JPH0644022B2 - Method and apparatus for measuring complex conductivity - Google Patents

Method and apparatus for measuring complex conductivity

Info

Publication number
JPH0644022B2
JPH0644022B2 JP27910087A JP27910087A JPH0644022B2 JP H0644022 B2 JPH0644022 B2 JP H0644022B2 JP 27910087 A JP27910087 A JP 27910087A JP 27910087 A JP27910087 A JP 27910087A JP H0644022 B2 JPH0644022 B2 JP H0644022B2
Authority
JP
Japan
Prior art keywords
signal
measuring
current
complex conductivity
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27910087A
Other languages
Japanese (ja)
Other versions
JPH01121769A (en
Inventor
雅樹 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO BOSAI KAGAKU
KAGAKU GIJUTSUCHO KOKURITSU BO
Original Assignee
KAGAKU GIJUTSUCHO BOSAI KAGAKU
KAGAKU GIJUTSUCHO KOKURITSU BO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO BOSAI KAGAKU, KAGAKU GIJUTSUCHO KOKURITSU BO filed Critical KAGAKU GIJUTSUCHO BOSAI KAGAKU
Priority to JP27910087A priority Critical patent/JPH0644022B2/en
Publication of JPH01121769A publication Critical patent/JPH01121769A/en
Publication of JPH0644022B2 publication Critical patent/JPH0644022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Manufacturing & Machinery (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複数個の点状電極からなる電極系に複数の正
弦波状信号を印加し複素導電率を測定する複素導電率の
測定方法及び装置に関する。
The present invention relates to a method for measuring a complex conductivity, in which a plurality of sinusoidal signals are applied to an electrode system including a plurality of point electrodes to measure a complex conductivity, and Regarding the device.

〔従来技術の問題点〕[Problems of conventional technology]

第6図は複素導電率の測定装置の従来例を示す図であ
る。
FIG. 6 is a diagram showing a conventional example of a complex conductivity measuring device.

物質中の全電流は「伝導電流」と「変位電流」とからな
り、伝導電流は「導電率」、変位電流は「誘電率」で特
徴づけられる。本明細書では両者をまとめた電流の通り
やすさを「電気導電性」という用語で以下に表現する。
The total current in a substance consists of a "conduction current" and a "displacement current", where the conduction current is characterized by "conductivity" and the displacement current is characterized by "dielectric constant". In this specification, the ease of passing an electric current, which is a combination of both, is expressed below by the term "electrically conductive".

従来の電気導電性の測定装置は、第6図に示すように有
限形状の測定電極に正弦波信号を印加し、被測定対象物
についてブリッジや共振回路によりインピーダンスを測
定している。そしてこの測定値から損失角δや実効抵抗
γ、電気容量Cを求め、さらに端縁効果の補正を行い、
導電率δ、誘電率εを計算することによって電気導電性
を測定している。
As shown in FIG. 6, a conventional electric conductivity measuring device applies a sine wave signal to a measuring electrode having a finite shape, and measures the impedance of a measured object using a bridge or a resonance circuit. Then, the loss angle δ, the effective resistance γ, and the electric capacitance C are obtained from the measured values, and the edge effect is corrected,
The electrical conductivity is measured by calculating the electric conductivity δ and the dielectric constant ε.

このような従来の電気導電性の測定では、抵抗率が小さ
い被測定物については低周波における導電率が、逆に、
抵抗率が大きい被測定物については高周波における誘電
率がそれぞれ測定の対象となっていた。この場合、測定
に用いる電極の構造および測定の方法もそれぞれ異なっ
ていた。
In such conventional electrical conductivity measurement, the conductivity at low frequency is low for the DUT having a small resistivity, on the contrary,
The dielectric constant at high frequency was the object of measurement for each of the measured objects having a large resistivity. In this case, the structure of the electrode used for measurement and the method of measurement were also different.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、土壌中に水が浸透するような場合には、水分
量が少なく誘電率が卓越するときと、水分量が多く導電
率が卓越するときとがある。従来、このような被測定物
について、相互にまたがる測定を同一の電極で行うこと
は、上記のように測定に用いる電極の構造および測定の
方法もそれぞれ異なることから困難であった。
By the way, when water penetrates into the soil, there are cases where the water content is small and the dielectric constant is excellent, and there are cases where the water content is large and the electrical conductivity is excellent. Conventionally, it has been difficult to perform the measurement across such an object to be measured with the same electrode because the structure of the electrode used for the measurement and the measurement method are different as described above.

