JPH0643959B2 - Method and apparatus for analyzing asphaltene components in fuel oil - Google Patents

Method and apparatus for analyzing asphaltene components in fuel oil

Info

Publication number
JPH0643959B2
JPH0643959B2 JP1069484A JP6948489A JPH0643959B2 JP H0643959 B2 JPH0643959 B2 JP H0643959B2 JP 1069484 A JP1069484 A JP 1069484A JP 6948489 A JP6948489 A JP 6948489A JP H0643959 B2 JPH0643959 B2 JP H0643959B2
Authority
JP
Japan
Prior art keywords
fuel oil
asphaltene
heptane
low
diluting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1069484A
Other languages
Japanese (ja)
Other versions
JPH02248844A (en
Inventor
憲一 園田
陽一 中村
俊明 ▲吉▼川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP1069484A priority Critical patent/JPH0643959B2/en
Publication of JPH02248844A publication Critical patent/JPH02248844A/en
Publication of JPH0643959B2 publication Critical patent/JPH0643959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低質燃料油中のアスファルテン成分を迅速、
かつ簡便に、しかも正確に分析する方法およびその装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is intended to rapidly remove asphaltene components in low-quality fuel oil,
In addition, the present invention relates to a method and an apparatus for performing simple and accurate analysis.

〔従来の技術〕[Conventional technology]

燃料油のアスファルテン成分分析は、一般には、石油学
会法(IP143)等に基づく化学実験的手法で行われてお
り、この方法におけるn(ノルマル)−ヘプタンに不溶
で、トルエンに溶解する成分が、アスファルテンと定義
づけられている。
The asphaltene component analysis of fuel oil is generally carried out by a chemical experimental method based on the Japan Petroleum Institute method (IP143) and the like. In this method, a component that is insoluble in n (normal) -heptane and soluble in toluene is It is defined as asphaltene.

この石油学会法によるアスファルテン成分試験方法は、
以下のとおりである。
Asphaltene component test method by this Petroleum Institute method,
It is as follows.

(1)燃料油をろ紙上でn−ヘプタンで希釈(15倍)した
後、1時間還流煮沸し、その後、暗所で1.5〜2.5時間放
置冷却する。なお、ろ液はマルテン+n−ヘプタンであ
る。
(1) The fuel oil is diluted (15 times) with n-heptane on a filter paper, boiled under reflux for 1 hour, and then left to cool in the dark for 1.5 to 2.5 hours. The filtrate is martens + n-heptane.

(2)ろ紙上の物質をトルエンで1時間還流ろ過する。(2) The substance on the filter paper is reflux-filtered with toluene for 1 hour.

(3)還流ろ過したろ液(アスファルテン+トルエン)を
容器に受け、沸騰水浴上でトルエンを蒸発除去した後、
乾燥器中に入れ、100〜110℃で30分間乾燥し、さらに
デシケータ中で0.5〜1時間放冷した後、重量計測して
アスファルテン成分を求める。
(3) After receiving the filtrate (asphaltene + toluene) filtered under reflux in a container and removing the toluene by evaporation on a boiling water bath,
It is put in a drier, dried at 100 to 110 ° C. for 30 minutes, and allowed to cool in a desiccator for 0.5 to 1 hour, and then weighed to obtain an asphaltene component.

また、最近、燃料油をn−ヘプタンで希釈した溶液と、
この溶液から浮遊アスファルテンを除いたマルテン溶液
との吸光度差または吸光度比から、アスファルテンを推
量する方法が提案されている。
Also, recently, a solution obtained by diluting fuel oil with n-heptane,
A method has been proposed in which asphaltene is estimated from the difference in absorbance or the absorbance ratio with a marten solution obtained by removing floating asphaltene from this solution.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

低質燃料油を、たとえば舶用エンジンに用いる場合、燃
料油中のアスファルテン成分によってエンジンの運転状
態を変更・調節する必要がある。このため、燃料油タン
クを切り換えた場合などに、船内でアスファルテン成分
を迅速・簡便に分析することが要求される。
When low-quality fuel oil is used in, for example, a marine engine, it is necessary to change / adjust the operating condition of the engine by the asphaltene component in the fuel oil. Therefore, when the fuel oil tank is switched, it is required to analyze the asphaltene component onboard the ship quickly and easily.

