。アーム部(3)は大気側で冷却水
入口(6)および同出口(7)につながる冷却水通路機構が内
部に形成されており、入口(6)から流入した冷却水は内
管内を保持金具(2)の方向に往流しそこで折返して外管
内を復流し、出口(7)から流出して循環する。こうして
アーム部(3)はその全長にわたって温度勾配を与えられ
ることなく、エッジ(1)でのイオンビームからの受熱に
よる熱量は効率よく排出され、膨張による長さ変化は起
こらない。
Each cylindrical edge (1) is made of a heavy metal such as M 0 so that it is not easily damaged by ion irradiation and has little forward scattering.
A columnar arm (3) that is held by (2) and extends along the central axis (X).
Or it is attached to the tip of the pillar. The arm part (3) is made of stainless steel with a double pipe structure, and the vacuum duct wall (4)
And is sealed by an O-ring (5) at the penetrating portion and is guided to move back and forth. The arm part (3) has a cooling water passage mechanism inside the cooling water inlet (6) and the outlet (7) on the atmosphere side, and the cooling water flowing from the inlet (6) holds the inner pipe inside the metal fitting. It flows in the direction of (2), turns back there, returns in the outer pipe, flows out from the outlet (7), and circulates. In this way, the arm portion (3) is not given a temperature gradient over its entire length, the heat amount due to the heat received from the ion beam at the edge (1) is efficiently discharged, and the length change due to expansion does not occur.

またアーム部(3)は大気側で、ボールねじなどの回転・
並進変換機構(8)を経てカップリング(9)を介してステッ
プモータ(10)に駆動連結され、これらは精密駆動機構部
を構成する。ステップモータ(10)の時計回り方向(cw)の
正転によりエッジ(1)はビームライン(BL)の方向に
前進し、反時計回り方向(ccw)の逆転により反対方
向に後退する。
Also, the arm part (3) is on the atmospheric side,
It is drivingly connected to the step motor (10) through the translational conversion mechanism (8) and the coupling (9), and these constitute a precision drive mechanism section. The edge (1) advances in the direction of the beam line (BL) by the forward rotation of the step motor (10) in the clockwise direction (cw), and retracts in the opposite direction by the reverse rotation of the counterclockwise direction (ccw).

本発明では、前期のように一方のエッジ(1)は向い合う
エッジと距離(ε)だけずらされているので、第2図に
示すように、両エッジ(1)(1)が前進して接近し、ビーム
ライン(BL)を超えて前後方向に重なる状態に到達さ
せることができ、この状態で両エッジは固体接触で突当
ることはなく、イオンビームの完全閉鎖が実現できるの
で、スリットの開き中心の位置を容易に確定することが
できる。
In the present invention, one edge (1) is displaced from the facing edge by a distance (ε) as in the previous term, so that both edges (1) and (1) move forward as shown in FIG. It is possible to approach and reach a state where it crosses the beam line (BL) and overlaps in the front-rear direction. In this state, both edges do not hit each other with solid contact, and the ion beam can be completely closed, so that the slit The position of the opening center can be easily determined.

第3図は、本発明の制御系の構成の1例を示し、上下の
相対するステップモータ(10)の各モータドライバー(11)
(11)はそれぞれ正転用OR素子(12)および逆転用OR素
子(13)を介し4台のパルス発生器(14)に接続され、各パ
ルス発生器1(14)はそれぞれ開き幅開/閉および開き中
心の上/下移動の機能になるよう各操作スイッチ(15)に
和合してつながっている。それらの信号はまた開き幅表
示カウンター(16)および開き中心表示カウンター(17)に
もつながり、それぞれの値を表示する。
FIG. 3 shows an example of the configuration of the control system of the present invention, in which motor drivers (11) of the step motors (10) facing each other are provided.
(11) are respectively connected to four pulse generators (14) via a forward rotation OR element (12) and a reverse rotation OR element (13), and each pulse generator 1 (14) is open / closed / opened. And the operation switches (15) are connected to each other so that the function of upward / downward movement of the opening center can be achieved. The signals are also connected to the opening width display counter (16) and the opening center display counter (17) to display the respective values.