また、従来の誘電率の測定では、同心円筒状など一定の
形状をもった電極が広く用いられているため、電極の形
状によって現れる端縁効果が無視できない、及び電極の
形状が水の浸透を妨げるなど被測定物の電気導電性の変
化に影響を及ぼす、という2つの欠点があった。
Further, in the conventional measurement of the dielectric constant, since an electrode having a constant shape such as a concentric cylindrical shape is widely used, the edge effect that appears depending on the shape of the electrode cannot be ignored, and the shape of the electrode prevents the penetration of water. There are two drawbacks that it affects the change of the electrical conductivity of the measured object, such as interference.

本発明は、上記の問題点を解決するものであって、点状
の電極を用いることによって電極系の構造が被測定物の
電極導電性の変動に影響をおよぼすことなく、同一電極
のままで無限に広がると見做せる被測定物の導電率と誘
電率を複素導電率として同時に測定することを目的とす
る。
The present invention is to solve the above problems, and by using a dot-shaped electrode, the structure of the electrode system does not affect the fluctuation of the electrode conductivity of the DUT, and the same electrode can be used. The purpose is to simultaneously measure the electric conductivity and the permittivity of an object to be measured, which can be considered to spread infinitely, as complex electric conductivity.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の複素導電率の測定方法は、複数個の
点状電極を被測定物中に配置して電流信号を印加するこ
とによって複素導電率を測定する複素導電率の測定方法
であって、電極系の一方に複数の正弦波状信号を印加
し、他方の電位差を測定し、印加信号の電流値と測定信
号の電圧値の比、印加信号の角速度、及び点状電極の配
置により決まる係数から、無限に広がると見做せる被測
定物の複素導電率を算出することを特徴とするものであ
り、その測定装置は、電流信号を印加する点状電極、電
位差を測定する点状電極、印加信号の電流値と角速度を
導出する手段、測定信号の電圧値を導出する手段、点状
電極の配置により決まる係数を設定する手段、及び印加
信号の電流値と測定信号の電圧値との比を求め該比と前
記角速度と前記係数から導電率と誘電率を算出する演算
手段を備えたことを特徴とするものである。
Therefore, the method for measuring the complex conductivity of the present invention is a method for measuring the complex conductivity by arranging a plurality of point electrodes in the DUT and applying a current signal to measure the complex conductivity. , A plurality of sinusoidal signals are applied to one of the electrode systems, the potential difference of the other is measured, the ratio of the current value of the applied signal to the voltage value of the measured signal, the angular velocity of the applied signal, and the coefficient determined by the arrangement of the dot electrodes. From the above, it is characterized by calculating the complex conductivity of the measured object that can be considered to spread infinitely, the measuring device is a point electrode for applying a current signal, a point electrode for measuring the potential difference, A means for deriving the current value of the applied signal and the angular velocity, a means for deriving the voltage value of the measurement signal, a means for setting a coefficient determined by the arrangement of the point electrodes, and a ratio of the current value of the applied signal and the voltage value of the measurement signal. The ratio, the angular velocity, and the coefficient It is characterized in that it comprises a calculating means for calculating a Luo conductivity and dielectric constant.

〔作用〕[Action]

本発明の複素導電率の測定方法及び装置では、複数個の
点状電極からなる電極系に複数の正弦波状信号を印加す
るので、電極の形状による端縁効果の問題がなくなり、
印加信号の電流値と測定信号の電圧値の比、印加信号の
角速度、及び点状電極の配置により決まる係数から、無
限に広がると見做せる被測定物の複素導電率を算出する
ので、簡単に複素導電率を測定することができる。ま
た、測定装置としては、点状電極と、演算手段により構
成され、演算手段は、印加信号の電流値と測定信号の電
圧値の比を求め、印加信号を角速度と係数を使って導電
率と誘電率を演算するものであればよい。
In the method and apparatus for measuring the complex conductivity of the present invention, since a plurality of sinusoidal signals are applied to the electrode system composed of a plurality of point electrodes, the problem of the edge effect due to the shape of the electrodes is eliminated,
It is easy to calculate the complex conductivity of the DUT that can be regarded as infinitely spreading, from the ratio of the current value of the applied signal to the voltage value of the measured signal, the angular velocity of the applied signal, and the coefficient determined by the arrangement of the point electrodes. The complex conductivity can be measured. The measuring device is composed of point electrodes and an arithmetic means, and the arithmetic means obtains the ratio between the current value of the applied signal and the voltage value of the measured signal, and determines the applied signal as the conductivity using the angular velocity and the coefficient. Anything that calculates the dielectric constant may be used.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Hereinafter, embodiments will be described with reference to the drawings.