しかしながら、前記の石油学会法では、分析に5〜6時
間以上かかり、また、自動化する場合、溶剤の沸騰水浴
上での蒸発除去や精密重量計測など、非常に自動化が困
難な操作が含まれている。
However, the above-mentioned Petroleum Institute method takes 5 to 6 hours or more for analysis, and when it is automated, it involves operations that are very difficult to automate, such as evaporation removal of solvent on a boiling water bath and precise weight measurement. There is.

また、前記の燃料油をn−ヘプタンで希釈した溶液を用
いて吸光度差または吸光度比を測定する方法は、マルテ
ン溶液および希釈溶液の吸光波長を考慮に入れる必要が
あり、本発明者らの実験によれば、精度があまり良くな
いという不都合がある。
Further, the method of measuring the absorbance difference or the absorbance ratio using the solution obtained by diluting the fuel oil with n-heptane needs to take the absorption wavelengths of the marten solution and the diluted solution into consideration. According to the method, there is a disadvantage that the accuracy is not so good.

本発明は、上記の点に鑑みなされたもので、アルファル
テン成分の定義に忠実に沿った上で、短時間で沈降しな
いアスファルテンの超微粒子を試料液中に生成させ、そ
の光散乱による濁りを計量することで、乾燥・重量計測
などの自動化に困難な工程を光技術に置き換えて、自動
化に適した燃料油中のアスファルテン成分分析方法およ
びその装置を提供することを目的とするものである。
The present invention has been made in view of the above points, and in accordance with the definition of the alfartene component, ultrafine particles of asphaltene that does not sediment in a short time are generated in the sample liquid, and turbidity due to light scattering thereof is generated. An object of the present invention is to provide a method and an apparatus for analyzing asphaltene components in fuel oil, which are suitable for automation, by replacing processes that are difficult to automate, such as drying and weighing, with optical technology by weighing.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の燃料油中のアスファルテン成分分析方法は、予
めトルエンまたはキシレン等によりアスファルテンを溶
解させた後、不沈降性のゾル状の超微粒子を生成させ
て、完全溶解液と光散乱量を対比させることにより、低
質燃料油中のアスファルテン成分を光学的に定量する手
法である。
The method for analyzing the asphaltene component in fuel oil of the present invention is to dissolve asphaltene with toluene, xylene or the like in advance, and then generate non-sedimentation sol-like ultrafine particles to compare the amount of light scattering with the amount of light scattering. This is a method for optically quantifying asphaltene components in low-quality fuel oil.

第8図は、懸濁液(ゾル化液)の吸光度と経過時間との
関係を示している。波長750nm、10mmのセルで試料a、
b、c、dについて実験を行った。吸光度に変化が見ら
れないのは、微粒子状のアスファルテンが安定に浮遊し
ていることを示している。
FIG. 8 shows the relationship between the absorbance of the suspension (sol solution) and the elapsed time. Sample a with a wavelength of 750 nm and a cell of 10 mm
Experiments were conducted on b, c and d. The fact that there is no change in the absorbance indicates that the particulate asphaltene is stably floating.

本発明の方法は、第8図に示すように、沈降しないゾル
状アルファルテンを作ることが前提となっている。
The method of the present invention is premised on producing sol-like alfaltenes that do not settle, as shown in FIG.

上記の目的を達成するために、本発明の燃料油中のアス
ファルテン成分分析方法は、低質燃料油をn−ヘプタン
で希釈して溶解させたアスファルテン懸濁液と、同じ低
質燃料油をトルエンでn−ヘプタンの場合と同じ倍率に
希釈して完全溶解させた液とをゾル化の状態で光散乱量
を対比測定するものである。
In order to achieve the above object, the method for analyzing asphaltene components in fuel oil according to the present invention comprises: an asphaltene suspension prepared by diluting and dissolving a low-quality fuel oil with n-heptane; -The amount of light scattering is measured by contrast with a solution obtained by diluting at the same magnification as heptane and completely dissolved, in a sol state.