この回路系にり4つのスイッチ(15)のうち1つを押すこ
とにより、スリットの調整、設定が簡単に操作できる。
例えば、第3図の上から1番目の開き幅開スイッチ(15)
を押すと、それに連なるパルス発生器(14)からのパルス
は逆転用OR素子を経て上下のモータドライバの逆転
(ccw)に入力され、それによりステップモータ(10)
(10)はステッピング逆転して、エッジ(1)(1)は開き中心
をそのままにして後退して開き幅を開く。同様にして2
番目の開き幅閉スイッチを押すと、上下のステップモー
タはともに正転(cw)して、エッジ(1)(1)は開き中心
をそのまま前進して開き幅を挟める。3番目の開き中心
上げスイッチを押すと、上ステップモータは逆転(cc
w)してそのエッジが上昇し下ステップモータは正転
(cw)してそのエッジじ上昇し、エッジ(1)(1)間の開
き幅はそのまま、開き中心が上方に移行する。4番目の
開き中心下げスイッチを押すと、上ステップモータが正
転してそのエッジが下降し、下ステップモータが逆転し
てそのエッジが下降し、エッジ(1)(1)間の開き幅をその
まま開き中心が下方に移行する。これらの各操作は、上
下の駆動部を交互に操作する必要はなく、一操作で連動
してなされる。
By pressing one of the four switches (15) in this circuit system, the slit adjustment and setting can be easily operated.
For example, the first opening width opening switch (15) from the top of Fig. 3
When is pressed, the pulse from the pulse generator (14) connected to it is input to the reverse rotation (ccw) of the upper and lower motor drivers through the OR element for reverse rotation, whereby the step motor (10)
Step (10) reverses stepping, and edges (1) and (1) move backward with the opening center left unchanged to open the opening width. Similarly 2
When the second opening width closing switch is pressed, the upper and lower step motors both rotate normally (cw), and the edges (1) and (1) move forward without changing the opening center to sandwich the opening width. When the third open center raising switch is pressed, the upper step motor reverses (cc
w), the edge rises, the lower step motor rotates forward (cw), and the edge rises, and the opening width between the edges (1) and (1) remains unchanged, and the opening center moves upward. When the fourth opening center lowering switch is pressed, the upper step motor rotates forward and its edge lowers, and the lower step motor reverses and its edge lowers, and the opening width between edges (1) and (1) is changed. The center of the opening shifts downward as it is. It is not necessary to alternately operate the upper and lower drive parts for each of these operations, and they are performed in a single operation.