第1図は本発明に係る複素導電率の測定方法を説明する
ための点状電極系の配置例を示す図、第2図は電位信号
を実数軸に一致させたときの電流信号と電位信号との位
相関係を示す図、第3図は本発明に係る弗素導電率の測
定装置の1実施例構成を示す図である。
FIG. 1 is a diagram showing an arrangement example of a point electrode system for explaining a method for measuring a complex conductivity according to the present invention, and FIG. 2 is a current signal and a potential signal when the potential signal is matched with a real axis. FIG. 3 is a diagram showing the phase relationship with and FIG. 3 is a diagram showing the configuration of one embodiment of the apparatus for measuring fluorine conductivity according to the present invention.

第1図において、1〜4はそれぞれ点状電極であり、2
個の電極1、4(以下この電極を電流極と呼ぶ)は、被
測定物に正弦波状の電流を印加し、2個の電極2、3
(以下この電極を電位極と呼ぶ)は、着目する地点を代
表する2点における電位差を測定するものである。本発
明は、この点状電極より印加した正弦波状の電流信号と
測定される電圧、さらには、電極の配置係数から複素導
電率を求めるものである。
In FIG. 1, 1 to 4 are point electrodes, respectively,
The electrodes 1 and 4 (hereinafter, this electrode is referred to as a current electrode) apply a sinusoidal current to the object to be measured, and
(Hereinafter, this electrode is referred to as a potential electrode) measures the potential difference at two points representing the point of interest. In the present invention, the complex conductivity is obtained from the sinusoidal current signal applied from the point electrodes, the voltage measured, and the placement coefficient of the electrodes.

次に、本発明の測定原理を説明する。Next, the measurement principle of the present invention will be described.

電流極1、4より電流値の正弦波状信号を印加したと
きの電位極2と3の間の電位差は となる。ただし、σは複素導電率であり、印加電流信
号の角周波数をωとおけば導電率σ、誘電率εとの間に
は次の関係がある。
The potential difference between the potential poles 2 and 3 when a sinusoidal signal having a current value is applied from the current poles 1 and 4 is Becomes However, σ * is a complex conductivity, and assuming that the angular frequency of the applied current signal is ω, the conductivity σ and the permittivity ε have the following relationship.

σ=σ+jωε …(2) また、Kは点状電極の配置のしかたによってきまる係数
であり、無限に広がると見做せる物質中では、 である。γi,j はそれぞれ電極iと電極jとの距離をあ
らわす。、は正弦波状信号の複素数による表現であ
ることを示し、 である。第2図のは(1)式における電流信号、は
電位信号、φはこれらの信号の位相差を示したものであ
る。
σ * = σ + jωε (2) Further, K is a coefficient determined by the arrangement of the point electrodes, and in a substance that can be regarded as infinitely wide, Is. γ i, j represents the distance between the electrode i and the electrode j, respectively. , Indicates that it is a complex number representation of a sinusoidal signal, Is. In FIG. 2, the current signal, the potential signal, and φ in the equation (1) represent the phase difference between these signals.

ここで複数の入力周波数について導電率σおよび誘電率
εの値がそれぞれ等しいとすると、上記(1)、
(2)、(4)式より、 となる。ただし、 R=V/I …(6) であり、φは第2図における電流信号と電圧信号との位
相差(=「損失角」)、添字は入力角周波数ωに対
する応答であることを示す。
Assuming that the values of the conductivity σ and the permittivity ε are the same for a plurality of input frequencies, the above (1),
From equations (2) and (4), Becomes However, R i = V i / I i (6), φ is the phase difference (= “loss angle”) between the current signal and the voltage signal in FIG. 2, and the subscript i is the response to the input angular frequency ω i . Is shown.