また、本発明の方法は、低質燃料油をn−ヘプタンで希
釈して溶解させたアスファルテン懸濁液と、同じ低質燃
料油をトルエンでn−ヘプタンの場合と同じ倍率に希釈
して完全溶解させた液との透過光吸収率差を測定し、光
の散乱(濁り)またはこの透過光吸収率差から低質燃料
油中のアスファルテン成分を推定するものである。
In addition, the method of the present invention comprises a asphaltene suspension prepared by diluting and dissolving low-quality fuel oil with n-heptane, and the same low-quality fuel oil is diluted with toluene to the same ratio as in the case of n-heptane to completely dissolve it. The asphaltene component in low quality fuel oil is estimated from the difference in transmitted light absorptivity with the liquid and scattering of light (turbidity) or the difference in the transmitted light absorptivity.

さらに、本発明の方法は、上記の方法において、透過光
吸収率差の代りに、濁度差を測定するものである。
Furthermore, in the method of the present invention, the difference in turbidity is measured instead of the difference in transmitted light absorptance in the above method.

そして、本発明の燃料油中のアスファルテン成分分析装
置は、第1図に示すように、低質燃料油をn−ヘプタン
で希釈して溶解させたアスファルテン懸濁液の吸光度、
透過光吸収率または濁度を測定する第1光学的測定部1
と、同じ低質燃料油をトルエンでn−ヘプタンの場合と
同じ倍率に希釈して完全溶解させた液の吸光度、透過光
吸収率または濁度を測定する第2光学的測定部2と、こ
れらの光学的測定部1、2に接続された演算・出力部3
とを包含するものである。なお、演算・出力部3は表示
機能をも含んでいる。4は試料油タンク、5はポンプ、
6は廃油タンクである。7はアスファルテンを前もって
溶解させる攪拌溶解槽である。
Then, the apparatus for asphaltene component analysis in fuel oil of the present invention, as shown in FIG. 1, the absorbance of the asphaltene suspension obtained by diluting and dissolving low-quality fuel oil with n-heptane,
First optical measuring unit 1 for measuring transmitted light absorption rate or turbidity
And a second optical measuring unit 2 for measuring the absorbance, transmitted light absorptivity or turbidity of a liquid obtained by diluting the same low-quality fuel oil with toluene to the same magnification as in the case of n-heptane and completely dissolving it. Calculation / output unit 3 connected to the optical measuring units 1 and 2
And include. The calculation / output unit 3 also includes a display function. 4 is a sample oil tank, 5 is a pump,
6 is a waste oil tank. 7 is a stirring and dissolving tank for preliminarily dissolving asphaltene.

〔作用〕[Action]

試料油タンク4内の低質燃料油、または低質燃料油を予
め少量トルエンにて希釈して流動化し易くした油をポン
プ5で吸引し、攪拌溶解槽7でさらに20〜100倍にト
ルエンで希釈・溶解させ、その一部を2系列に吐出す
る。一方の系列にn−ヘプタンを低質燃料油の500〜200
0容量倍になるように注入し希釈して、マルテン分のみ
を溶解させてアスファルテンゾル状懸濁液とする。この
アスファルテン懸濁液を第1光学的測定部1に導入し
て、吸光度、透過光吸収率または濁度を測定する。
The low-quality fuel oil in the sample oil tank 4 or the low-quality fuel oil previously diluted with a small amount of toluene to facilitate fluidization is sucked by the pump 5, and further diluted with toluene 20 to 100 times in the stirring and dissolving tank 7. It is melted and a part thereof is discharged in two lines. One series is n-heptane 500-200 of low quality fuel oil
It is injected and diluted so that it becomes 0 volume times, and only the maltene content is dissolved to obtain an asphaltene sol suspension. This asphaltene suspension is introduced into the first optical measurement unit 1 to measure the absorbance, transmitted light absorptance or turbidity.

他方の系列にトルエンをn−ヘプタンの場合と同じ倍率
になるように注入し希釈して、マルテンおよびアスファ
ルテンを完全溶解させる。この液を第2光学的測定部2
に導入して、吸光度、透過光吸収率または濁度を測定す
る。
Toluene is poured into the other series at the same magnification as in the case of n-heptane and diluted to completely dissolve martens and asphaltene. This liquid is used as the second optical measurement unit 2
Then, the absorbance, transmitted light absorption rate or turbidity is measured.