(発明の効果) 以上のように、本発明の荷電粒子ビーム用スリットによ
ると、エッジ表面の形状の不完全さがあったとしても透
過イオンビーム電流をモニターすることによってゼロ点
位置を正確に決定できる。そしてこのゼロ点較正に際し
てエッジおよび精密駆動機構部に過剰負荷がかかる危険
性は回避される。このゼロ点確定の結果として数μmの
開き幅が精度良く調節設定できる。しかもこの開き幅制
御は開き中心の調節設定操作と別個の操作によりなさ
れ、一操作でも各調節設定の目的が達せられるので、両
操作とも操作性が非常に良い。またアーム部の熱膨張に
よる変化は抑制され、開き幅はイオンビーム電流に依存
せず、常に安定した状態に保たれるので、精度の良い測
定を行なうことができるようになる。
(Effects of the Invention) As described above, according to the charged particle beam slit of the present invention, the zero point position is accurately determined by monitoring the transmitted ion beam current even if the shape of the edge surface is imperfect. it can. And the risk of overloading the edges and the precision drive mechanism during this zero point calibration is avoided. As a result of the determination of the zero point, an opening width of several μm can be adjusted and set with high accuracy. Moreover, this opening width control is performed by an operation separate from the adjustment setting operation of the opening center, and the purpose of each adjustment setting can be achieved even with one operation, so both operations are very easy to operate. Further, the change due to the thermal expansion of the arm portion is suppressed, and the opening width does not depend on the ion beam current and is always kept in a stable state, so that accurate measurement can be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の好適実施例の荷電粒子ビーム用スリッ
トを下部を代表させ上部を部分省略して示した縦断側面
図、第2図はそのエッジの完全閉鎖状態での部分拡大縦
断側面図、第3図はその制御系の構成の1例を示す配置
結線図、第4図は従来技術の高エネルギー荷電粒子ビー
ム装置の一般的な構成配置を示す図、第5図(イ)は従
来技術のスリットの1例を示す正面図、第5図(ロ)は
そのスリットの1例の部分拡大縦断側面図である。 (1)…円筒型エッジ、(2)…エッジ保持金具、(3)…柱状
アーム部、(4)…真空ダクト壁、(5)…Oリング、(6)…
冷却水入口、(7)…冷却水出口、(8)…回転・並進変換機
構、(9)…カップリング、(10)…ステップモータ、(11)
…モータドライバ、(12)…正転用OR素子、(13)…逆転
用OR素子、(14)…パルス発生器、(15)…操作スイッ
チ、(16)…開き幅表示カウンタ、(17)…開き幅中心表示
カウンタ、(BL)…荷電粒子ビームライン、(w)…開
き幅、(ε)…ずれ距離、(x)…中心軸線、(cw)…時計
回り方向、(ccw)…反対時計回り方向、(a)…静電型加速
器、(b)…イオン源、(c)…加速管、(d)…イオンビー
ム、(e)…偏向分析電磁石、(f)…対物スリット、(g)…
四重極電磁石レンズ、(h)…試料チャンバー、(i)…ター
ゲット、(j)…検出器、(k)…コイル、(l)…エッジ、(m)
…フレキシブルジョイント、(n)…アーム、(p)…圧電素
子、(q)…イオンビーム。
FIG. 1 is a vertical sectional side view showing a charged particle beam slit according to a preferred embodiment of the present invention with a lower portion as a representative and a partially omitted upper portion. FIG. 2 is a partially enlarged vertical sectional side view of the edge in a completely closed state. FIG. 3 is an arrangement wiring diagram showing an example of the configuration of the control system, FIG. 4 is a diagram showing a general arrangement of the high energy charged particle beam device of the prior art, and FIG. FIG. 5B is a partially enlarged vertical sectional side view of an example of the slit, which is a front view showing an example of the slit of the technology. (1) ... cylindrical edge, (2) ... edge holding metal fittings, (3) ... columnar arm, (4) ... vacuum duct wall, (5) ... O ring, (6) ...
Cooling water inlet, (7) ... Cooling water outlet, (8) ... Rotation / translation conversion mechanism, (9) ... Coupling, (10) ... Step motor, (11)
... motor driver, (12) ... OR element for forward rotation, (13) ... OR element for reverse rotation, (14) ... pulse generator, (15) ... operation switch, (16) ... open width display counter, (17) ... Opening width center display counter, (BL) ... Charged particle beam line, (w) ... Opening width, (ε) ... Deviation distance, (x) ... Central axis line, (cw) ... Clockwise direction, (ccw) ... Counterclockwise Circumferential direction, (a) ... electrostatic accelerator, (b) ... ion source, (c) ... accelerating tube, (d) ... ion beam, (e) ... deflection analysis electromagnet, (f) ... objective slit, (g ) ...
Quadrupole magnet lens, (h) ... Sample chamber, (i) ... Target, (j) ... Detector, (k) ... Coil, (l) ... Edge, (m)
… Flexible joint, (n)… arm, (p)… piezoelectric element, (q)… ion beam.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 明男 兵庫県神戸市須磨区中島町2丁目2―4 (56)参考文献 特開 昭64−3948(JP,A) 特開 昭57−50755(JP,A) 特開 昭56−111040(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akio Arai 2-4-4 Nakajima-cho, Suma-ku, Kobe-shi, Hyogo (56) References JP-A-64-3948 (JP, A) JP-A-57-50755 ( JP, A) JP-A-56-111040 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高エネルギー荷電粒子ビームを用いて微小
領域の物性・組成分析、微細加工等をする装置に使用す
る対物スリットとして、 (I)対向してスリット間隙を形成する1対のくさび型、
ナイフ型または円筒型エッジの位置を、荷電粒子ビーム
の上下流方向に、わずかにずらせて配置し、 (II)前記のスリット間隙を形成するくさび型、ナイフ型
または円筒型のエッジをそれぞれささえて精密駆動機構
部に結合するアーム部および/または柱部内に、冷却水
をエッジ直下まで導いて通過させる冷却水通路機構を設
け、 (III)対向する1対のエッジの進退をそれぞれ精密駆動
機構部のステップモータで駆動し、その制御を開き幅制
御部と開き中心位置制御部の2系統のパルス発生器によ
って行なうようにしたことを特徴とする荷電粒子ビーム
用スリット。
1. An objective slit for use in an apparatus for performing physical property / composition analysis of minute regions, fine processing, and the like using a high-energy charged particle beam, (I) a pair of wedge-shaped members forming slit gaps facing each other. ,
The positions of the knife-shaped or cylindrical-shaped edges are arranged in the upstream and downstream directions of the charged particle beam with a slight offset, and (II) Support the wedge-shaped, knife-shaped, or cylindrical-shaped edges that form the above-mentioned slit gap, respectively. A cooling water passage mechanism is provided in the arm portion and / or the column portion that is coupled to the precision driving mechanism portion to guide the cooling water to just below the edge and pass therethrough. (III) The pair of facing edges are moved forward and backward respectively. A slit for a charged particle beam, characterized in that it is driven by a step motor of, and its control is performed by a pulse generator of two systems of an opening width control section and an opening center position control section.
JP2004841A 1989-05-17 1990-01-11 Slit for charged particle beam Expired - Lifetime JPH0644468B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004841A JPH0644468B2 (en) 1990-01-11 1990-01-11 Slit for charged particle beam
EP90109351A EP0398335B1 (en) 1989-05-17 1990-05-17 Converged ion beam apparatus
DE69026751T DE69026751T2 (en) 1989-05-17 1990-05-17 Ion beam focusing device
US07/524,432 US5063294A (en) 1989-05-17 1990-05-17 Converged ion beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004841A JPH0644468B2 (en) 1990-01-11 1990-01-11 Slit for charged particle beam