周波数の異なるn種類の正弦波の各々について(5)式
が成り立つから、それらを、 に代入し、(7)式について最小2乗法を適用すれば、
導電率σと誘電率εが次のように求まる。
Since equation (5) holds for each of n types of sine waves with different frequencies, And apply the least squares method to equation (7),
The conductivity σ and the permittivity ε are obtained as follows.

ただし、 であり、[ ]は、 を表す記号である。 However, And [] is Is a symbol that represents.

上記(8)式において、右辺は、点状電極系の形状で決
まる係数K、入力信号の角周波数ω、印加電流Iと測定
電圧Vの比Rのみが含まれる。このうち、Kとωは測定
条件による既知のパラメータであるから、Rを測定すれ
ば導電率σと誘電率εが求められることになる。
In the above equation (8), the right side includes only the coefficient K determined by the shape of the point electrode system, the angular frequency ω of the input signal, and the ratio R of the applied current I and the measured voltage V. Among these, K and ω are known parameters depending on the measurement conditions, and therefore by measuring R, the conductivity σ and the permittivity ε can be obtained.

このように点状電極を配置し、一方から正弦波の電流信
号を印加し、他方で電位差を測定すればあとは既知のパ
ラメータを使うことによって導電率σと誘電率εを求め
ることができるので、測定装置としては、第3図に示す
ような構成を採用することができる。
By arranging the point electrodes in this way, applying a sinusoidal current signal from one side, and measuring the potential difference on the other side, the conductivity σ and the permittivity ε can be obtained by using known parameters. As the measuring device, the structure shown in FIG. 3 can be adopted.

第3図において、11は電流信号発生源、12は切り換
えスイッチ、13は被測定対象物、14は測定部、15
と19は演算部、16は電流値導出部、17は角速度導
出部、18は係数設定部を示す。電流信号発生源11
は、点状電極に印加する角速度ω、ωの正弦波状電
流信号を発生するものであり、そのいずれの信号を被測
定対象物13の中に設置した点状電極に印加するかを切
り換えるのが切り換えスイッチ12である。測定部14
は、点状電極の電圧信号を測定するものである。電極値
導出部16及び角度度導出部17は、電流信号発生源1
1により発生された電流信号に対応するそれぞれの値を
導出するものであり、例えば予め電流信号発生源11に
対応して設定され、切り換えスイッチ12の位置に応じ
て選択するように構成してもよい。また、係数設定部1
8は、被測定対象物13の中に設置した点状電極の配置
に対応した係数が測定されるものである。演算部15
は、電圧値と電流値との比を求めるものであり、演算部
19は、演算部15の出力と角速度と係数から上記
(8)式の演算を行って導電率σと誘電率εとを求める
ものである。
In FIG. 3, 11 is a current signal generation source, 12 is a changeover switch, 13 is an object to be measured, 14 is a measuring unit, and 15 is a measuring unit.
Reference numerals 19 and 19 denote a calculation unit, 16 denotes a current value derivation unit, 17 denotes an angular velocity derivation unit, and 18 denotes a coefficient setting unit. Current signal source 11
Generates a sinusoidal current signal of angular velocities ω 1 and ω 2 to be applied to the point electrode, and switches which of these signals is applied to the point electrode installed in the object 13 to be measured. Is the changeover switch 12. Measuring unit 14
Is for measuring the voltage signal of the point electrode. The electrode value derivation unit 16 and the angle degree derivation unit 17 are provided in the current signal generation source 1
Each value corresponding to the current signal generated by 1 is derived. For example, the value may be set in advance corresponding to the current signal generation source 11 and selected according to the position of the changeover switch 12. Good. Also, the coefficient setting unit 1
8 is for measuring the coefficient corresponding to the arrangement of the point electrodes installed in the measured object 13. Computing unit 15
Is to obtain the ratio between the voltage value and the current value, and the calculation unit 19 calculates the above equation (8) from the output of the calculation unit 15, the angular velocity and the coefficient to obtain the conductivity σ and the dielectric constant ε. It is what you want.

第4図は方形波状の信号を印加する場合に適用される本
発明の他の実施例構成を示す図、第5図は任意波形の信
号を印加する場合に適用される本発明の他の実施例構成
を示す図である。図中、第3図と同一符号は同一の構成
手段を示し、14′と21は測定部16′、17′は設
定部、20と22は演算部、23は角速度検出部を示
す。
FIG. 4 is a diagram showing the configuration of another embodiment of the present invention applied when a square wave signal is applied, and FIG. 5 is another embodiment of the present invention applied when an arbitrary waveform signal is applied. It is a figure which shows an example structure. In the figure, the same reference numerals as in FIG. 3 indicate the same components, 14 'and 21 are measuring units 16', 17 'are setting units, 20 and 22 are calculating units, and 23 is an angular velocity detecting unit.