第1光学的測定部1および第2光学的測定部2で測定し
た値は、演算・出力部3に導入され、吸光度差、透過光
吸収率差または濁度差が計測され、この差の値からアス
ファルテン成分が推定される。
The values measured by the first optical measurement unit 1 and the second optical measurement unit 2 are introduced into the calculation / output unit 3, and the difference in absorbance, the difference in transmitted light absorptance, or the difference in turbidity is measured. The asphaltene component is estimated from this.

一般に、低質燃料油をn−ヘプタン、トルエン等で希釈
する際、希釈倍率が20容量倍未満の場合は、n−ヘプ
タン希釈液およびトルエン希釈液の黒色の度合いが強過
ぎ、吸光度差、透過光吸収率差または濁度差を求めるこ
とができないという不都合がある。
Generally, when diluting low-quality fuel oil with n-heptane, toluene, etc., if the dilution ratio is less than 20 times by volume, the degree of blackness of the n-heptane diluted solution and the toluene diluted solution is too strong, the difference in absorbance, the transmitted light. There is an inconvenience that the difference in absorption rate or the difference in turbidity cannot be obtained.

一方、希釈倍率が100容量倍を越える場合は、均一なア
スファルテンの沈澱を作ることが難しく、誤差の増大を
まねく上に、溶剤使用量が増大して不経済であるという
不都合がある。そのためにも、希釈処理液は二段階で処
理することが望ましい。
On the other hand, when the dilution ratio exceeds 100 times by volume, it is difficult to form a uniform asphaltene precipitate, which leads to an increase in error and the amount of solvent used increases, which is uneconomical. Therefore, it is desirable to treat the diluted treatment liquid in two stages.

〔実施例〕〔Example〕

以下、本発明の実施例を挙げて説明する。 Examples of the present invention will be described below.

実施例1 本例の方法は、燃料油をn−ヘプタンに溶解したアスフ
ァルテン懸濁液と、燃料油をトルエンに完全溶解した液
とのある波長での吸光度差から、アスファルテン含有量
を推定する方法である。
Example 1 The method of this example is a method of estimating the asphaltene content from the difference in absorbance at a certain wavelength between an asphaltene suspension in which fuel oil is dissolved in n-heptane and a liquid in which fuel oil is completely dissolved in toluene. Is.

第2図に示すように、50mメスフラスコに低質燃料
油2gを秤量し、50mになるまでトルエンを加えて
メスアップした。このうち1mを別の50mメスフ
ラスコに入れ、50mのn−ヘプタンを加えてメスア
ップした(この液をA液という)。
As shown in FIG. 2, 2 g of low-quality fuel oil was weighed in a 50-m volumetric flask, and toluene was added until the volume became 50 m to make the volume up. 1 m of this was put into another 50 m volumetric flask, and 50 m of n-heptane was added to make up the volume (this liquid is referred to as liquid A).

また、低質燃料油2gをトルエンでメスアップした液の
うち、1mをさらに別の50mメスフラスコに入
れ、50mのトルエンを加えてメスアップした(この
液をB液という)。
Further, 1 m of the liquid obtained by measuring up 2 g of low-quality fuel oil with toluene was placed in another 50 m measuring flask, and 50 m of toluene was added to measure up (this liquid is referred to as liquid B).

A液およびB液をそれぞれ十分に攪拌した後、10mmセル
で一般の吸光光度法で用いられる750nmの波長で吸光度
を測定し、A液の吸光度とB液の吸光度との差よりアス
ファルテン量を推定した。この操作を、アスファルテン
含有量を予め測定している燃料油a〜eについて行っ
た。結果は第1表に示す如くであった。
After thoroughly agitating each of solution A and solution B, measure the absorbance at a wavelength of 750 nm, which is used in general absorptiometry in a 10 mm cell, and estimate the amount of asphaltene from the difference between the absorbance of solution A and that of solution B. did. This operation was performed for the fuel oils a to e whose asphaltene content was previously measured. The results are shown in Table 1.