Publications (2)

Publication Number Publication Date
JPH03210744A JPH03210744A (en) 1991-09-13
JPH0644468B2 true JPH0644468B2 (en) 1994-06-08

Family

ID=11594912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004841A Expired - Lifetime JPH0644468B2 (en) 1989-05-17 1990-01-11 Slit for charged particle beam

Country Status (1)

Country Link
JP (1) JPH0644468B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3721287B2 (en) * 1999-09-01 2005-11-30 日本電子株式会社 Energy selection slit width setting device

Also Published As

Publication number Publication date
JPH03210744A (en) 1991-09-13

Similar Documents

Publication Publication Date Title
US5063294A (en) Converged ion beam apparatus
US5103338A (en) Apparatus for positioning objects for microscopic examination
EP1462795B1 (en) X-Ray diffractometer for grazing incidence switchable between in-plane and out-of-plane measurements
JP2842879B2 (en) Surface analysis method and device
JP5485209B2 (en) Method of tilting a beam column of a beam system
JP2720131B2 (en) X-ray reflection profile measuring method and apparatus
JPH0644468B2 (en) Slit for charged particle beam
JP3235681B2 (en) Ion beam analyzer
JPH08213305A (en) Charged beam transfer device and method
JP3245475B2 (en) EXAFS measurement device
CN110907484A (en) Three-dimensional confocal microbeam X-ray stress gauge
Ko et al. The soft X-ray scanning photoemission microscopy project at SRRC
EP0120535B1 (en) Beam exposure apparatus comprising a diaphragm drive for an object carrier
JPH05215898A (en) X-ray collimator
Ji et al. Surface three-dimensional velocity map imaging: A new technique for the study of photodesorption dynamics
JPH0721958A (en) Objective slit for charged particle beam
KR101008349B1 (en) Double Multilayer Monochromator
JPH10319196A (en) Device for adjusting optical axis of x rays
Imai et al. Current status of nanobeam x-ray diffraction station at SPring-8
Kalbfleisch A dedicated endstation for waveguide-based x-ray imaging
JP2002350370A (en) X-ray measuring apparatus, system for measuring/forming thin film, and method for measuring/forming thin film
Mynard et al. Improved facilities for ion beam surface analysis at the University of Surrey
Matsuyama et al. Current status of the Tohoku microbeam system at Tohoku University and other facilities
Welnak et al. SuperMAXIMUM: A Schwarzschild‐based, spectromicroscope for ELETTRA
Friedrich et al. Mechanical Design of the MID Split-and-Delay Line at the European XFEL

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 16