複数の正弦波電流信号を印加する方法として、上記の如
く複数の正弦波電流発生手段を用意し、これを切り換え
て印加するのも1つの方法であるが、方形波状の信号波
形や任意の信号波形を使用してもよいことは勿論であ
る。この場合には、印加電流信号波形と測定電位波形を
直接に或いは一度記録した後、着目する複数の周波数に
ついてフーリエ係数を求め、その振幅の比を得れば同様
に(8)式を使って複素導電率を求めることができる。
その例を示したのが第4図及び第5図である。これらの
場合には、上記の如くフーリエ係数を求めることから、
当然そのための演算手段が必要となり、第4図及び第5
図ではこれらの手段が組み込まれた構成(演算手段20
〜23)となっている。また、第4図に示す例は、印加
する電流信号について、電流値及び角速度として特定の
値を予め既知のものとして設定しているが、第5図に示
す例は、印加する電流信号についてもフーリエ係数を求
めるように構成している。
As a method of applying a plurality of sine wave current signals, it is also one method to prepare a plurality of sine wave current generating means as described above, and switch and apply them, but a square wave signal waveform or an arbitrary signal Of course, corrugations may be used. In this case, after directly or once recording the applied current signal waveform and the measured potential waveform, Fourier coefficients are obtained for a plurality of frequencies of interest, and if the amplitude ratio is obtained, the equation (8) is similarly used. Complex conductivity can be determined.
Examples thereof are shown in FIGS. 4 and 5. In these cases, since the Fourier coefficient is calculated as described above,
As a matter of course, a calculation means for that is required, and the calculation means shown in FIGS.
In the figure, a configuration in which these means are incorporated (calculation means 20
~ 23). Further, in the example shown in FIG. 4, the current value to be applied and the specific value of the angular velocity are set as known values in advance, but the example shown in FIG. 5 is also applied to the current signal to be applied. It is configured to obtain the Fourier coefficient.

なお、本発明は、上記の実施例に限定されるものではな
く、種々の変形が可能である。例えば上記の実施例にお
いて、方形波状の入力電流を印加する場合においても、
角速度及び電流値について任意波形を使う場合と同様な
信号設定系を採用してもよいことはいうまでもない。
The present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above embodiment, even when a square wave input current is applied,
It goes without saying that a signal setting system similar to the case of using an arbitrary waveform for the angular velocity and the current value may be adopted.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明によれば、点状
電極を使用するので、 電極の形状による端縁効果が現れない 被測定物の電気導電性の変化が電極の形状によって
妨げられない 電極の配置を変えることにより被測定物の測定範囲
を任意に設定できる 等の効果を得ることができる。
As is clear from the above description, according to the present invention, since the point electrode is used, the edge effect due to the shape of the electrode does not appear. The change in the electrical conductivity of the DUT is not hindered by the shape of the electrode. By changing the arrangement of the electrodes, it is possible to obtain the effect that the measurement range of the object to be measured can be arbitrarily set.