この結果をプロットすると、第3図に示すようなグラフ
が得られた。第3図から、吸光度差を求めることによ
り、アスファルテン含有量を正確に推定することが可能
であることがわかる。
When this result was plotted, a graph as shown in FIG. 3 was obtained. From FIG. 3, it is understood that the asphaltene content can be accurately estimated by obtaining the difference in absorbance.

実施例2 低質燃料油(実施例1におけるd)からアスファルテン
成分を分離・濃縮・乾固した。このアスファルテン成分
を0.05〜0.8重量%の範囲でトルエンに希釈してアスフ
ァルテン標準液を作製した。
Example 2 The asphaltene component was separated, concentrated and dried from the low quality fuel oil (d in Example 1). This asphaltene component was diluted with toluene in the range of 0.05 to 0.8% by weight to prepare an asphaltene standard solution.

このアスファルテン標準液試料10としてを、第4図に
示すように、ガラスなどの2枚の透明板11、12間に
挾持させて、透過光吸収率を測定した。この結果は第5
図における●印の如くであった。13は発光素子、14
は受光素子、15は照度計、16はスペーサ、17は止
めバサミである。なお、透明板11、12間の間隙は約
15μmであった。通常、この値は10〜20μmとするのが
望ましい。
As shown in FIG. 4, this asphaltene standard solution sample 10 was held between two transparent plates 11 and 12 such as glass, and the transmitted light absorptance was measured. This result is the fifth
It was like the mark ● in the figure. 13 is a light emitting element, 14
Is a light receiving element, 15 is an illuminometer, 16 is a spacer, and 17 is a pincer. The gap between the transparent plates 11 and 12 is about
It was 15 μm. Generally, it is desirable that this value be 10 to 20 μm.

つぎに、アスファルテン含有量既知の数種類の低質燃料
油(トルエンで30容量倍に希釈した液)をn−ヘプタ
ンで50容量倍に希釈して溶解させたアスファルテン懸
濁液を試料10として透過光吸収率を測定した。さら
に、同じ低質燃料油をトルエンで50容量倍に希釈して
完全溶解させた液を試料10として透過光吸収率を測定
した。これらの透過光吸収率の差とアスファルテン分と
の関係は、第5図における▲の如くであった。第5図か
ら、アスファルテン標準液の曲線と、透過光吸収率差に
よりアスファルテン分を推定した曲線とがほぼ一致する
ことがわかる。なお、照度計として、シリコンフォトセ
ル内蔵の標準比視感度を有する照度計(日本光学株式会
社製、トップコーンIM-3)を使用した。
Next, several kinds of low-quality fuel oils having a known asphaltene content (a liquid diluted 30 times by volume with toluene) were diluted 50 times by volume with n-heptane and dissolved to obtain a sample 10 and absorbed as transmitted light. The rate was measured. Further, the same low-quality fuel oil was diluted 50 times by volume with toluene and completely dissolved, and the liquid 10 was used as a sample 10 to measure the transmitted light absorption rate. The relationship between the difference in transmitted light absorptance and the asphaltene content was as indicated by ∘ in FIG. It can be seen from FIG. 5 that the curve of the asphaltene standard solution and the curve of the asphaltene content estimated from the difference in the transmitted light absorptance are substantially the same. As the illuminance meter, an illuminance meter (top cone IM-3 manufactured by Nihon Kogaku Co., Ltd.) having a standard relative luminous efficiency with a built-in silicon photocell was used.

実施例3 実施例2と同様にして、アスファルテン標準液を作製
し、この液を試料10として第6図に示すように、2枚
の透明板11、12間に挾持させて、濁度を測定した。
この結果は第7図における●印の如くであった。16は
スペーサ、17は止めバサミ、18はスモークメータ、
19は白色紙である。なお、透明板11、12間の間隙
は25μmであった。通常、この値は10〜200μmとする
のが望ましい。
Example 3 An asphaltene standard solution was prepared in the same manner as in Example 2, and this solution was used as sample 10 and held between two transparent plates 11 and 12 to measure the turbidity. did.
The results are as shown by ● in FIG. 16 is a spacer, 17 is a pincer, 18 is a smoke meter,
Reference numeral 19 is white paper. The gap between the transparent plates 11 and 12 was 25 μm. Generally, it is desirable that this value be 10 to 200 μm.