また、複数の正弦波状信号に着目した測定方法を採用し
ているので、 印加電流と測定電圧の位相差(損失角)を測定する
必要がなくなる 入力信号として正弦波状電流を使用すれば、IとV
の測定に実効値指示又は平均値指示の直読型の交流計器
を使用できる 等の効果を得ることができる。
In addition, because the measurement method that focuses on multiple sinusoidal signals is used, there is no need to measure the phase difference (loss angle) between the applied current and the measured voltage. V
It is possible to obtain the effect that a direct-reading type AC meter of RMS value indication or average value indication can be used for measurement of.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る複素導電率の測定方法を説明する
ための点状電極系の配置例を示す図、第2図は電位信号
を実数軸に一致させたときの電流信号と電位信号との位
相関係を示す図、第3図は本発明に係る複素導電率の測
定装置の1実施例構成を示す図、第4図は方形波状の信
号を印加する場合に適用される本発明の他の実施例構成
を示す図、第5図は任意波形の信号を印加する場合に適
用される本発明の他の実施例構成を示す図、第6図は複
素導電率の測定装置の従来例を示す図である。 1〜4……点状電極、11……電流信号発生源、12…
…切り換えスイッチ、13……被測定対象物、14……
測定部、15と19……演算部、16……電流値導出
部、17……角速度導出部、18……係数設定部。
FIG. 1 is a diagram showing an arrangement example of a point electrode system for explaining a method for measuring a complex conductivity according to the present invention, and FIG. 2 is a current signal and a potential signal when the potential signal is matched with a real axis. FIG. 3 is a diagram showing a phase relationship with FIG. 3, FIG. 3 is a diagram showing a configuration of one embodiment of a complex conductivity measuring device according to the present invention, and FIG. 4 is a diagram showing the present invention applied when a square wave signal is applied. FIG. 5 is a diagram showing the configuration of another embodiment, FIG. 5 is a diagram showing the configuration of another embodiment of the present invention applied when an arbitrary waveform signal is applied, and FIG. 6 is a conventional example of a complex conductivity measuring device. FIG. 1 to 4 ... Point electrodes, 11 ... Current signal generation source, 12 ...
... Changeover switch, 13 ... Object to be measured, 14 ...
Measuring unit, 15 and 19 ... Calculation unit, 16 ... Current value deriving unit, 17 ... Angular velocity deriving unit, 18 ... Coefficient setting unit.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】複数個の点状電極を被測定物中に配置して
電流信号を印加することによって複素導電率を測定する
複素導電率の測定方法であって、電極系の一方に複数の
正弦波状信号を印加し、他方の電位差を測定し、印加信
号の電流値と測定信号の電圧値の比、印加信号の角速
度、及び点状電極の配置により決まる係数から、無限に
広がると見做せる被測定物の複素導電率を算出すること
を特徴とする複素導電率の測定方法。
1. A method of measuring complex conductivity in which a plurality of point electrodes are arranged in an object to be measured and a current signal is applied to the complex conductivity, wherein a plurality of electrodes are provided on one side of an electrode system. A sinusoidal signal is applied, the potential difference of the other is measured, and it is assumed that it will spread infinitely from the ratio of the current value of the applied signal to the voltage value of the measured signal, the angular velocity of the applied signal, and the coefficient determined by the arrangement of the point electrodes. A method of measuring complex conductivity, comprising calculating the complex conductivity of an object to be measured.
【請求項2】矩形波状信号により同時に複数の正弦波状
信号を印加し、フーリエ係数を求めて信号処理すること
を特徴とする特許請求の範囲第1項記載の複素導電率の
測定方法。
2. The method for measuring complex conductivity according to claim 1, wherein a plurality of sinusoidal signals are simultaneously applied by the rectangular wave signal, and the Fourier coefficient is obtained for signal processing.
【請求項3】任意の信号波形信号により同時に複数の正
弦波状信号を印加し、フーリエ係数を求めて信号処理す
ることを特徴とする特許請求の範囲第1項記載の複素導
電率の測定方法。
3. The method for measuring complex conductivity according to claim 1, wherein a plurality of sinusoidal signals are simultaneously applied by arbitrary signal waveform signals, and Fourier coefficients are obtained to perform signal processing.
【請求項4】複数個の点状電極を被測定物中に配置して
電流信号を印加することによって複素導電率を測定する
複素導電率の測定装置であって、電流信号を印加する点
状電極、電位差を測定する点状電極、印加信号の電流値
と角速度を導出する手段、測定信号の電圧値を導出する
手段、点状電極の配置により決まる係数を設定する手
段、及び印加信号の電流値と測定信号の電圧値との比を
求め該比と前記角速度と前記係数から導電率と誘電率を
算出する演算手段を備えたことを特徴とする複素導電率
の測定装置。
4. A complex conductivity measuring device for measuring a complex conductivity by arranging a plurality of point electrodes in an object to be measured and applying a current signal, wherein the point signal to which a current signal is applied. Electrodes, point electrodes for measuring the potential difference, means for deriving the current value and angular velocity of the applied signal, means for deriving the voltage value of the measured signal, means for setting a coefficient determined by the arrangement of the point electrodes, and current for the applied signal An apparatus for measuring a complex conductivity, comprising a calculating means for obtaining a ratio between a value and a voltage value of a measurement signal, and calculating a conductivity and a dielectric constant from the ratio, the angular velocity and the coefficient.
【請求項5】印加信号の電流値と角速度を導出する手段
は、印加信号の電流波形よりフーリエ係数を求めること
によって電流値と角速度を導出することを特徴とする特
許請求の範囲第4項記載の複素導電率の測定装置。
5. The method according to claim 4, wherein the means for deriving the current value and the angular velocity of the applied signal derives the current value and the angular velocity by obtaining a Fourier coefficient from the current waveform of the applied signal. Complex conductivity measuring device.
【請求項6】測定信号の電圧値を導出する手段は、測定
信号の電圧波形よりフーリエ係数を求めることによって
電圧値を導出することを特徴とする特許請求の範囲第4
項記載の複素導電率の測定装置。
6. The means for deriving the voltage value of the measurement signal derives the voltage value by obtaining a Fourier coefficient from the voltage waveform of the measurement signal.
Item 7. A device for measuring complex conductivity according to the item.
JP27910087A 1987-11-06 1987-11-06 Method and apparatus for measuring complex conductivity Expired - Lifetime JPH0644022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27910087A JPH0644022B2 (en) 1987-11-06 1987-11-06 Method and apparatus for measuring complex conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27910087A JPH0644022B2 (en) 1987-11-06 1987-11-06 Method and apparatus for measuring complex conductivity