つぎに、アスファルテン含有量既知の数種類の低質燃料
油をn−ヘプタンで50容量倍に希釈して溶解させたア
スファルテン懸濁液を試料10として、濁度を測定し
た。さらに同じ低質燃料油をトルエンで50容量倍に希
釈して完全溶解させた液を試料10として濁度を測定し
た。これらの濁度の差とアスファルテン分との関係は、
第7図における▲の如くであった。第7図から、アスフ
ァルテン標準液の曲線と、濁度差によりアスファルテン
分を推定した曲線とがほぼ一致することがわかる。な
お、スモークメータとして、ディーゼル自動車排気煙濃
度測定用反射式スモークメータ(ディーゼル機器株式会
社製、DSM-20A)を使用した。
Next, the turbidity was measured using Sample 10 as an asphaltene suspension in which several types of low-quality fuel oils having known asphaltene contents were diluted 50 times by volume with n-heptane and dissolved. Further, the same low-quality fuel oil was diluted 50 times by volume with toluene and completely dissolved, and the liquid was completely dissolved. The relationship between these turbidity differences and asphaltene content is
It was like ▲ in FIG. 7. It can be seen from FIG. 7 that the curve of the asphaltene standard solution and the curve of the asphaltene content estimated by the difference in turbidity are almost the same. As the smoke meter, a reflection type smoke meter for measuring the exhaust smoke concentration of a diesel vehicle (DSM-20A manufactured by Diesel Instruments Co., Ltd.) was used.

〔発明の効果〕 本発明は、上記のように構成されているので、つぎのよ
うな効果を奏する。
[Advantages of the Invention] Since the present invention is configured as described above, it has the following advantages.

(1)従来方法における乾燥・重量計測などの自動化に困
難な工程を、光学的方法により置き換えているので、容
易に自動化することができる。
(1) Since the steps that are difficult to automate such as drying and weight measurement in the conventional method are replaced by the optical method, the steps can be easily automated.

(2)従来の石油学会法では、測定に5〜6時間以上要し
ていたが、本発明の方法では、乾燥・重量計測などを行
わないので、測定時間が大幅に短縮される。
(2) In the conventional method of the Japan Petroleum Institute, the measurement took 5 to 6 hours or more, but in the method of the present invention, the measurement time is greatly shortened because the drying / weight measurement is not performed.

(3)測定精度がきわめて高い。(3) The measurement accuracy is extremely high.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の燃料油中のアスファルテン成分分析装
置の一実施例を示すフローシート、第2図は本発明の方
法を光散乱法で行った場合の実施例を示す説明図、第3
図は波長750nmにおける吸光度差とアスファルテンとの
関係を示すグラフ、第4図は本発明の方法を透過照度測
定法で行った場合の実施例で用いた装置の縦断面説明
図、第5図は吸収率とアスファルテン分との関係を示す
グラフ、第6図は本発明の方法を濁度測定法で行った場
合の実施例で用いた装置の縦断面説明図、第7図は濁度
とアスファルテン分との関係を示すグラフ、第8図は懸
濁液(ゾル化液)の吸光度と経過時間との関係を示すグ
ラフである。 1…第1光学的測定部、2…第2光学的測定部、3…演
算・出力部、4…試料油タンク、5…ポンプ、6…廃油
タンク、7…攪拌溶解槽、10…試料、11、12…透
明板、13…発光素子、14…受光素子、15…照度
計、16…スペーサ、17…止めバサミ、18…スモー
クメータ、19…白色紙
FIG. 1 is a flow sheet showing an embodiment of an asphaltene component analyzer for fuel oil of the present invention, and FIG. 2 is an explanatory view showing an embodiment when the method of the present invention is carried out by a light scattering method.
FIG. 4 is a graph showing the relationship between the absorbance difference at a wavelength of 750 nm and asphaltene, FIG. 4 is a vertical cross-sectional explanatory view of the apparatus used in the example when the method of the present invention was carried out by a transmitted illuminance measurement method, and FIG. Fig. 6 is a graph showing the relationship between absorption rate and asphaltene content, Fig. 6 is a longitudinal cross-sectional explanatory view of the apparatus used in the example when the method of the present invention was carried out by a turbidity measuring method, and Fig. 7 is turbidity and asphaltene. Fig. 8 is a graph showing the relationship with the minutes, and Fig. 8 is a graph showing the relationship between the absorbance of the suspension (sol solution) and the elapsed time. DESCRIPTION OF SYMBOLS 1 ... 1st optical measurement part, 2 ... 2nd optical measurement part, 3 ... Computation / output part, 4 ... Sample oil tank, 5 ... Pump, 6 ... Waste oil tank, 7 ... Stirring dissolution tank, 10 ... Sample, 11, 12 ... Transparent plate, 13 ... Light emitting element, 14 ... Light receiving element, 15 ... Illuminance meter, 16 ... Spacer, 17 ... Stopper, 18 ... Smoke meter, 19 ... White paper

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】低質燃料油をn−ヘプタンで希釈して溶解
させたアスファルテン懸濁液と、同じ低質燃料油をトル
エンでn−ヘプタンの場合と同じ倍率に希釈して完全溶
解させた液とをゾル化の状態で光散乱量を対比測定する
ことを特徴とする燃料油中のアスファルテン成分分析方
法。
1. An asphaltene suspension obtained by diluting and dissolving low-quality fuel oil with n-heptane, and a liquid obtained by diluting the same low-quality fuel oil with toluene to the same ratio as in the case of n-heptane and completely dissolving it. A method for analyzing asphaltene components in fuel oil, which comprises measuring the amount of light scattering in a sol state.
【請求項2】低質燃料油をn−ヘプタンで希釈して溶解
させたアスファルテン懸濁液と、同じ低質燃料油をトル
エンでn−ヘプタンの場合と同じ倍率に希釈して完全溶
解させた液との透過光吸収率差を測定し、光の散乱また
はこの透過光吸収率差から低質燃料油中のアスファルテ
ン成分を推定することを特徴とする燃料油中のアスファ
ルテン成分分析方法。
2. An asphaltene suspension obtained by diluting and dissolving low-quality fuel oil with n-heptane, and a liquid obtained by diluting the same low-quality fuel oil with toluene to the same ratio as in the case of n-heptane and completely dissolving it. A method for analyzing asphaltene components in fuel oil, characterized by measuring the difference in transmitted light absorptivity of the fuel oil and estimating the asphaltene component in the low quality fuel oil from the scattering of light or the difference in the transmitted light absorptance.
【請求項3】透過光吸収率差の代りに、濁度差を測定す
ることを特徴とする請求項2記載の燃料油中のアスファ
ルテン成分分析方法。
3. The method for analyzing asphaltene components in fuel oil according to claim 2, wherein a difference in turbidity is measured instead of the difference in transmitted light absorptance.
【請求項4】低質燃料油をn−ヘプタンで希釈して溶解
させたアスファルテン懸濁液の吸光度、透過光吸収率ま
たは濁度を測定する第1光学的測定部(1)と、同じ低
質燃料油をトルエンでn−ヘプタンの場合と同じ倍率に
希釈して完全溶解させた液の吸光度、透過光吸収率また
は濁度を測定する第2光学的測定部(2)と、これらの
光学的測定部(1、2)に接続された演算・出力部
(3)とを包含することを特徴とする燃料油中のアスフ
ァルテン成分分析装置。
4. The same low quality fuel as the first optical measuring section (1) for measuring the absorbance, transmitted light absorptance or turbidity of an asphaltene suspension obtained by diluting and dissolving a low quality fuel oil with n-heptane. Second optical measurement unit (2) for measuring the absorbance, transmitted light absorptance or turbidity of a liquid obtained by completely diluting oil with toluene at the same magnification as in the case of n-heptane, and these optical measurements. A device for analyzing asphaltene components in fuel oil, comprising an arithmetic / output unit (3) connected to the units (1, 2).
JP1069484A 1989-03-22 1989-03-22 Method and apparatus for analyzing asphaltene components in fuel oil Expired - Lifetime JPH0643959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1069484A JPH0643959B2 (en) 1989-03-22 1989-03-22 Method and apparatus for analyzing asphaltene components in fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1069484A JPH0643959B2 (en) 1989-03-22 1989-03-22 Method and apparatus for analyzing asphaltene components in fuel oil