Publications (2)

Publication Number Publication Date
JPH01121769A JPH01121769A (en) 1989-05-15
JPH0644022B2 true JPH0644022B2 (en) 1994-06-08

Family

ID=17606415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27910087A Expired - Lifetime JPH0644022B2 (en) 1987-11-06 1987-11-06 Method and apparatus for measuring complex conductivity

Country Status (1)

Country Link
JP (1) JPH0644022B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008933A1 (en) * 2004-07-16 2006-01-26 Kaneka Corporation Pile fabric
JP6047692B2 (en) * 2012-03-23 2016-12-21 株式会社メガチップス Moisture detection device, electrical conductivity detection device, sensor network system, program, moisture detection method, and electrical conductivity detection method

Also Published As

Publication number Publication date
JPH01121769A (en) 1989-05-15

Similar Documents

Publication Publication Date Title
US7940038B2 (en) Grid sensor for the two-dimensional measurement of different components in the cross section of a multiphase flow
JP7182510B2 (en) Non-contact DC voltage measuring device with vibration sensor
US4920490A (en) Process and apparatus for distinguishing conductivities by electric current computed tomography
CN109690260B (en) Displacement current phase tomography for lossy media imaging
Riu et al. Multi-frequency static imaging in electrical impedance tomography: Part 1 instrumentation requirements
JP7219668B2 (en) Multi-sensor scanner configuration for non-contact voltage measurement devices
JPH08136209A (en) Detection of geometrical position,displacement or angle of movable body and noncontact capacity-reference-position sensor
EP3567384A1 (en) Multi-sensor configuration for non-contact voltage measurement devices
JP2005052227A (en) Instrument measuring water content of stratum corneum non-affected by electrolyte component on skin surface
JPH0644022B2 (en) Method and apparatus for measuring complex conductivity
CN104067113A (en) Low-conductivity contacting-type conductivity measurement system
TREFFENE Interferential fields in a fluid medium
JP2598991Y2 (en) Insulation leakage current measuring device
WO1997001090A1 (en) Method for measuring the water content of growing substrates
JP7356730B2 (en) Soil evaluation sensor, soil evaluation system, electrode for soil evaluation sensor, and device for obtaining soil impedance characteristics
JPH09243683A (en) Method and device for measurement of resistivity, electric conductivity and/or permittivity
JP3446918B2 (en) Cable length detection circuit and cable length detection method
Pinheiro et al. Three-dimensional reconstruction algorithm for electrical resistance tomography
Rohlicek et al. Measurement of membrane capacitance and resistance of single cells using two frequencies
RU2695025C1 (en) Two-probe method of measuring phase shifts of distributed rc-structure
Shima et al. Fast imaging of shallow resistivity structures using a multichannel capacitive electrode system
RU2695030C1 (en) Device for double-probe measurement of phase shifts of distributed rc-structure
CN115980435A (en) Double-sensor voltage measuring system
Nilsson A new combined resistivity-and induced polarization-instrument and a new theory of the induced polarization-phenomenon
JPH043809B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term