Publications (2)

Publication Number Publication Date
JPH02248844A JPH02248844A (en) 1990-10-04
JPH0643959B2 true JPH0643959B2 (en) 1994-06-08

Family

ID=13404025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069484A Expired - Lifetime JPH0643959B2 (en) 1989-03-22 1989-03-22 Method and apparatus for analyzing asphaltene components in fuel oil

Country Status (1)

Country Link
JP (1) JPH0643959B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236168B2 (en) 2009-10-13 2012-08-07 Exxonmobil Research And Engineering Company Onset haze measurement apparatus and procedure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926391A (en) * 1995-07-13 1997-01-28 Cosmo Sogo Kenkyusho:Kk Method and apparatus for quantitatively determining heavy oil ingredient
CN108827895A (en) * 2018-05-30 2018-11-16 上海宝钢工业技术服务有限公司 The measuring method of asphalt smoke concentration in uncontrollable discharge

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524671A (en) * 1978-08-10 1980-02-21 Toyobo Co Ltd Contamination meter for rinsing water
JPS62110135A (en) * 1985-11-08 1987-05-21 Cosmo Co Ltd Method and apparatus for quantifying concentration of asphaltene
JPS62232537A (en) * 1986-04-02 1987-10-13 Mazda Motor Corp Apparatus for detecting fuel component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236168B2 (en) 2009-10-13 2012-08-07 Exxonmobil Research And Engineering Company Onset haze measurement apparatus and procedure

Also Published As

Publication number Publication date
JPH02248844A (en) 1990-10-04

Similar Documents

Publication Publication Date Title
EP0551145B1 (en) Determination of asphaltene content and device therefor
AU2003251963B2 (en) Asphaltene aggregation in petroleum oil mixtures determined by small angle light scattering
CN106062552A (en) Method for non-intrusive measurement of low water content in oil
CN101251489A (en) Rapid preprocessing method for measuring total phosphorus content in deposit
CN104655580B (en) A kind of method of the chemical cellulose content in quick measure dissolving pulp
WO2009067043A1 (en) Method for measuring particle size in a liquid and device for carrying out said method
JPH08189890A (en) Method and device for measuring concentration of insoluble component in oil
JPH0643959B2 (en) Method and apparatus for analyzing asphaltene components in fuel oil
Yuan et al. Determination of cadmium at the nanogram per liter level in seawater by graphite furnace AAS using cloud point extraction
DE102016208962A1 (en) Photometer with quantitative volume detection
JPH0926391A (en) Method and apparatus for quantitatively determining heavy oil ingredient
CN205643150U (en) COD short -term test appearance
Shull et al. Rapid modified eriochrome cyanine R method for determination of aluminum in water
US20060199243A1 (en) Cytological stain composition and methods of use
JP2907269B2 (en) Automatic calibration method of automatic analyzer
DE102016208967B4 (en) Photometer with quantitative volume measurement
Gooberman Molecular weight distributions of polystyrene samples by turbidimetric titration
Luthy Manual of methods: preservation and analysis of coal gasification wastewaters
CN105486651B (en) The chemical analysis method of lanthanum in a kind of lead-containing alloy
CN104634750B (en) Method for determining protein solubility based on ultrasonic dispersion, differential centrifugation and spectrum technologies
JPH02248861A (en) Method and apparatus for analyzing sludge in fuel oil
SU709994A1 (en) Method of determining colloidal particles in dyes solutions
CN87101666A (en) Asphalt content rapid test method and analyzer thereof
WO2021114109A1 (en) Method for rapidly measuring and calculating calorific value of sludge on the basis of cielab color space
JP4542682B2 (en) Sample preparation device for measuring particles in oil